首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
超慢速扩张的北冰洋Gakkel洋中脊具有六个沿扩张方向的线性基底隆起(本文编号为A—F).这些线性基底隆起在中轴两侧的地球物理场和地壳结构呈现不同程度的非对称性.本文利用Gakkel洋中脊的地形、空间重力异常(FAA)和航空磁力数据,计算了它的扩张速率、剩余地幔布格重力异常(RMBA)、地壳厚度和非均衡地形.根据中轴两侧地形和地壳厚度的对称关系,我们将六个基底隆起分为对称型和非对称型两种类型.整体上,B、D和F区基底隆起在中轴两侧的地形和地壳厚度的非对称幅值(两侧差值的绝对值)较小,其中地形的非对称幅值分别为~157m、~125m、~208m,地壳厚度的非对称幅值分别为~1km、~0.06km、~0.3km;而A、C和E区的非对称幅值较大,其中地形的非对称幅值分别为~510m、~410m、~673m,地壳厚度的非对称幅值分别为~2km、~2.5km、~1.1km.我们因此推断B、D和F区具有相对对称的地壳结构,而A、C和E区具有非对称的地壳结构.根据A、C和E区中轴两侧非均衡地形的对称关系和非对称地形的补偿状态,推测A区的非对称性可能是由岩浆分配不均所导致;而C区和E区的非对称性可能是由构造断层作用使断层下盘向上抬升变薄所导致.我们进一步推测洋中脊走向的改变可能使得构造作用更易集中于基底隆起的一侧.  相似文献   

2.
A seismic reflection and gravity profile across the continental margin of the Yucatan Peninsula, Yucatan Basin, Cayman Ridge, and Cayman Trough suggests that sediments in the Yucatan Basin consist of a thick succession of beds dominated by turbidites that overlie a thick but irregular sequence of beds, probably dominated by pelagic deposits. The so-called “Carib beds”, present elsewhere in the Caribbean, are not evident in the part of the basin crossed by this profile. The sedimentary section rests on a acoustic basement that probably represents the top of oceanic layer 2. A gravity model indicates that the crust beneath the Yucatan Basin is thin and therefore probably is oceanic in character. The crust thickens southward under the Cayman Ridge but thins again beneath the Cayman Trough. This local thickening is consistent with the suggestion that the Cayman Ridge is a rifted part of the Nicaraguan Rise.  相似文献   

3.
It has been suggested that Porcupine Ridge, west of Ireland, represents a continental fragment displaced westwards relative to Europe at an early stage in the opening of the North Atlantic. This hypothesis presents difficulties, particularly in relation to the magnetic evidence for the onset of seafloor spreading at these latitudes. However, the structure of the Irish continental margin, so far as it is known, appears consistent with a westward rotation of Porcupine Ridge by some 23°; and there are still grounds for supposing that the adjacent Rockall Trough may represent a locus of Mesozoic seafloor spreading with which the rotation could have been associated.  相似文献   

4.
Kyoko  Okino Yukihiro  Kato 《Island Arc》1995,4(3):182-198
Abstract The Nankai Trough, off southwest Japan, is one of the best sites for the study of geomorphic characteristics of a clastic accretionary prism. A recent multibeam survey over the central and eastern parts of the Nankai accretionary prism has revealed a large variation of the topography along the trough axis. Analysis of the bathymetric data suggests the existence of prism deformational features of different scales, such as depressions, embayment structures and cusps. These structures are the results of slope instability caused by basement relief of subducted oceanic plate. Unstable slopes recover by new accretion and development of a low angle thrust. Small-scale deformation due to the subduction of a small isolated seamount is then adjusted to the regional trend. By contrast, a 30 km indentation of the wedge observed in the eastern part of the Nankai Trough, the Tenryu Cusp, has seemed to retain its geometry. The subducted Philippine Sea plate has deformed greatly near the eastern end of the Nankai Trough, because of the collision between the Izu-Ogasawara (Bonin) arc and central Japan. Therefore, the indentation may be the result of the continuous subduction of a basement high, such as the Zenisu Ridge, which has been formed under north-south compression due to the arc-arc collision.  相似文献   

5.
The Rockall Trough separates the Rockall Plateau microcontinent from the shelf and slope west of the British Isles. The structure and age of the trough has been the source of considerable discussion. Although widely considered to be of oceanic origin, postulated ages for the spreading range from Permian to Cretaceous. New seismic profiles linked to the IPOD sites in the Bay of Biscay and to oceanic anomalies of known age are used to present a new assessment of the age and structure of the southern Rockall Trough. It is concluded that about 120 km of ocean crust is present in the trough and that spreading took place in the Albian-Maastrichtian interval.  相似文献   

6.
冲绳海槽北部基底构造特征   总被引:3,自引:3,他引:0       下载免费PDF全文
利用最新的重磁数据对冲绳海槽北部的基底构造进行了推断解释.研究表明,在海槽内部主要发育两条火山带,一条为著名的吐噶喇火山链,由一系列活动的或休眠的串珠状展布的活火山岛构成;另一条沿海槽中央张裂轴分布,主要由孤立的海底火山构成.冲绳海槽的基底具有沿东西向凹-凸-凹相间的构造格局,深度在1 km~8 km之间变化,受吐葛喇断裂带的北部断裂F1的作用,第三系基底构造发生了显著变化,说明吐葛喇断裂带的北部断裂F1是一条构造转换带.莫霍面为一北北东向的向东倾伏的幔坡,地壳厚度由21 km减至18 km.  相似文献   

7.
冲绳海槽南部基底构造特征   总被引:10,自引:4,他引:6       下载免费PDF全文
利用最新的重磁数据对冲绳海槽南部的基底构造进行了推断解释,研究表明,在冲绳海槽南部,莫霍面构造为一南北两端高,中间低的鞍状构造,地壳厚度在15.5~21 km之间变化.基底深度一般在4~6 km之间变化,表现为南段深度大,北段深度小,在北西向断裂系的作用下,基底局部构造大都成北西向展布,说明冲绳海槽早期的北东向带状构造受到了后期的北西向构造活动的强烈改造作用.在冲绳海槽南部发育有两条沿北北东向展布的火成岩带,一条分布在冲绳海槽扩张轴以东及琉球岛弧西侧下坡;另一条分布在冲绳海槽与琉球岛弧隆褶带的结合部位,火成岩主要是由北东向构造活动产生的,而与北西向断裂关系不密切.  相似文献   

8.
Gravity and bathymetric results from the 1983 Canadian Expedition to Study the Alpha Ridge (CESAR) have outlined positive free-air anomalies centred on the continental break off Ellesmere Island characteristic of normal Atlantic-type passive margins. These data confirm implications derived from depth-to-magnetic basement calculations that the ridge may not be structurally connected to the continent. Across the Alpha Ridge magnetic and gravity anomalies mimic the bathymetry. The magnetic anomalies apparently are not caused, to any great extent, by internal structures or magnetic reversals, but rather seem to result simply from variations in depths to a homogenous magnetic structure. The gravity anomalies across a 500 km wide section of the Alpha Ridge can be almost completely accounted for by topography, shallow sedimentary fill and a simple two-tier crustal model. This implies an extraordinary lateral density homogeneity unknown in continental structures of comparable size. Gravity models show the crustal thickness to increase gradually from 20 km at the Marvin Spur to 38 km at the ridge crest. A comparison of this model with a gravity model of the continental-type Lomonosov Ridge, which has a thickness of about 25 km, indicates that, at the same thickness of 25 km, the average crustal density of the Alpha Ridge is 0.08 Mg/m3 greater. These gravity constraints, the unusually homogenous seismic velocity structure revealed by the CESAR studies, the homogeneous magnetic structure, and the extraordinary high intensity satellite magnetic anomaly associated with the Alpha Ridge, indicate that the ridge may be composed of a large pile of mafic rock, possibly unique on this planet.  相似文献   

9.
Indications of a narrow region of high magnetization within the central magnetic anomaly on some mid-ocean ridges are found on near-bottom and sea surface magnetic profiles. This zone, which probably represents the most recent extrusions onto the ocean floor, is similar to the narrow region of high magnetization found on the Mid-Atlantic Ridge at 45°N with a suite of dredge samples. This narrow region is probably the result of the initial high magnetization of pillow basalts when they are extruded onto the ocean floor and the subsequent rapid oxidation of the outer variolitic zone of the pillows. The large-amplitude, short-wavelength (<15 km) magnetic anomaly found within the central anomaly over both slow- and fast-spreading ridges is produced by this narrow magnetization high. This magnetic anomaly can be used to locate the region of most recent extrusions on most ridges. The absence of this short-wavelength anomaly on some ridges may reflect the episodicity with which basalts are extruded onto the ocean floor.  相似文献   

10.
We have examined available magnetic and gravity data bearing on the initiation of sea-floor spreading in the North Atlantic between Ireland and Newfoundland. The change in character of the magnetic field on the continental margin on either side of the Atlantic from a landward magnetic quiet zone to a seaward “noisy”, magnetic signature is postulated to be related to a change from continental to oceanic crust. Sea-floor spreading between Ireland and Newfoundland was initiated during the long normal geomagnetic polarity interval in the Late Cretaceous. Rockall Trough may have opened at this time. At the end of the normal polarity interval (Late Santonian) the ridge axis jumped westward to bypass Rockall Trough and the related offset initiated the Charlie Gibbs fracture zone.A reconstruction is presented for the relative position between North America and Europe prior to the initiation of sea-floor spreading in the Late Cretaceous.  相似文献   

11.
A longitudinal seismic reflection profile of the Reykjanes Ridge, together with earthquake seismicity patterns, is interpreted in terms of the mantle plume hypothesis. Between 52°N and 57°N Reykjanes Ridge is cut by about 12 fractures whose trend, inferred from other data, is approximately east-west. North of 57° there is little or no indication of east-west fracturing.The 57°N transition from fractured to unfractured basement occurs about 900 km southwest of the postulated Iceland mantle plume. The fractured province exhibits higher seismicity and rougher basement, on transverse profiles, than does the unfractured province. A similar transition to rougher, more seismic ridge crest also occurs 900 km northeast of Iceland. We propose that flowage of hot, basalt-rich asthenosphere away from the Iceland hot spot keeps the axial lithosphere hot, thin, sparsely fractured, and relatively aseismic out to 900 km from the plume. Similar effects are evident in the vicinity of some other plumes located near spreading axes. Some plumes also exhibit a greater number of earthquakes at some distance from the spreading axis — possibly a reflection of non-axial igneous activity or fracturing due to local, plume-generated stresses.The regional basement slope along the longitudinal profile is about 8 × 10?4. If this slope represents a balance between viscous and gravity forces in the flow, a viscosity of the order 1019 poises can be estimated from the Poiseuille equation.A peculiarly flat, opaque reflector was discovered near the Reykjanes axis, about 300 km southwest of Iceland. Several hypotheses are advanced to account for such reflectors by the exceptional volcanic activity associated with high plume discharge.  相似文献   

12.
Eight submersible dives between 3000 and 4200 m water depth were made off southern Japan in the eastern Nankai subduction zone. Benthic communities associated with chemosynthetic processes were discovered along the 800 m wide active tectonic zone, at the toe of the accretionary prism. A benthic community was also discovered along a zone of active compression, at the foot of Zenisu Ridge, 30 km south of Nankai Trough. Temperature measurements within the sediments below the benthic communities confirm that upward motion of interstitial water occurs there. Studies of water samples indicate advection of methane and light hydrocarbons. Specimens of the benthic community have been shown to have included in their shells carbonate resulting from methane consumption. Thus the benthic communities are related to overpressure-driven fluid advection along tectonic zones with active surface deformation. A 300 m high active scarp at the toe of the accretionary prism is related to relative motion in a 280° direction which is close to the 305° average direction of subduction in this area. The dives establish further that compressive deformation is presently occurring at the foot of Zenisu Ridge. The previous interpretation of the Zenisu Ridge as a zone of recent north-south intraplate shortening, 40 km south of the Nankai Trench, is confirmed. We conclude that tectonic evolution might well lead to future detachment of the Zenisu Ridge and overthrusting of this large piece of oceanic crust over the continental margin. Such a process might be an efficient one to emplace ophiolites over continents.  相似文献   

13.
Rosemary Bank is a non-uniformly magnetised seamount in the northern Rockall Trough. The reversely magnetised major component of the anomaly field was simulated by a numerical method and modelled using the Talwani three-dimensional magnetics program. The results suggest a higher Koenigsberger ratio than earlier reported for Rosemary Bank and a remanent magnetisation vector compatible with post-Jurassic formation and probably of a Late Cretaceous to Tertiary age. The limited depth to the base of the model implies that Rosemary Bank post-dates the underlying basement in agreement with a volcanic origin. The residual of the observed anomaly field is interpreted as being caused by normally magnetised bodies within and on top of the bank. This suggests subsequent volcanic activity during an interval of normal polarity.  相似文献   

14.
Yasuhiko  Ohara 《Island Arc》2006,15(1):119-129
Abstract In order to obtain a general view of the mantle process beneath a back‐arc basin spreading ridge, the diversity of peridotite petrology and tectonic occurrences in two back‐arc basin spreading ridges from the Philippine Sea were examined: the Parece Vela Rift and the Mariana Trough. The Parece Vela Basin spreading ridge (Parece Vela Rift) was a physically fast/intermediate‐spreading ridge, although many tectono‐magmatic features resemble those of slow‐ to ultraslow‐spreading ridges. Two unusual features of the Parece Vela Rift further demonstrate the uniqueness of the ridge: full‐axial development of oceanic core complexes and exposure of mantle peridotite at segment midpoints. The Parece Vela Rift yields a lithological assemblage of residual but still fertile lherzolite/harzburgite, plagioclase‐bearing harzburgite and dunite; similar assemblages are reported from the equatorial Mid‐Atlantic Ridge at the Romanche Fracture Zone and the ultraslow‐spreading ridges from the Indian and Arctic Oceans. The tectono‐magmatic characteristics of the Parece Vela Rift suggest that diffuse porous melt flow and pervasive melt–mantle interaction were the important mantle processes there. Globally, this ‘porous melt flow‐type’ mantle process is likely to occur beneath a segment midpoint of the ridge having a thick lithosphere, typically an ultraslow‐spreading ridge. In contrast, the Mariana Trough is a typical slow‐spreading ridge, exposing mantle peridotite at segment ends. The Mariana Trough yields a lithological assemblage of residual harzburgite and veined harzburgite, a common assemblage among the global abyssal peridotite suite. The tectono‐magmatic characteristics of the Mariana Trough suggest that channeled melt/fluid flow and limited melt–mantle interaction are the important mantle processes there, because of the colder wall‐rock peridotite in the segment end. This ‘channeled melt flow‐type’ mantle process is likely to occur in the shallow lithospheric mantle at the segment ends of any spreading ridges.  相似文献   

15.
The Alpha Ridge is one of three subparallel trending ridges that cut the Arctic Ocean. It is roughly Late Cretaceous to Eocene in age, and seismic refraction records suggest it comprises a thick sequence of oceanic crust. During the 1983 CESAR expedition 20 similar samples of acoustic basement were dredged from the walls of a major graben of the Alpha Ridge, at one site. These are the only basement samples ever recovered from the ridge and provide the first direct evidence for its nature, composition and possible origin.The basement samples are highly altered pyroclastic rocks composed almost entirely of basaltic volcanic clasts with little matrix. Although the rocks are highly altered, most primary textures and structures are preserved. Most clasts are highly amygdaloidal to scoriaceous, fine grained to glassy, and angular to subround with rare vesicle controlled boundaries. Little reworking is suggested because a single clast type predominates, many of the clasts are subangular, and any amount of reworking would result in destruction of the delicate scoriaceous clasts.Rare clinopyroxene phenocrysts comprise the only unaltered portion of the rocks. They are salitic in composition (Wo49–53, En32–41, Fs11–15), with significant amounts of Ca, Al and Ti. Salitic clinopyroxenes are typical of alkalic basalts.Interpretation of the whole rock geochemistry based on relatively immobile elements, (Nb, Zr, Tio2, and Y), and chondrite-normalized incompatible trace element and REE patterns indicates that the volcanic rock fragments are of alkalic basalt. Geochemical discriminators suggest a within-plate tectonic setting.Textural evidence suggests that the CESAR basement rocks were sampled from a rapidly emplaced submarine fallout deposit that was erupted at a depth at least less than 800 m and likely less than 200 m. High extrusive rates would have been required to build the ridge up to shallow depth prior to the cessation of volcanism. The alkalic affinity of the rocks strongly suggests that the Alpha ridge was not formed by volcanism at an island arc or a mature spreading centre. It is also unlikely that it formed as a “leaky” fracture zone. Alkalic basalts, however, are commonly associated with various types of oceanic aseismic ridges. It is suggested that the Alpha Ridge is an aseismic ridge that formed due to voluminous hotspot volcanism as spreading began in the Canada Basin. Such hotppot activity may have been responsible for initiating the rifting, breakup, and dispersal that eventually formed the Canada Basin.  相似文献   

16.
A longitudinal seismic reflection profile along the east flank of Reykjanes Ridge, from Charlie fracture zone to the vicinity of Iceland, has important implications both for bottom water movement and for hypotheses of crustal generation at the axis of the mid-oceanic ridge. In this paper bottom water movement is considered. Between 52°N and 57°N Reykjanes Ridge is cut by about 12 fractures whose trend, inferred from other data, is approximately east-west. North of 57° there is little or no indication of east-west fracturing. Fracture valley bottoms are typically 1 km below the surrounding basement level; sediment fills are about 0.5 km; present bottoms are 2.1 to 2.8 km below sea level. Depositional asymmetry is apparent in 9 cases, 7 of which have the deepest and generally least reflective bottom at the northern edge. This suggests predominately west-flowing bottom currents, carrying Norwegian Sea overflow water through the fracture valleys, a result consistent with previously published data.  相似文献   

17.
Toshihiro  Ike  Gregory F.  Moore  Shin'ichi  Kuramoto  Jin-Oh  Park  Yoshiyuki  Kaneda  Asahiko  Taira 《Island Arc》2008,17(3):358-375
Abstract   When seamounts and other topographic highs on an oceanic plate are subducted, they cause significant deformation of the overriding plate and may act as asperities deeper in the seismogenic zone. Kashinosaki Knoll (KK) is an isolated basement high of volcanic origin on the subducting Philippine Sea Plate that will soon be subducted at the eastern Nankai Trough. Seismic reflection imaging reveals a thick accumulation of sediments (∼1200 m) over and around the knoll. The lower portion of the sedimentary section has a package of high-amplitude, continuous reflections, interpreted as turbidites, that lap onto steep basement slopes but are parallel to the gentler basement slopes. Total sediment thickness on the western and northern slopes is approximately 40–50% more than on the summit and southeastern slopes of KK. These characteristics imply that the basal sedimentary section northwest of KK was deposited by infrequent high-energy turbidity currents, whereas the area southeast of KK was dominated by hemipelagic sedimentation over asymmetric basement relief. From the sediment structure and magnetic anomalies, we estimate that the knoll likely formed near the spreading center of the Shikoku Basin in the early Miocene. Its origin differs from that of nearby Zenisu Ridge, which is a piece of the Shikoku Basin crust uplifted along a thrust fault related to the collision of the Izu–Bonin arc and Honshu. KK has been carried into the margin of the Nankai Trough, and its high topography is deflecting Quaternary trench turbidites to the south. When KK collides with the accretionary prism in about 1 My, the associated variations in sediment type and thickness around the knoll will likely result in complex local variations in prism deformation.  相似文献   

18.
—More than 60 events recorded by four recently deployed seismic broadband stations around Scotia Sea, Antarctica, have been collected and processed to obtain a general overview of the crust and upper mantle seismic velocities.¶Group velocity of the fundamental mode of Rayleigh waves in the period between 10 s to 30–40 s is used to obtain the S-wave velocity versus depth along ten different paths crossing the Scotia Sea region. Data recorded by two IRIS (Incorporated Research Institutions for Seismology) stations (PMSA, EFI) and the two stations of the OGS-IAA (Osservatorio Geofisico Sperimentale—Instituto Antarctico Argentino) network (ESPZ, USHU) are used.¶The Frequency-Time Analysis (FTAN) technique is applied to the data set to measure the dispersion properties. A nonlinear inversion procedure, "Hedgehog," is performed to retrieve the S-wave velocity models consistent with the dispersion data.¶The average Moho depth variation on a section North to South is consistent with the topography, geological observations and Scotia Sea tectonic models.¶North Scotia Ridge and South Scotia Ridge models are characterised by similar S-wave velocities ranging between 2.0 km/s at the surface to 3.2 km/s to depths of 8 km/s. In the lower crust the S-wave velocity increases slowly to reach a value of 3.8 km/s. The average Moho depth is estimated between 17 km to 20 km and 16 km to 19 km, respectively, for the North Scotia Ridge and South Scotia Ridge, while the Scotia Sea, bounded by the two ridges, has a faster and thinner crust, with an average Moho depth between 9 km and 12 km.¶On other paths crossing from east to west the southern part of the Scotia plate and the Antarctic plate south of South Scotia Ridge, we observe an average Moho depth between 14 km and 18 km and a very fast upper crust, compared to that of the ridge. The S-wave velocity ranges between 3.0 and 3.6 km/s in the thin (9–13 km) and fast crust of the Drake Passage channel. In contrast the models for the tip of the Antarctic Peninsula consist of two layers with a large velocity gradient (2.3–3.0 km/s) in the upper crust (6-km thick) and a small velocity gradient (3.0–4.0) in the lower crust (14-km thick).  相似文献   

19.
The Karelian mantled gneiss domes of Finland occur within a band some 100 km wide and at least 400 km long, bordering the Archean basement. Previous field analysis has shown that domes were emplaced during regional deformation. Domes tend to cluster along nine ridges oriented NNE-SSW to NE-SW. Data concerning dome size, shape and distribution are presented. Good correlations are found between shape, orientation and spacing of domes and the regional foliation. The spacing between the ridges is consistent and varies from 27 to 42 km according to their orientation but the dome spacing along the ridges is strongly modified by the regional deformation. The comparison with theoretical and experimental models allows an interpretation in terms of diapiric periodicity. The disposition in ridges could be a boundary effect controlled by the shape of the Archean-Karelian interface. The conservation of the cluster-ridge pattern, in spite of the regional deformation, tends to prove the predominance of gravitational instability over regional shortening in the tectonic evolution of the Karelides.  相似文献   

20.
A detailed (5 km track separation) seismic reflection survey of a portion of the upper flank of Reykjanes Ridge supports the existence of an oblique aseismic ridge, previously postulated from other data. The oblique basement ridge may have been formed by a magma center moving southwest under this portion of the Reykjanes Ridge at about 6 cm/yr between 7 and 5 mbyp. The oblique ridge is complex, being interrupted by saddles about every 30 km length. This spacing could reflect incipient, very weakly developed transverse fractures, or more probably the concentration of volcanic activity at particularly active vents, which shift southwestward every million years or so in response to the south-westward moving magma chambers entrained in the asthenosphere. Minor irregularities in the oblique ridge parallel crustal isochrons; such small features are probably elongate fissure eruptions restricted to a narrow spreading axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号