首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Haivan Station is an important station on the North-South railway line in central Vietnam. Field investigation has identified a precursor stage of a landslide that would threaten this railway. Therefore, a landslide susceptibility assessment for Haivan Station was urgently needed to protect passenger safety and the national railway. Conducted investigations included air-photo interpretation, drilling, ground water and inclinometer monitoring, laboratory testing, and landslide simulation. This research applied the undrained dynamic loading ring shear apparatus ICL-2 to drill-core samples from the precursor landslide. Samples for ring shear tests were taken from sandy soil layers found at depths of ~21, ~31, and ~50 m in the cores. Each of these was believed to be a possible sliding surface of a landslide, and all were tested to shear failure in the ICL-2 apparatus. The boundary between highly weathered granitic rock and weathered granitic rock was identified at about 50 m depth. The inclinometer monitoring detected slight movement at this depth. Therefore, the present day risk of a landslide forming at 50 m is higher than for one forming at either 21 or 31 m. The landslide dynamic parameters obtained from the ring shear test of the 50-m-deep sample were used in an integrated numerical simulation model LS-RAPID. The simulation result gave the critical pore-pressure ratio for landslide occurrence, and landslide’s likely maximum speed, total volume, and depth of landslide debris that could cover the railway. These estimates serve to raise awareness of the vulnerability of the Vietnam national railway sector to landslide impact.  相似文献   

2.
The present paper illustrates the results of an integrated study of a large landslide located on the southern slope of Mount la Civita (Molise, Southern Apennine), an E–W elongated, SSE dipping and 890-m-high monocline carbonate ridge. The upper part of the slope affected by the landslide is largely controlled by strata attitude while its basal part is marked by a strike–slip fault causing the tectonic juxtaposition of the carbonate successions against predominantly clayey flysch units. An integrated study, including geological, geomorphological and geotechnical investigations, was carried out to determine the features of the landslide and to plan further investigation and monitoring. In particular, from 2002 to 2004, Differential Global Positioning System monitoring and core drillings, coupled with inclinometer measurements, were carried out to determine the landslide’s kinematics, extent, depth to the surface of rupture and rates of movement. Inclinometer data revealed the presence of the rupture surface at a depth of about 20 m. DGPS monitoring allowed rates of movement up to several tens of centimetres per year to be recorded. The nearby village of Civitanova del Sannio can still be considered at risk due to the landslide, as recent remedial works, consisting mainly of very shallow re-shaping of the slope by blasting and partial filling of trenches, did not succeed in stopping its movement.  相似文献   

3.
The July 1, 2017 Wangjiawan landslide in Ningxiang County,China   总被引:1,自引:0,他引:1  
Many landslides were triggered by heavy rainfall from 29 June to 1 July 2017 in Ningxiang County, Hunan Province, China. A field investigation into one of the landslides, known as the Wangjiawan landslide, was undertaken on July 3, 2017, to understand the landslide mechanisms and the factors that triggered the event. The landslide is a translational and rotational slide that degraded downslope to an earth flow. It occurred on a steeply dipping mud-rich slate intercalation. Field investigation shows that the landslide had a movement rate of more than 25 m/s and had been triggered by up to 338 mm of continuous rainfall over 2 days. The landslide was fast-moving because it occurred on a steep slope and showed a rapid reduction in shear strength. The landslide resulted in nine fatalities and 19 injuries, most during initial rescue efforts. To mitigate a possible secondary landslide disaster, later emergency measures including evacuation of the survivors, setting up warning signs, and covering landslide cracks with plastic sheeting were adopted.  相似文献   

4.
A large landslide occurred at Maierato (Vibo Valencia District), Southern Italy, on 15 February 2010, when rapid failure was produced after several days of preliminary movements. The landslide can be classified as a rotational slide with flowing of the mass. It occurred within a larger deep-seated gravitational movement area and was preconditioned for failure by the intrinsic geological weakness of the area. Actually, the in situ survey showed the presence of several ancient movement surfaces all around the urban area. The landslide-triggering factor was the increase in the groundwater flow, consequent to a period of heavy and prolonged rainfall. The aim of the paper is to explain the mechanism of occurrence of the February 2010 composite landslide, in order to assess the landslide hydrogeological susceptibility in the whole urban area of Maierato. For this reason, the present paper deals with: (1) identification of the landslide mechanism and triggering factors (2) slope stability back-analysis using a finite-difference-based shear strength reduction method, and (3) 3D groundwater flow modelling extended to the whole urban area both in pre- and post-failure conditions. The results show that the February 2010 composite landslide was triggered by a water table increase of about 15 m uphill the landslide scarp. This hydrogeological condition could be reached after the period of heavy and prolonged rainfall preceding the landslide event. Finally, based on the groundwater modelling in post-failure condition, a landslide hydrogeological susceptibility map was drawn for the all urban area of Maierato, showing the presence of extended areas exposed to hazard.  相似文献   

5.
6.
The prediction of landslide movement acceleration is a complex problem, among others identified for deep-seated landslides, and represents a crucial step for risk assessment. Within the scope of this problem, the objective of this paper is to explore a modelling method that enables the study of landslide function and facilitates displacement predictions based on a limited data set. An inverse modelling approach is proposed for predicting the temporal evolution of landslide movement based on rainfall and displacement velocities. Initially, the hydrogeology of the studied landslides was conceptualised based on correlative analyses. Subsequently, we applied an inverse model with a Gaussian-exponential transfer function to reproduce the displacements. This method was tested on the Grand Ilet (GI) and Mare-à-Poule-d’Eau (HB) landslides on Reunion Island in the Indian Ocean. We show that the behaviour of landslides can be modelled by inverse models with a bimodal transfer function using a Gaussian-exponential impulse response. The cumulative displacements over 7 years of modelling (2 years of calibration period for GI, and 4 years for HB) were reproduced with an RMSE above 0.9. The characteristics of the bimodal transfer function are directly related to the hydrogeological functioning demonstrated by the correlative analyses: the rapid reaction of a landslide can be associated with the effect of a preferential flow path on groundwater level variations. Thus, this study shows that the inverse model using a Gaussian-exponential transfer function is a powerful tool for predicting deep-seated landslide movements and for studying how they function. Beyond modelling displacements, our approach effectively demonstrates its ability to contribute relevant data for conceptualising the sliding mechanisms and hydrogeology of landslides.  相似文献   

7.
Method for prediction of landslide movements based on random forests   总被引:4,自引:3,他引:1  
Prediction of landslide movements with practical application for landslide risk mitigation is a challenge for scientists. This study presents a methodology for prediction of landslide movements using random forests, a machine learning algorithm based on regression trees. The prediction method was established based on a time series consisting of 2 years of data on landslide movement, groundwater level, and precipitation gathered from the Kostanjek landslide monitoring system and nearby meteorological stations in Zagreb (Croatia). Because of complex relations between precipitations and groundwater levels, the process of landslide movement prediction is divided into two separate models: (1) model for prediction of groundwater levels from precipitation data and (2) model for prediction of landslide movements from groundwater level data. In a groundwater level prediction model, 75 parameters were used as predictors, calculated from precipitation and evapotranspiration data. In the landslide movement prediction model, 10 parameters calculated from groundwater level data were used as predictors. Model validation was performed through the prediction of groundwater levels and prediction of landslide movements for the periods from 10 to 90 days. The validation results show the capability of the model to predict the evolution of daily displacements, from predicted variations of groundwater levels, for the period up to 30 days. Practical contributions of the developed method include the possibility of automated predictions, updated and improved on a daily basis, which would be an important source of information for decisions related to crisis management in the case of risky landslide movements.  相似文献   

8.
A full-scale landslide-triggering experiment was conducted on a natural sandy slope subjected to an artificial rainfall event, which resulted in mobilisation of 130 m3 of soil mass. Novel slope deformation sensors (SDSs) were applied to monitor the subsurface pre-failure movements and the precursors of the artificially triggered landslide. These fully automated sensors are more flexible than the conventional inclinometers by several orders of magnitude and therefore are able to detect fine movements (<?1 mm) of the soil mass reliably. Data from high-frequency measurements of the external bending work, indicating the transmitted energy from the surrounding soil to these sensors, pore water pressure at various depths, horizontal soil pressure and advanced surface monitoring techniques, contributed to an integrated analysis of the processes that led to triggering of the landslide. Precursors of movements were detected before the failure using the horizontal earth pressure measurements, as well as surface and subsurface movement records. The measurements showed accelerating increases of the horizontal earth pressure in the compression zone of the unstable area and external bending work applied to the slope deformation sensors. These data are compared to the pore water pressure and volumetric water content changes leading to failure.  相似文献   

9.
Detailed geomorphological mapping carried out in 5 sample areas in the North of Lisbon Region allowed us to collect a set of geological and geomorphological data and to correlate them with the spatial occurrence of landslide. A total of 597 slope movements were identified in a total area of 61.7 km2, which represents about 10 landslides per km2.The main landslide conditioning factors are: lithology and geological structure, slope angle and slope morphology, land use, presence of old landslides, and human activity.The highest landslide density occurs in Cretaceous marls and marly limestones, but the largest movements are in Jurassic clays, marls and limestones.The landslide density is higher on slopes with gradients above 20 °, but the largest unstable area is found on slopes of 10 ° to 15 °, thus reflecting the presence of the biggest slope movements. There is a correlation between landslides and topographical concavities, a fact that can be interpreted as reflecting the significance of the hydrological regime in slope instability.Concerning land use, the highest density of landslides is found on slopes covered with shrub and undergrowth vegetation.About 26% of the total number of landslides are reactivation events. The presence of old landslides is particularly important in the occurrence of translational slides and complex and composite slope movements.20% of the landslide events were conditioned by anthropomorphic activity. Human's intervention manifests itself in ill-consolidated fills, cuts in potentially unstable slopes and, in a few cases, in the changing of river channels.Most slope movements in the study area exhibit a clear climatic signal. The analysis of rainfall distribution in periods of recognised slope instability allows the distinction of three situations: 1) moderate intensity rainfall episodes, responsible for minor slope movements on the bank of rivers and shallow translational slides, particularly in artificial trenches; 2) high intensity rainfall episodes, originating flash floods and most landslides triggered by bank erosion; 3) long-lasting rainfall periods, responsible for the rise of the groundwater table and triggering of landslides with deeper slip surfaces.  相似文献   

10.
The Las Colinas landslide, which was triggered by the 13 January 2001, Mw?=?7.7 El Salvador earthquake, was highly destructive. The local site is composed of pyroclastic flows, brown cinders, soft pyroclastic fall deposits and a thin palaeosol and is characterised by steep slopes. The extremely high ground motions recorded near the landslide location are assumed to be both produced by site effects and responsible for the landslide. To characterise the ground motion amplifications due to site effects in terms of the variation in geometrical and geological settings, parametric studies were conducted with a linear elastic slope model, which was vertically subjected to the scattering SV wave of the Gabor wavelet. The results show that a maximum amplification is obtained when the model slope angle is approximately 30° (similar to the actual slope angle), and the maximum amplification is located approximately 20 m behind the crest, where the actual movement was initiated. Additionally, a slope with a height of approximately 160 m enhances ground motion amplification. The subsurface geology is found to induce a greater effect on amplification than that of the slope topography. In particular, a soft pyroclastic fall deposit is observed to contribute most of the ground motion amplification. According to the numerical results, it can be concluded that the local site conditions induced extremely high ground motions that then contributed to the slope movement. Although the thin, buried layer of palaeosol did not cause any significant amplification, its weak cohesion enhanced movement.  相似文献   

11.
Mass movements of different thicknesses and types affect the slope where the Greci and Piscopie villages lie (Lago, Calabria, Italy). The study concerns a moderately urbanized area where the lithological, structural, and hydrogeological conditions have produced a large and complex unstable area. In the study area, a multi-temporal field survey has allowed for detailed landslide inventory mapping and definition of the geometric and kinematic characteristics of mass movements with long-term monitoring. In particular, an integrated monitoring network was progressively put in place, since 1996 to measure superficial and deep displacements (GPS stations and inclinometers). The network dataset shows that the mass movements in the study area are characterized by an extremely slow or very slow rate of displacement. The elements acquired by a long-term monitoring of the deep displacements point out that the landslide bodies are prone to develop new failure surfaces progressively shallower, with a consequent increase of the hazard. Moreover, medium-deep and deep-seated landslides may rapidly accelerate in relation to rainfall conditions and significantly affect structures and infrastructures. The integration of the geological and geomorphological knowledges with the monitoring data allows for distinguishing six different homogeneous sectors on the slope, as well as the relative geometric and kinematic characteristics, and the type of mass movements. In the study area, which is representative of several aspects of other areas, the method proposed and the knowledge acquired by long-term monitoring could be useful to define mass movement mechanisms, geotechnical models, and risk mitigation strategies.  相似文献   

12.
The Tochiyama landslide is one of several complex, deep-seated and large-scale landslides occurring in the Hokuriku Province in central Japan. The landslide is about 2 km long and about 500–1100 m wide; it occupies an area of approximately 150 ha and has a maximum depth of 60 m. The slide developed on a dip-slope structure, and is divisible into three layers in ascending order: older landslide debris and avalanche deposits, younger debris-avalanche deposits, and talus. The landslide complex is still active. A triangulation point on the upper part of the landslide shifted downhill by 3.3 m from 1907 to 1983, indicating an average rate of 4.3 cm/y. In 1991, the average rate of movement on the sliding surface was also 4.3 cm/y as measured by an automatic system with inclinometers installed in borehole No. 1–2. The rate measured for borehole No. 1–3, located 380 m upslope from No. 1–2, was over twice that of No. 1–2 for the same period; it has since accelerated to about 19 cm/y. Thus current movements on the basal sliding surface are inhomogeneous; the head of the slide complex is increasing the horizontal granular pressures on the lower part of the slide block.

On the basis of dating of two tephra layers and14C dating of carbonized wood intercalated within the landslide body, two stages of slide movement have been distinguished. The earlier occurred between about 46,000 to 25,000 years ago, and the latter occurred since 1361 A.D. The following sequence of events is inferred. During the middle Pleistocene, intense tectonic movements occurred in the Hokuriku Province, and as a consequence dip-slopes were developed in the Tochiyama landslide area. Low-angle fault planes (possibly representing slump features) and fracture zones then developed within flysch deposits underlying the landslide area, causing a reduction in shear strength. The erosion base level was lowered during the Würm glacial age, and due to severe erosion and incision of stream valleys, the surface slope angle rapidly increased, and toe resistance decreased. This combination of causes led to the development of a deep-seated primary landslide. As a result of an accumulation of younger deposits, regional uplift and further local erosion, stability of parts of the region decreased and led to landslide activity of a second stage. Reactivated and locally accelerating creep movements occur today and may forewarn of a stage of reactivated, hazardous rapid sliding, such as occurred with the adjacent and analogous Maseguchi landslide in 1947.  相似文献   


13.
Since the impoundment of the Three Gorges Reservoir in June 2003, numerous preexisting landslides have been reactivated. This paper seeks to find the factors influencing landslide deformation and the relationship between displacement and fluctuation of the reservoir water level, while the displacement and the intensity of rainfall based on monitoring data; 6 years of monitoring were carried out on the Shiliushubao landslide, a old landslide, consisting of a deep-seated main block and two shallow blocks, with a volume of 1,180 × 104 m3 and located on the left bank of the Yangtze River, 66 km upstream of the Three Gorges dam. This landslide was reactivated by the impoundment and since then the landslide body has been experiencing persistent deformation with an observed maximum cumulative displacement of 8,598.5 mm up to December 2009. Based on the monitoring data, we analyzed the relationship between the fluctuation of the reservoir water level and displacement, rainfall and displacement, and found that the rainfall is the major factor influencing deformation for two shallow blocks and the displacement has a positive correlation with the variation of rainfall intensity. The fluctuation of the reservoir water level is the primary factor for main block, and the deformation rate has a negative correlation with the variation of reservoir water level, declined with the rise of the water level and increased with the drawdown of the water level.  相似文献   

14.
More than 5000 landslides or potential landslides have been induced in the Three Gorges Reservoir (TGR) region since the impoundment in 2003, which have caused great damage and remain a huge threat to the dam and people living in the reservoir area. Understanding the deformation characteristics and failure mechanism of the landslides can be helpful in stability evaluation and landslide prediction. The primary aim of this study is to research the characteristics of the landslide motion and its relationships with environmental triggers, taking the Quchi landslide, a large, slow-moving, reactivated landslide in the TGR region, as an example. The instability clearly showed visible signs of movements since 2002, and after that, the slope has been experiencing persistent deformation. By combining 4 years of meteorological, hydrological data with displacement measurements from open fractures, deep boreholes, and surface points, as well as in situ observations, this paper reports the geological and geotechnical investigations performed to define the movement. The deformation is believed to be governed by reservoir water levels, while the precipitation has a minor effect. Seasonally, the slope movement has a very distinctive pattern with large deformation starting abruptly right after reservoir drawdown in June and lasting into late summer (September). Then there is a rapid transition to constant deformation (almost no displacement) as the reservoir level rises. The slope displacements appear to gradually increase every year, which suggests very high possibility of the large and overall failure of the slide. Both monitoring results and geomorphological observations have highlighted that the two active slide masses Q1 and Q2 would probably collapse in different kinematic evolution modes, i.e., the multistage failure and whole sliding motion.  相似文献   

15.
The Kualiangzi landslide was triggered by heavy rainfalls in the “red beds” area of Sichuan Basin in southwestern China. Differing from other bedrock landslides, the movement of the Kualiangzi landslide was controlled by the subvertical cracks and a subhorizontal bedding plane (dip angle < 10°). The ingress of rainwater in the cracks formed a unique groundwater environment in the slope. Field measurement for rainfall, groundwater movement, and slope displacement has been made for the Kualiangzi landslide since 2013. The field monitoring system consists of two rainfall gauges, seven piezometers, five water-level gauges, and two GPS data loggers. The equipments are embedded near a longitudinal section of the landslide, where severe deformation has been observed in the past 3 years. The groundwater responses to four heavy rainfall events were analyzed between June 16 and July 24 in 2013 coincided with the flood season in Sichuan. Results showed that both of the water level and the pore-water pressure increased after each rainfall event with delay in the response time with respect to the precipitation. The maximum time lag reached 35 h occurred in a heavy rainfall event with cumulative precipitation of 127 mm; such lag effect was significantly weakened in the subsequent heavy rainfall events. In each presented rainfall event, longer infiltration period in the bedrock in the upper slope increased the response time of groundwater, compared to that of in the gravels in the lower slope. A translational landslide conceptual model was built for the Kualiangzi landslide, and the time lag was attributed to the gradual formation of the uplift pressure on the slip surface and the softening of soils at the slip surface. Another important observation is the effect on the slope movement which was caused by the water level (H w) in the transverse tension trough developed at the rear edge of the landslide. Significant negative correlation was found for H w and the slope stability factor (F s), in particular for the last two heavy rainfall events, of which the drastic increase of water level caused significant deterioration in the slope stability. The rapid drop (Δ?=?22.5 kPa) of pore-water pressure in the deep bedrock within 1 h and the large increase (Δ?=?87.3 mm) of surficial displacement were both monitored in the same period. In the end, a four-level early warning system is established through utilizing H w and the displacement rate D r as the warning indicators. When the large deformation occurred in flood season, the habitants at the leading edge of the landslide can be evacuated in time.  相似文献   

16.
Towards hydrological triggering mechanisms of large deep-seated landslides   总被引:3,自引:3,他引:0  
It is a widely accepted idea that hydrologically triggered deep-seated landslides are initiated by an increase in pore-water pressure on potential slip surface induced by rising groundwater level after prolonged period of intense rainfall although the process is not fully understood. In order to contribute to better understanding, the rainfall–groundwater relationships, hydrogeological monitoring and repeated geoelectrical imaging were carried out from March 2007 to April 2011 in large deep-seated landslide near ?ubietová (Western Carpathians) catastrophically reactivated at the end of February 1977. Based on our observations, groundwater level (GWL) response to precipitation differs considerably with respect to both overall hydrological conditions and GWL mean depth. While the rate of GWL increase up to 25 cm/day were measured after some rainfall events during wet periods, noticeably lower recharge rate (up to 1–2 cm/day) and delayed GWL response to rainfall (usually from 2 weeks to 2–4 months) were observed at the beginning of the wet season after considerable depression of GWLs due to previous effective rainfall deficit. Likewise, slow GWL fluctuations without short-term oscillations are typical for deeper GWLs. Thus, long-term (several seasons to several years) hydrological conditions affect markedly groundwater response to rainfall events in the studied landslide and can be crucial for its behaviour. Comparison of hydrological conditions characterising the analysed period with those that accompanied the landslide reactivation in 1977 allow us to assume that slightly above-average rainy season following the prolonged wet period can be far more responsible for movement acceleration (and possibly failure initiation) in deep landslides than the isolated season of extreme precipitation following a longer dry period. This is true especially for landslides in regions with significant seasonal temperature changes where potential effective precipitation (PEP), calculated as excess of precipitation (P) over potential evapotranspiration (PET), may be efficiently used for estimation of slope saturation condition.  相似文献   

17.
The Daguangbao landslide is the largest co-seismic landslide triggered by the Wenchuan earthquake (Ms 8.0) occurred on 12 May 2008. The landslide, which is 4.6 km long and 3.7 km wide, involves a volume of approximately 1.2 × 109 m3. An exposed slip surface, situated at the southern flank of its source area, was observed with a length of 1.8 km along the main sliding direction and an area of 0.3 km2. To study the geological and tectonic characteristics of the source area and their contributions to the landslide formation during the earthquake, detailed geological investigations were firstly conducted. And it is reached that the landslide occurred on the northwestern limb of the Dashuizha anticline with its scarp showing several geological structures, including joint sets, local faults, and folds. These tectonic-related structures potentially influenced the failure of the landslide. Secondly, further investigations were focused on the inclined planar sliding surface using 12 exploratory trenches, nine boreholes, a tunnel, borehole sonic data, and micro-images. These data reveal that the rock mass along the sliding surface was the fragmented rock of a bedding fault. A pulverized zone was observed on the sliding surface, which was the zone of shear localization during the landslide. This suggests that the shear failure of the Daguangbao landslide developed within the bedding fault. The rapid failure of the landslide was associated with the degradation of the rock mass strength of the bedding fault both before and during the 2008 Wenchuan earthquake. With this study, we propose that a pre-existing large discontinuity within a slope may be the basis for initiating a large landslide during earthquake.  相似文献   

18.
Landslides are mainly triggered by decrease in the matric suction with deepening the wetting band by rainfall infiltrations. This paper reports rainfall-induced landslides in partially saturated soil slopes through a field study. A comprehensive analysis on Umyeonsan (Mt.) landslides in 2011 was highlighted. The incident involves the collapse of unsaturated soil slopes under extreme-rainfall event. Fundamental studies on the mechanism and the cause of landslides were carried out. A number of technical findings are of interest, including the failure mechanism of a depth of soil and effect of groundwater flow, the downward movement of wetting band and the increase of groundwater level. Based on this, an integrated analysis methodology for a rainfall-induced landslide is proposed in this paper that incorporates the field matric suction for obtaining hydraulic parameters of unsaturated soil. The field matric suction is shown to govern the rate of change in the water infiltration for the landslide analysis with respect to an antecedent rainfall. Special attention was given to a one-dimensional infiltration model to determine the wetting band depth in the absence of the field matric suction. The results indicate that landslide activities were primarily dependent on rainfall infiltration, soil properties, slope geometries, vegetation, and groundwater table positions. The proposed methodology has clearly demonstrated both shallow and deep-seated landslides and shows good agreement with the results of landslide investigations.  相似文献   

19.
Landslides are frequently occurring natural hazards in Nilgiris district of Tamil Nadu, India, particularly during monsoon season. The present study describes the geotechnical characterization and analysis of rainfall-induced landslide that occurred at Marappalam location of Nilgiris district on November 10, 2009. The detailed investigation comprises mapping of landslide, topographical survey, field and laboratory investigations, characterization of soil and rock, and numerical analysis. Field study comprises borehole and geophysical investigations. Detailed laboratory investigation was performed to identify index and engineering properties of soil and rock. Based on the results obtained from field and laboratory investigations, the generalized subsoil profile of Marappalam slope has been plotted. The investigations revealed that loose and soft soil layer with low permeability and plasticity interspersed with boulders could be the main source of debris flow. Scanning electron microscopic analysis and x-ray diffraction analysis were performed to study the influence of weathering on slope failure. Failure mechanism of Marappalam 2009 landslide was identified from the numerical analysis performed using landslide simulation program LS-RAPID. The analysis revealed that the 5-day antecedent rainfall (303 mm) and intense rainfall on 10th November 2009 (405 mm) saturate the slope due to infiltration of rainwater. This leads to a decrease in the matric suction and subsequent development of positive pore water pressure, which in turn reduces the shear resistance of the soil along with shear displacement, and resulted in a progressive failure.  相似文献   

20.
The 2000 Yigong landslide was one of the most catastrophic landslides worldwide, resulting in huge casualties and property losses. The dynamic process of the Yigong landslide was very complicated, especially for the initiation and entrainment mechanism during the landslide movement process. The topography, geological condition, traces left by the landslide, and distribution characteristics of the landslide deposits were determined by field investigations, combined with several years of monitoring the temperature and rainfall data in this region. The initiation mechanism of the Yigong landslide is presented. The main reasons for the landslide initiation are as follows: the strength reduction of rock masses (especially for the weak structural surface), the impact from years of freeze-thaw cycles, the superposition of glacier melting and heavy rainfall on the slope, and a slope that was almost at the limit state before the landslide. Laboratory tests and physical modeling experiments were carried out to study the entrainment process of this landslide. Combined with the topographic survey data and theoretical analyses, the entrainment mechanism during the movement process of the Yigong landslide is presented. The old landslide deposits on the lower slope collided with and were scraped by the high-speed debris avalanche, which resulted in the volume amplification of the landslide. The existence of water plays a key role during the landslide initiation and movement processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号