首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fold-and-thrust belts are prominent structures that occur at the front of compressional orogens. To unravel the tectonic and metamorphic evolution of such complexes, kinematic investigations, quantitative microstructural analysis and geothermometry (calcite–graphite, calcite–dolomite) were performed on carbonate mylonites from thrust faults of the Helvetic nappe stack in Central Switzerland. Paleo-isotherms of peak temperature conditions and cooling stages (fission track) of the nappe pile were reconstructed in a vertical section and linked with the microstructural and kinematic evolution. Mylonitic microstructures suggest that under metamorphic conditions close to peak temperature, strain was highly localized within thrust faults where deformation temperatures spatially continuously increased in both directions, from N to S within each nappe and from top–down in the nappe stack, covering a temperature range of 180–380 °C. Due to the higher metamorphic conditions, thrusting of the lowermost nappe, the Doldenhorn nappe, was accompanied by a much more pronounced nappe internal ductile deformation of carbonaceous rock types than was the case for the overlying Wildhorn- and Gellihorn nappes. Ongoing thrusting brought the Doldenhorn nappe closer to the surface. The associated cooling resulted in a freezing in of the paleo-isotherms of peak metamorphic conditions. Contemporaneous shearing localized in the basal thrust, initially still in the ductile deformation regime and finally as brittle faulting and cataclasis inducing ultimately an inverse metamorphic zonation. With ongoing exhumation and the formation of the Helvetic antiformal nappe stack, a bending of large-scale tectonic structures (thrusts, folds), peak temperature isotherms and cooling isotherms occurred. While this local bending can directly be attributed to active deformation underneath the section investigated up to times of 2–3 ma, a more homogeneous uplift of the entire region is suggested for the very late and still active exhumation stage.  相似文献   

2.
The Lepontine dome represents a unique region in the arc of the Central and Western Alps, where complex fold structures of upper amphibolite facies grade of the deepest stage of the orogenic belt are exposed in a tectonic half-window. The NW-verging Mont Blanc, Aar und Gotthard basement folds and the Lower Penninic gneiss nappes of the Central Alps were formed by ductile detachment of the upper European crust during its Late Eocene–Early Oligocene SE-directed underthrust below the upper Penninic and Austroalpine thrusts and the Adriatic plate. Four underthrust zones are distinguished in the NW-verging stack of Alpine fold nappes and thrusts: the Canavese, Piemont, Valais and Adula zones. Up to three schistosities S1–S3, folds F1–F3 and a stretching lineation XI with top-to-NW shear indicators were developed in the F1–F3 fold nappes. Spectacular F4 transverse folds, the SW-verging Verzasca, Maggia, Ziccher, Alpe Bosa and Wandfluhhorn anticlines and synclines overprint the Alpine nappe stack. Their formation under amphibolite facies grade was related to late ductile folding of the southern nappe roots during dextral displacement of the Adriatic indenter. The transverse folding F4 was followed since 30 Ma by the pull-apart exhumation and erosion of the Lepontine dome. This occurred coevally with the formation of the dextral ductile Simplon shear zone, the S-verging backfolding F5 and the formation of the southern steep belt. Exhumation continued after 18 Ma with movement on the brittle Rhone-Simplon detachment, accompanied by the N-, NW- and W-directed Helvetic and Dauphiné thrusts. The dextral shear is dated by the 29–25 Ma crustal-derived aplite and pegmatite intrusions in the southern steep belt. The cooling by uplift and erosion of the Tertiary migmatites of the Bellinzona region occurred between 22 and 18 Ma followed by the exhumation of the Toce dome on the brittle Rhone–Simplon fault since 18 Ma.  相似文献   

3.
苏北东海地区超高压变质带内的斜卧褶皱   总被引:1,自引:1,他引:1  
详细的野外观察和制图证实,在苏北东海地区的驼峰、房山及虎山等超高压(UHP)变质带岩石出露地段,都有不同尺度的斜卧褶皱发育。在详细地描述了典型的斜卧褶皱组成、几何形态、位态及其形成的物理环境之后,指出斜卧褶皱及分隔它们的韧性剪切带,在构造上,是组成超高压变质带构造柱的两个基本要素,是在超高压变作用期后伸展体制及角闪岩相条件下形成的。同超高压变质作用的残余构造,只保留于大的榴辉岩和超镁铁质结构透镜体核部。无疑,在超高压变质岩石露头区地表构造研究所得的结果,对在东海地区第四纪沉积物所掩盖区实施的大陆科学钻探工程中揭露的地质现象解释,有重要参考意义。强调指出,大陆科学钻探工程所揭示的地壳构造,可能主要代表角闪岩相及伸展体制下的变形特征。  相似文献   

4.
豫南熊店高压变质岩块体经历了6期变形和变质作用,即从深地壳层次挤压缩短体制下的不均匀韧性剪切、榴辉岩进变质作用,到中地壳层次挤压体制下的逆冲推覆、钠长绿帘角闪岩相退变质作用,到地壳浅层伸展体制下的脆性—韧性滑脱、绿片岩相变质作用,以及更浅层次的脆性变形,动力变质作用。高压变质岩的形成与向地壳中、浅层次的大幅度抬升均是在挤压机制下韧性变形作用的结果,而高压变质岩暴露到地表是伸展滑脱、断块升降和差异抬升所致。  相似文献   

5.
This study monitors regional changes in the crystallinity of carbonaceous matter (CM) by applying Micro-Raman spectroscopy to a total of 214 metasediment samples (largely so-called Bündnerschiefer) dominantly metamorphosed under blueschist- to amphibolite-facies conditions. They were collected within the northeastern margin of the Lepontine dome and easterly adjacent areas of the Swiss Central Alps. Three-dimensional mapping of isotemperature contours in map and profile views shows that the isotemperature contours associated with the Miocene Barrow-type Lepontine metamorphic event cut across refolded nappe contacts, both along and across strike within the northeastern margin of the Lepontine dome and adjacent areas. Further to the northeast, the isotemperature contours reflect temperatures reached during the Late Eocene subduction-related blueschist-facies event and/or during subsequent near-isothermal decompression; these contours appear folded by younger, large-scale post-nappe-stacking folds. A substantial jump in the recorded maximum temperatures across the tectonic contact between the frontal Adula nappe complex and surrounding metasediments indicates that this contact accommodated differential tectonic movement of the Adula nappe with respect to the enveloping Bündnerschiefer after maximum temperatures were reached within the northern Adula nappe, i.e. after Late Eocene time.  相似文献   

6.
This study assesses the significance, geometry, and kinematics of greenschist-facies deformation along the Dent Blanche Basal Thrust (DBBT), a major tectonic contact in the Internal Western Alps of Switzerland and Italy. The DBBT separates continental units of the Dent Blanche nappe, the structurally highest unit in the Western Alps, from underlying Piemont-Ligurian ophiolites. Mylonites and deformation structures along the contact provide a record of its retrograde greenschist-facies evolution after earlier high-pressure metamorphism. A first phase of foreland-directed, reverse-sense, top-(N)W shearing (D1) occurred between ca. 43 and 39 Ma, related to exhumation of the Dent Blanche nappe from high-pressure conditions. It led to the formation of mylonitic fabrics under high- to medium-grade greenschist-facies conditions along the entire DBBT. A phase of ductile normal-sense top-SE shearing (D2) at ca. 38–37 Ma was mainly localized within underlying ophiolitic units and only partly affected the DBBT. Another phase of ductile deformation (D3) under medium- to low-grade greenschist-facies conditions at ca. 36–35 Ma occurred in response to underthrusting of European continental margin units and resulted in the updoming of the nappe stack. Especially the southeastern DBBT was characterized by bulk top-NW shearing, partly conjugate top-NW/top-SE shearing, and resulting orogen-perpendicular crustal extension. Subsequently, the DBBT was affected by a phase of orogen-perpendicular shortening (D4) and formation of folds and crenulations at ca. 34–33 Ma due to increasing compressional tectonics. Finally, a phase of semi-ductile to brittle normal-sense top-NW and conjugate shearing (D5) from ca. 32 Ma onwards particularly affected the southeastern segment and indicates exhumation of the DBBT through the ductile–brittle transition. This was followed by brittle NW–SE extensional deformation. This study suggests that the DBBT experienced a polyphase deformation and reactivation history under decreasing greenschist-facies metamorphic conditions during which different segments of this major shear zone were variably affected.  相似文献   

7.
The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.  相似文献   

8.
9.
Abstract P–T conditions, mineral isograds, the relation of the latter to foliation planes and kinematic indicators are used to elucidate the tectonic nature and evolution of a shear zone in an orogen exhumed from mid‐crustal depths in western Turkey. Furthermore, we discuss whether simple monometamorphic fabrics of rock units from different nappes result from one single orogeny or are related to different orogenies. Metasedimentary rocks from the Çine and Selimiye nappes at the southern rim of the Anatolide belt of western Turkey record different metamorphic evolutions. The Eocene Selimiye shear zone separates both nappes. Metasedimentary rocks from the Çine nappe underneath the Selimiye shear zone record maximum P–T conditions of about 7 kbar and >550 °C. Metasedimentary rocks from the overlying Selimiye nappe have maximum P–T conditions of 4 kbar and c. 525 °C near the base of the nappe. Kinematic indicators in both nappes are related to movement on the Selimiye shear zone and consistently show a top‐S shear sense. Metamorphic grade in the Selimiye nappe decreases structurally upwards as indicated by mineral isograds defining the garnet‐chlorite zone at the base, the chloritoid‐biotite zone and the biotite‐chlorite zone at the top of the nappe. The mineral isograds in the Selimiye nappe run parallel to the regional SR foliation, parallel the Selimiye shear zone and indicate that the Selimiye shear zone formed during this prograde greenschist to lower amphibolite facies metamorphic event but remained active after the peak of metamorphism. 40Ar/39Ar mica ages and the tectonometamorphic relationship with the Eocene Cyclades–Menderes thrust, which occurs above the Selimiye nappe in the study area, suggests an Eocene age of metamorphism in the Selimiye nappe. Metasedimentary rocks of the Çine nappe 20–30 km north of the Selimiye shear zone record maximum P–T conditions of 8–11 kbar and 600–650 °C. An age of about 550 Ma is indicated for amphibolite facies metamorphism and associated top‐N shear in the orthogneiss of the Çine nappe. Our study shows that simple monophase tectonometamorphic fabrics do not always indicate a simple orogenic development of a nappe stack. Preservation in some areas and complete overprinting of those fabrics in other areas apparently occur very heterogeneously.  相似文献   

10.
The rocks of the Jutogh Group in the Himachal Himalayas and their equivalents elsewhere are now considered to represent a several km thick crustal scale ductile shear zone, the so called Main Central Thrust Zone. In this article we present a summary of structural and metamorphic evolution of the Jutogh Group of rocks in the Chur half-klippe and compare our results with those of Naha and Ray (1972) who worked in the adjacent Simla klippe. The deformational history of the Jutogh Group of rocks in the area around the Chur-peak, as deduced from small-scale structures, can be segmented into: (1) an early event giving rise to two sets of very tight to isoclinal and coaxial folds with gentle dip of axial planes and easterly or westerly trend of axes, (2) an event of superimposed progressive ductile shearing during which a plethora of small-scale structures have developed which includes successive generations of strongly non-cylindrical folds, several generations of mylonitic foliation, extensional structures and late-stage small-scale thrusts, and (3) a last stage deformation during which a set of open and upright folds developed, but these are regionally unimportant. The structure in the largest scale (tens of km) can be best described in terms of stacked up thin thrust sheets. Km-scale asymmetric recumbent folds with strongly non-cylindrical hinge lines, developed as a consequence of ductile shearing, are present in one of these thrust sheets. The ductile shearing, large-scale folding and thrusting can be related to the development of the Main Central Thrust Zone. The microstructural relations show that the main phase of regional low-to medium-grade metamorphism (T ≈ 430–600°C andP ≈ 4.5–8.5 kbar) is pre-kinematic with respect to the formation of the Main Central Thrust Zone. Growth zoned garnets with typical bell-shaped Mn profiles and compensating bowl-shaped Fe profiles are compatible with this phase of metamorphism. Some of the larger garnet grains, however, show flat compositional profiles; if they represent homogenization of growth zoning, it would be a possible evidence of a relict high-grade metamorphism. The ductile shearing was accompanied by a low-greenschist facies metamorphism during which mainly chlorite and occasionally biotite porphyroblasts crystallized.  相似文献   

11.
The Menderes Massif is a large area of dominantly Tertiary metamorphic rocks in western Turkey. It is bordered in the west by the Cycladic Metamorphic Complex with Eocene high-pressure/low-temperature (HP/LT) metamorphism. In the Central Menderes the AydLn mountains are made up of a thrust stack of Eocene age. At the base of the thrust stack, greenschist-facies Paleozoic metasediments of the Menderes Massif form an inverted stratigraphic sequence. The Barrovian-type metamorphism is also inverted with garnet-bearing metapelites lying over the lower-grade biotite-bearing metapelites. The P-T conditions in the garnet zone are estimated as 530°C and 8 kbar. This schist sequence of the central Menderes Massif is interpreted as the inverted lower limb of a major southward closing recumbent fold, with the southern Menderes Massif representing a section from the near hinge of this fold. The Paleozoic metamorphic rocks of the central Menderes Massif are tectonically overlain by gneiss klippen possibly originating from the sheared and southward translated core of the Menderes fold. Lying also tectonically over the Paleozoic metamorphic rocks is a major thrust sheet belonging to the Cycladic metamorphic complex. It consists of garnet micaschist, Mesozoic marble, serpentinite and amphibolitised eclogite. Although it has a highly sheared internal structure, it probably represents an initially coherent sequence that has undergone HP/LT metamorphism during the Eocene. The AydLn mountains are dominated by contractional structures with subordinate extensional structures.  相似文献   

12.
A nappe of amphibolite-facies metamorphic rocks of pre-Permian age in the southern Vanoise massif (the Arpont schist) has been affected by an Alpine HP/LT metamorphism. The first mesoscopically recognizable deformation (D1) post-dated the high-pressure peak (jadeitic pyroxene + quartz, glaucophane + ?lawsonite), and was associated with glaucophane + epidote. D1 produced a flat-lying schistosity and a NW-trending glaucophane lineation, and was probably associated with nappe displacement involving NW-directed subhorizontal shear. D2 formed small-scale folds and a foliation associated with chlorite + albite. The changing parageneses during the period pre-D1 to D1 to D2 suggest decreasing pressure, so that the deformation appears to have been related to the uplift history, rather than to the process of tectonic burial. D2 was followed by a static metamorphism (green biotite + chlorite + albite), possibly of Lepontine age. SE-directed backthrusting and folding (D3), and later differential uplift along steep faults, took place under low-grade conditions.  相似文献   

13.
The formation of L—S tectonite fabrics in the metamorphic nappe rocks of East Laksefjord, Finnmark, is accompanied by the rotation of contemporary folds into the X direction of the finite-strain ellipsoid. An interpretation based on the simple-shear model for active mobile belts is presented.  相似文献   

14.
Thermodynamic regime of culmination phase of high-grade metamorphism of the Umba nappe (Lapland allochthon) was studied, and peak metamorphic monazite was dated. Based on calculation of end member reactions, the metamorphic assemblages of aluminous gneisses from the upper and lower parts of the nappe are close to equilibrium. The metamorphic conditions of the rocks are estimated to be about 800°C and 7 kbar in its upper part and 9 kbar in its lower part. The formation of orthopyroxene-sillimanite aggregates points to increasing pressure and temperature at the prograde stage of PT path, whereas cordierite rims mark the onset of decompression and cooling. The pressure difference of 2–2.5 kbar identified by thermobarometric methods between aluminous gneisses from the upper and lower parts of the Umba nappe corresponds to a depth gradient about 7.5 km, which agrees with approximate thickness of the Umba nappe. The study of the eclogitelike rocks developed after the rocks of the Paleoproterozoic Kolvitsa gabbronorite massif made it possible to trace the P-T evolution of metamorphsim: the temperature peak of granulite stage (11 kbar, 860°C) was followed by pressure increase (up to 14 kbar and more), and then decompressional cooling due to the exhumation of the Por’ya Guba nappe together with the Kolvitsa Massif. The U-Pb monazite age of 1904 ± 3 Ma obtained for aluminous gneisses from the upper part of the Umba nappe corresponds within error to the timing of metamorphic events determined from metamorphic zircon in the anorthosites of the Kolvitsa Massif (1907 ± 2 Ma) and zircon from aluminous gneisses in the melange zone (1906 ± 3 Ma). These isotopic data confirm the conclusion of simultaneous high-pressure granulite metamorphism in the upper and lower portions of the Umba nappe.  相似文献   

15.
吴珍汉  陆露  赵珍  胡道功  张耀玲 《地质通报》2016,35(7):1056-1068
通过详细的野外观测结合地质填图资料,在聂荣变质杂岩及邻区厘定大规模逆冲推覆构造,不同时代的逆冲岩席自北—北东向南—南西逆冲推覆于上白垩统红层及下伏岩石地层之上,形成大量逆冲断层、滑脱构造、飞来峰、构造窗和褶皱构造。逆冲推覆构造运动导致侏罗纪蛇绿混杂岩、石炭系—二叠系构造层、古生界浅变质岩、变质基底之间发生拆离滑脱,在聂荣变质杂岩内部形成韧性剪切带和高角度斜冲断层。在唐古拉山口南侧形成北西—南东向土门-托纠-杂色右旋走滑断裂,走滑断裂末端转换为近东西向逆冲推覆构造。聂荣变质杂岩顶部逆冲推覆叠加滑覆,导致侏罗系混杂堆积和古生界沉积盖层向南西—西向运移86~110km,在那曲-巴尔达-班戈北形成近东西向长透镜状懂错蛇绿混杂岩逆冲岩席,沿缓倾斜断层发育向西倾斜的构造片理、摩擦镜面和近东西走向的矿物线理。裂变径迹测年表明,聂荣变质杂岩及邻区逆冲推覆及构造隆升时代主要为早白垩世晚期—晚白垩世早期(111±5~91±5Ma)、晚白垩世晚期(89±6~69±5Ma)、古新世晚期—始新世早期(55±4~44±2Ma),估算构造隆升视速率为0.10~0.69mm/a,部分断层逆冲推覆及构造隆升延续至古近纪晚期。综合各类观测资料,建立不同时期构造模式,探讨聂荣变质杂岩及邻区逆冲推覆构造演化过程及形成机理。  相似文献   

16.
 The kinematic pattern and associated metamorphism of the predominant ductile deformation and the subsequent deformational stages of the Serbomacedonian metamorphic rocks and granitoids are presented in terms of peri-Tethyan tectonics. A systematic record of structural and metamorphic data gives evidence of a main top-to-ENE to ESE ductile flow of Cretaceous age (120–90 Ma) associated with a crustal stretching and unroofing. A subordinate WSW to WNW antithetic sense of movement of the tectonic top is observed in places. The associated metamorphic conditions are estimated at 4.5–7.5 kbar and 510–580  °C. During Eocene to Miocene times these fabrics were successively deformed by low-angle extensional De ductile shear zones with top-to-NE and SW sense of movement and brittle shear zones of similar kinematic pattern, suggesting a transition from ductile to brittle deformation. De deformation was accompanied during its later stages by NW/SE-directed shortening. We also discuss the relation of this Cretaceous–Tertiary deformation of the Serbomacedonian metamorphic rocks with the Eocene to Miocene ductile, top-to-southwestward crustal shear of the adjacent Rhodope crystalline rocks. We regard the Serbomacedonian and the Rhodope metamorphic rocks to represent related metamorphic provinces, the most recent exhumation and cooling history of which is bracketed between the Eocene and Neogene. Received: 8 December 1998 / Accepted: 19 April 1999  相似文献   

17.
The tectonic evolution of the Rhodope massif involves Mid-Cretaceous contractional deformation and protracted Oligocene and Miocene extension. We present structural, kinematic and strain data on the Kesebir–Kardamos dome in eastern Rhodope, which document early Tertiary extension. The dome consists of three superposed crustal units bounded by a low-angle NNE-dipping detachment on its northern flank in Bulgaria. The detachment separates footwall gneiss and migmatite in a lower unit from intermediate metamorphic and overlying upper sedimentary units in the hanging wall. The high-grade metamorphic rocks of the footwall have recorded isothermal decompression. Direct juxtaposition of the sedimentary unit onto footwall rocks is due to local extensional omission of the intermediate unit. Structural analysis and deformational/metamorphic relationships give evidence for several events. The earliest event corresponds to top-to-the SSE ductile shearing within the intermediate unit, interpreted as reflecting Mid-Late Cretaceous crustal thickening and nappe stacking. Late Cretaceous–Palaeocene/Eocene late-tectonic to post-tectonic granitoids that intruded into the intermediate unit between 70 and 53 Ma constrain at least pre-latest Late Cretaceous age for the crustal-stacking event. Subsequent extension-related deformation caused pervasive mylonitisation of the footwall, with top-to-the NNE ductile, then brittle shear. Ductile flow was dominated by non-coaxial deformation, indicated by quartz c-axis fabrics, but was nearly coaxial in the dome core. Latest events relate to brittle faulting that accommodated extension at shallow crustal levels on high-angle normal faults and additional movement along strike-slip faults. Radiometric and stratigraphic constraints bracket the ductile, then brittle, extensional events at the Kesebir–Kardamos dome between 55 and 35 Ma. Extension began in Paleocene–early Eocene time and displacement on the detachment led to unroofing of the intermediate unit, which supplied material for the syn-detachment deposits in supra-detachment basin. Subsequent cooling and exhumation of the footwall unit from beneath the detachment occurred between 42 and 37 Ma as indicated by mica cooling ages in footwall rocks, and extension proceeded at brittle levels with high-angle faulting constrained at 35 Ma by the age of hydrothermal adularia crystallized in open spaces created along the faults. This was followed by Late Eocene–Oligocene post-detachment overlap successions and volcanic activity. Crustal extension described herein is contemporaneous with the closure of the Vardar Ocean to the southwest. It has accommodated an earlier hinterland-directed unroofing of the Rhodope nappe complex, and may be pre-cursor of, and/or make a transition to the Aegean back-arc extension that further contributed to its exhumation during the Late Miocene. This study underlines the importance of crustal extension at the scale of the Rhodope massif, in particular, in the eastern Rhodope region, as it recognizes an early Tertiary extension that should be considered in future tectonic models of the Rhodope and north Aegean regions.  相似文献   

18.
苏北锦屏地区构造变形及片麻岩舌状体成因研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对锦屏山地区详细填图,确认了苏鲁造山带南缘超高压变质带与高压变质带的界线性质为一韧性剪切带,锦屏地区不存在区域性褶皱,而是由于朐山花岗质片麻岩和云台岩群变质火山岩构成强干岩层,锦屏岩群变质沉积岩构成软弱岩层,形成夹心饼式(layer cake assemble)组合。在印支期右行剪切作用下,形成不均一剪切,使朐山花岗质片麻岩形成长约10km,宽约5km的无根剪切舌状体,物质运动方向指向南。  相似文献   

19.
The Penninic oceanic sequence of the Glockner nappe and the foot-wall Penninic continental margin sequences exposed within the Tauern Window (eastern Alps) have been investigated in detail. Field data as well as structural and petrological data have been combined with data from the literature in order to constrain the geodynamic evolution of these units. Volcanic and sedimentary sequences document the evolution from a stable continent that was formed subsequent to the Variscan orogeny, to its disintegration associated with subsidence and rifting in the Triassic and Jurassic, the formation of the Glockner oceanic basin and its consumption during the Upper Cretaceous and the Paleogene. These units are incorporated into a nappe stack that was formed during the collision between a Penninic Zentralgneis block in the north and a southern Austroalpine block. The Venediger nappe and the Storz nappe are characterized by metamorphic Jurassic shelf deposits (Hochstegen group) and Cretaceous flysch sediments (Kaserer and Murtörl groups), the Eclogite Zone and the Rote Wand–Modereck nappe comprise Permian to Triassic clastic sequences (Wustkogel quartzite) and remnants of platform carbonates (Seidlwinkl group) as well as Jurassic volcanoclastic material and rift sediments (Brennkogel facies), covered by Cretaceous flyschoid sequences. Nappe stacking was contemporaneous to and postdated subduction-related (high-pressure) eclogite and blueschist facies metamorphism. Emplacement of the eclogite-bearing units of the Eclogite zone and the Glockner nappe onto Penninic continental units (Zentralgneis block) occurred subsequent to eclogite facies metamorphism. The Eclogite zone, a former extended continental margin, was subsequently overridden by a pile of basement-cover nappes (Rote Wand–Modereck nappe) along a ductile out-of-sequence thrust. Low-angle normal faults that have developed during the Jurassic extensional phase might have been inverted during nappe emplacement.  相似文献   

20.
大别-苏鲁超高压和高压变质带构造演化   总被引:12,自引:0,他引:12  
大别—苏鲁是世界上超高压 (UHP) ( >2 .7GPa)和高压 (HP)变质岩石出露最为广泛的地区。通过区域研究 ,尤其是在选择的 30多个关键位置上不同尺度构造记录的深入观察 ,结合已有的可利用的变质、热事件及同位素年代学资料分析 ,揭示出它们曾遭受过一个复杂的从深俯冲到折返构造演化历程 ,识别出 5个主要的构造变质事件 :( 1)由块状榴辉岩中发育的微弱面理和线理所代表的第 1期变形变质事件 (D1) ;( 2 )面状榴辉岩中发育的含拉伸线理的透入性主面理、中小型鞘状褶皱及网络状韧性剪切带 ,代表第 2期构造变质事件 (D2 ) ;( 3)第 3期变形事件主体发生于麻粒岩 /角闪岩相后成合晶形成之后 ,主要构造记录是区域性陡倾斜面理及不均一置换的成分层、榴辉岩透镜体及布丁群、面理内褶皱、网状韧性剪切带系统以及减压部分熔融作用形成的混合岩和含榴花岗质岩石组构 ;( 4)区域性的碰撞期后地壳韧性薄化及剪张作用 (D4)形成缓倾斜角闪岩相主面理及线理、穹状及弧形构造和多层韧性拆离带 ,它们主导了现今观察到的大别—苏鲁超高压和高压变质带的区域构造几何图像 ;( 5 )第 5期构造热事件 (D5)表现为不均一断块抬升、红色沉积盆地发育及大规模的岩体和岩脉就位 ,代表造山晚期的构造揭顶及坍陷作用 ,该期构造控制着造山带  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号