首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The South Yellow Sea(SYS) is strongly influenced by the substantial sediment loads of the Huanghe(Yellow)(including the modern Huanghe and abandoned old Huanghe subaqueous delta) and Changjiang(Yangtze) Rivers. However,the dispersal patterns of these sediments,especially in the western SYS,have not been clearly illustrated. In this study,we have analyzed clay minerals,detrital minerals,and grain sizes for 245 surface sediment samples(0–5 cm) collected from the western SYS. The clay minerals,on average,consist of 67% illite,14% smectite,11% chlorite,and 8% kaolinite. Clay minerals,detrital minerals,and grain size analyses of surface sediments,combined with water mass hydrology analysis,reveal that sediments in the western SYS are mainly derived from the modern Huanghe River,the abandoned subaqueous delta of the old Huanghe River,some material from the Changjiang,and coastal erosion. The clay minerals(especially illite and smectite) and quartz/feldspar ratio distribution patterns,reveal that the influence of modern Huanghe sediments can reach 35°N in the northwestern part of the study area,an influence that can be enhanced especially in winter owing to northerly winds. Conversely,sediments along the Jiangsu coast are mixed,in summer,with material from the Changjiang arriving via northward flow of Changjiang Diluted Water. The Subei Coastal Current carries the refreshed sediments northward into the western SYS. Sediment distribution and transport in the western SYS are mainly controlled by the oceanic circulation system that is primarily related to the monsoon.  相似文献   

2.
Clay mineral compositions of 199 offshore surface sediment samples collected from the Hangzhou Bay have been analyzed. The clay minerals in the sediments from the Hangzhou Bay are dominated by illite(58.7%, on average), followed by chlorite(20.3%), kaolinite(16.9%) and smectite(4.1%). Two provinces were classified by Q-mode cluster analysis. Class Ⅰ with relatively low amounts of illite and smectite is widely distributed in the Hangzhou Bay, especially concentrated in the top and mouth of the bay, and the northern and southern nearshore areas. Class Ⅱ with comparatively high amounts of illite and smectite is mainly concentrated in the central part of the bay with the water depth of 8–10 m. By comparing clay mineral compositions with the neighbouring regions, we can find that the sediments in the Hangzhou Bay are mainly influenced by the resuspension and repeated deposition of particles from the Yangtze River due to the strong dynamic environment. In particular, the clay fraction of Class Ⅰ is mainly supplied by the Yangtze River, while the sediments of Class Ⅱ are mixture of the clay minerals carried by the Yangtze River and Qiantang River. In general, the distributions of clay minerals in the northern bay are affected by Yangtze River runoff, coastal current and flood tide together, and in the southern they are mainly affected by the Qiantang River runoff and ebb tide.  相似文献   

3.
Clay minerals in the outcropped sandstone from Lower Cretaceous Chengzihe Formation and Muling Formation in Jixi Basin were analyzed by X-ray diffraction. The results show that the clay minerals mainly consist of illite, kaollinite and illite/smectite, which can be divided into two types: kaolinite- and illite/smectite types. The outcropped sandstone occurred in middle diagenetic stage-A on the basis of the clay mineral composition. The development factor of the formation of kaolinite type clay mineral is caused mainly by the organic acid from the coal-bearing formation and nmdstone during the diagenesis process in Lower Cretaceous Chengzihe Formation and Muling Formation in the Jixi Basin. The weak hydrodynamic force of sedimentary facies made the sandstone leaching condition poor, which is the reason forming the aggregation of clay minerals of the illite/ smectite-and illite types.  相似文献   

4.
Mineralogical analysis was performed on bulk sediments of 79 surface samples using X-ray diffraction. The analytical results, combined with data on ocean currents and the regional geological background, were used to investigate the mineral sources. Mineral assemblages in sediments and their distribution in the study area indicate that the material sources are complex. (1) Feldspar is abundant in the sediments of the middle Chukchi Sea near the Bering Strait, originating from sediments in the Anadyr River carried by the Anadyr Current. Sediments deposited on the western side of the Chukchi Sea are rich in feldspar. Compared with other areas, sediments in this region are rich in hornblende transported from volcanic and sedimentary rocks in Siberia by the Anadyr Stream and the Siberian Coastal Current. Sediments in the eastern Chukchi Sea are rich in quartz sourced from sediments of the Yukon and Kuskokwim rivers carried by the Alaska Coastal Current. Sediments in the northern Chukchi Sea are rich in quartz and carbonates from the Mackenzie River sediments. (2) Sediments of the southern and central Canada Basin contain little calcite and dolomite, mainly due to the small impact of the Beaufort Gyre carrying carbonates from the Canadian Arctic Islands. Compared with other areas, the mica content in the region is high, implying that the Laptev Sea is the main sediment source for the southern and central Canada Basin. In the other deep sea areas, calcite and dolomite levels are high caused by the input of large amounts of sediment carried by the Beaufort Gyre from the Canadian Arctic Islands (Banks and Victoria). The Siberian Laptev Sea also provides small amounts of sediment for this region. Furthermore, the Atlantic mid-water contributes some fine-grained material to the entire deep western Arctic Ocean.  相似文献   

5.
Ninety-eight clay mineral samples from the YSDP102 core were analyzed by x-ray diffractometer to study the four clay minerals: illite, chlorite, kaolinite and smectite. Twenty-eight samples had been analyzed on the laser particle-siz eanalyzer to reveal the particle features of the sediments. Distribution of the clay minerals and the particle characteristics in the YSDP102 core show that the core experienced three different depositional periods and formed three different sedimentary intervals due to different sediment sources and different depositional environments. Features of the clay minerals and the heavy minerals in the YSDP102 core indicate that coarse-grained sediments and fine-grained sediments result from different sources. The Yellow Sea Warm Current has greatly influenced the sedimentary framework of this region since the current‘s formation.  相似文献   

6.
The source of elements and the modem sedimentary environment of the ferromanganese nodules enriched area of the North Pacific region were analysed statistically and discussed in detail - Cluster analysis shows the area ' s surface sediments are mainly brown clay and biogenic calcareous , calcsiliceous and siliceous ooze. Factor (principal component) analysis shows that the area's trace elements (Fe . Mn.Cu> Co.Ni > Zn , Cr . etc ) mainly come through adsorption of clay minerals and secondarily from authigenic sediments related to biochemical processes -  相似文献   

7.
Hydrothermal barite is a typical low-temperature mineral formed during the mixing of hydrothermal fluid and seawater. Because of its extremely low solubility, barite behaves as a close system after crystallization and preserves the geochemical fingerprint of hydrothermal fluid. In this study, the elemental contents and Sr isotope compositions of hydrothermal barites from the Yonaguni IV were determined using electron microprobe and LA-MC-ICP-MS respectively. On these bases, the fluid/sediment interaction during the hydrothermal circulation and physicochemical condition of barite crystallization were discussed. Results show that the 87 Sr/86 Sr values of hydrothermal barites from the Yonaguni IV are apparently higher than those of the seawater and associated volcanic rocks, indicating the sufficient interaction between the hydrothermal fluid and overlying sediment. Monomineral Sr abundance shows large variations, reflecting the changes in barite growth rate during the fluid mixing. The mineralization condition in the Yonaguni IV was unstable. During the crystallization of barite, hydrothermal fluid and seawater mixed in varying degrees, with the pro-portions of hydrothermal fluid varied from 36% to 72%. The calculated crystallization temperatures range from 109 to 220℃. Sediment plays a critical role during the mineralization process in the Yonaguni IV and incorporation of sediment component into hydrothermal system was prior to barite crystallization and sulfide mineralization.  相似文献   

8.
Hydrothermal barite is a typical low-temperature mineral formed during the mixing of hydrothermal fluid and seawater.Because of its extremely low solubility,barite behaves as a close system after crystallization and preserves the geochemical fingerprint of hydrothermal fluid.In this study,the elemental contents and Sr isotope compositions of hydrothermal barites from the Yonaguni IV were determined using electron microprobe and LA-MC-ICP-MS respectively.On these bases,the fluid/sediment interaction during the hydrothermal circulation and physicochemical condition of barite crystallization were discussed.Results show that the 87 Sr/86 Sr values of hydrothermal barites from the Yonaguni IV are apparently higher than those of the seawater and associated volcanic rocks,indicating the sufficient interaction between the hydrothermal fluid and overlying sediment.Monomineral Sr abundance shows large variations,reflecting the changes in barite growth rate during the fluid mixing.The mineralization condition in the Yonaguni IV was unstable.During the crystallization of barite,hydrothermal fluid and seawater mixed in varying degrees,with the pro-portions of hydrothermal fluid varied from 36%to 72%.The calculated crystallization temperatures range from 109 to 220℃.Sediment plays a critical role during the mineralization process in the Yonaguni IV and incorporation of sediment component into hydrothermal system was prior to barite crystallization and sulfide mineralization.  相似文献   

9.
Clay minerals of 34 sediments collected from the northwestern continental shelf of the East China Sea have been determined by X-ray diffraction analysis. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. The predominant clay mineral in our study area is illite comprising more than 67% of the whole clay fraction. The highest concentration of illite (>68%) is found in the southeastern offshore parts beyond the reach of terrigenous input from the Jeju Island. It means that these illites are largely transported by the Kuroshio Current from the South China Sea (SCS). Smectite is highly concentrated in the northwest middle part and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe (Yellow) River. The relatively high abundant kaolinite is likely derived from the Changjiang (Yangtze) River via the Taiwan Warm Current. In contrast, large amounts of chlorite and high chlorite/kaolinite ratios occur in the northwestern area, reflecting the transportation by the Yellow Sea Coastal Current from the southern Yellow Sea. The discrimination diagrams clearly show that the sediments in the northwestern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from the Jeju Island. The muddy sediments of the Changjiang River’s submerged delta have much lower 87Sr/86Sr ratios (0.716 2–0.718 0) than those of the Shandong Peninsular mud wedge (0.721 6–0.724 9), which are supposed to be originated from the Huanghe River, suggesting the distribution pattern of 87Sr/86Sr ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. The 87Sr/86Sr ratios of the outer-shelf muddy sediments ranged from 0.7169 to 0.7216 in a wide range and was between those of the Huanghe River and Changjiang River sediments, suggesting multiple sources of the sediment in the area.  相似文献   

10.
To examine the composition and source variations of heavy minerals in the Fujian-Zhejiang mud belt(FZMB) over the past few hundred years, heavy minerals in 150 surficial sediment samples and two sediments cores collected from the southern FZMB were identified and analyzed. The results show that the mineral assemblage of hornblende-magnetite-epidote-chlorite is dominant in the study area. Based on the heavy mineral contents, the study area is divided into two mineral zones, namely a near-shore muddy sediment zone(zone Ⅰ) and an offshore mixed sediment zone(zone Ⅱ). The sediments from zone Ⅰ contains relatively abundant metallic minerals with proximal sediments from the Oujiang River and the Minjiang River as the primary component. The sediment from zone Ⅱ has relatively low content for minerals from the near-shore materials and is significantly affected by the Oujiang River sediments, and by the flaky minerals from the Yangtze River to a certain extent. The characteristics of heavy minerals in the cores may be affected by a variety of factors. Before the 20th century, under the influence of strong East Asian winter monsoon(EAWM), the sandy sediment in FZMB is significantly affected by the Oujiang River and the Yangtze River sediments, and relatively unaffected by near-shore terrigenous matter. In the 20th century, as the intensity of the Zhejiang-Fujian Coastal Current(ZFCC) decreased, the influence of the Minjiang coastal sand enhanced. Since the 1980s, as the collective effect of relatively weak EAWM and frequent storm surges and typhoons, the impact of the Minjiang River sediments on the FZMB sediments has increased considerably.  相似文献   

11.
In lacustrine sediments, aragonite is a widespread mineral, whereas monohydrocalcite is a rare carbonate mineral. In the cold and high-attitude Xizang (Tibetan) Plateau, where aragonite has been commonly found in lacustrine sediments, there is no aragonite, but low-Mg calcite, monohydrocalcite and trace dolomite. The lake receives solutes primarily from surface runoffs and remains fairly constant water chemistry for a long time. The total CaCO3 percentage in sediments could be controlled by evaporation and inflow of detrital materials. The absence of aragonite is unusual when compared to other lacustrine sediments from the Tibetan Plateau. This could be due to low Ca/Mg ratio, low salinity, low Mg and Ca concentration. Monohydrocalcite might precipitate from the lake water mediated by biological activities. Low-Mg calcite originated from minor ostracoda shell and the precipitation of lake water with biological activities.  相似文献   

12.
Determination of the concentrations of. 15 rare earth elements (REE) in China continental shelf sediments by X- ray fluorescent spectral analysis of selected representative sediment samples showed that REE concentration in the sediments is 156 ppm, similar to that in China loess and Fujian granite, but different from that in Pacific sediments. The shelf REE have the characteristic distribution pattern of typical continental crust REE and evidently philo-continental property. The above findings suggest that weathered materials transported from the China continent are the main source of the REE in China continental shelf sediments.Experiments show that REE exist mainly in the crystal lattices of clay minerals ( <2u) as isomorphs and that REE have close relation with most elements (Al, Ti, K, Rb, Fe, etc.) related with clay minerals, but have negative correlation with the biophile elements Ca and Sr.  相似文献   

13.
Palaeosols associated with fluvial of the Siwalik Group are and lacustrine deposits that occur as thick multiple pedocomplexes. The bright red color of the palaeosol beds has been earlier interpreted as a result of hot and arid palaeoclimate. However, as against this view, our investigations of the bright red palaeosol beds of the Lower Siwaliks suggest that the climate was cool and subhumid, instead of hot and arid during the deposition of these beds. Since cold climate is not very conducive to impart red coloration, further research is needed to explain the cause of these red beds. For this, the micromorphological study of soil thin sections was done which showed the presence of features such as dissolution and recrystallisation of quartz, feldspar and mica, compaction, slickensides, presence of calcite spars, subrounded and cracked nature of quartz grains, microfabric, complex patterns of birefringence fabrics, pigmentary ferric oxides, thick cutans and cementation by calcite. These features indicate that diagenesis took place on a large scale in these sediments. The positive Eh and neutral-alkaline pH of soils also suggest that the conditions were favorable for the formation of diagenetic red beds. During burial diagenesis of sediments, the hydroxides of ferromagnesian minerals got converted into ferric oxide minerals (hematite). During deep burial diagenesis smectite was converted into illite and the preponderance of illite over smectite with increasing depth of burial also indicates the diagenesis of sediments. Thus, the red color of the Lower Siwalik palaeosols seems to be due mainly to the burial diagenesis of sediments and does not appear to be due to the then prevailing climatic condition.  相似文献   

14.
This study was conducted to evaluate the weathering intensity of the major soils developed on igneous rocks in semiarid region of northwestern Iran.Eight parent materials were selected including monzodiorite,alkali granite,granodiorite,syenite,pyroxene diorite,hornblende andesite,pyroxene andesite,and dacite.Representative soil profiles were described and soil samples were collected and analyzed for selected chemical and physical properties and total concentrations of major elements and Zr,V,Ti and Y.Bulk densities as well as Ti,Zr and V concentrations were used to estimate the strain factors and mass balance equations were used to quantify the net result of pedogenic weathering,i.e.elemental loss and gain.The results of clay content and pedogenic iron variability as well as index of compositional variability(ICV),chemical index of alteration(CIA) and,A-CN-K and MFW ternary plots showed that the soils developed on volcanic rocks(hornblende andesite> pyroxene andesite> dacite) were more weathered than those on the plutonic parent rocks(alkali granite,granodiorite,monzodiorite,syenite,pyroxene diorite).The results of mass balance calculations based on the strain factors revealed that the Ca and Na depleted during weathering progress mostly from plagioclase grains.In the semiarid regions Ca is precipitated as pedogenic calcite in the soil horizons.K and Mg depletion is less than Ca and Na especially in the profiles on the hornblende andesite with the highest clay and LOI content.The results of this study clearly suggest that the behavior of K and Mg during the weathering cannot only be explained by the disintegration of the primary minerals,since they are fixed on the secondary clay minerals.Iron did not change in the soils compared to the parent material and was precipitated as the pedogenic iron and conserved in the soil horizons.Overall,the results on the weathering indicators and major elements mass balance enrichment/depletion in the study area confirmed that the soil profiles developed on volcanic rocks are more weathered than those on the plutonic igneous rocks.  相似文献   

15.
Study of the surface morphology of gas hydrate is of great importance in understanding its physical properties and occurrence.In order to investigate the surface morphology of different types(sI and sII)and occurrences(pore-filling and fracture-filling)of gas hydrate,both lab-synthesized and drilled-gas hydrate samples were measured using cryo-scanning electron microscopy(cryo-SEM).Results showed that the surface of s I hydrate was relatively smooth,and spongy nano-pores(200–400 nm)gradually occurred at the surface during continuous observation.The surface of sII hydrate was more compact,showing a tier-like structure.Hydrate occurred in quartz sand and usually filled the pores of the sediments and both hydrate and sediments were cemented with each other.SEM observation of the gas hydrates collected from the South China Sea showed that the surface morphology and contact relation with sediments varied with hydrate occurrence.For instance,hydrates dispersed in sediments mainly filled the pores of the sediments.The existence of microorganism shells,such as foraminifera,was beneficial to the formation of gas hydrate.When hydrate occurred as a massive or vein structure,it was easily distinguished from the surrounding sediments.The surface of hydrate with massive or vein structure showed two distinct characters:one was dense and smooth,the other is porous(several to tens of micrometers in diameter).The occurrence of different hydrate morphologies was probably caused by the supplement rates of methane gas.  相似文献   

16.
Clay minerals of surface sediments in the South China Sea (SCS) are analyzed with X-ray diffraction, and their transport is explored with a grain size trend analysis (GSTA) model. Results show that clay mineral types in various sedimentary environments have different sediment sources and transport routes. Sediments in the northern SCS (north of 20°N) between the southwest of Taiwan Island and the outer mouth of the Pearl River have high contents of illite and chlorite, which are derived mainly from sediments on Taiwan Island and/or the Yangtze River. Sediments from the Pearl River are characterized by high kaolinite and low smectite content, and most are distributed in the area between the mouth of the Pearl River and northeast of Hainan Island and transported vertically from the continental shelf to the slope. Characterized by high illite content, sediments from Kalimantan Island are transported toward the Nansha Trough. Sediments from Luzon Island are related with volcanic materials, and are transported westwards according to smectite distribution. On the Sunda Shelf, sediments from the Mekong River are transported southeast in the north while sediments from the Indonesian islands are transported northward in the south. Ascertaining surface sediment sources and their transport routes will not only improve understanding of modern transportation and depositional processes, but also aid paleoenvironmental and paleoclimatic analysis of the SCS.  相似文献   

17.
Suspended paniculate substances were sampled in the eastern equatorial Pacific in water column from surface to near bottom in five stations in 2005,from which 868 barite crystals were recovered.The barite crystals were examined under scanning electron microscopy.About 61%of the total barites crystals contained detectable Sr by energy dispersive X-ray spectrometry.Barite crystals could be classified into four groups based on their morphology:1) bladed;2) ovoid or rounded;3) arrow-like;and 4) irregularly shaped.The arrow-like barite crystals in natural environment has never been reported before.In addition,about a half of the studied crystals showed features of dissolution as cavities or holes inside of the crystals or around their edges.We found that differential dissolution of barite crystals is consequence of heterogeneous Sr distribution in barite crystals.Our results would help in understanding the biogeochemical processes of marine barite formation and preservation in seawater and marine sediments.  相似文献   

18.
Zeng  Zhigang  Chen  Zuxing  Zhang  Yuxiang  Li  Xiaohui 《中国海洋湖沼学报》2020,38(4):985-1007
Seafloor hydrothermal vent fields(SHVFs) are located in the mid-ocean ridge(MOR),backarc basin(BAB),island arc and hot-spot environments and hosted mainly by ultramafic,mafic,felsic rocks,and sediments.The hydrothermal vent fluids of SHVFs have low oxygen,abnormal pH and temperature,numerous toxic compounds,and inorganic energy sources,such as sulfuric compounds,methane,and hydrogen.The geological,physical,and chemical characteristics of SHVFs provide important clues to understanding the formation and evolution of seafloor hydrothermal systems,leading to the determination of metal sources and the reconstruction of the physicochemical conditions of metallogenesis.Over the past two decades,we studied the geological settings,volcanic rocks,and hydrothermal products of SHVFs and drawn new conclusions in these areas,including:1) the hydrothermal plumes in the Okinawa Trough are affected by the Kuroshio current;2) S and Pb in the hydrothermal sulfides from MOR are mainly derived from their host igneous rocks;3) Re and Os of vent fluids are more likely to be incorporated into Fe-and Fe-Cu sulfide mineral facies,and Os is enriched under low-temperature(200℃) hydrothermal conditions in global SHVFs;4) compared with low-temperature hydrothermal sulfides,sulfates,and opal minerals,high-temperature hydrothermal sulfides maintain the helium(He) isotopic composition of the primary vent fluid;5) relatively low temperature(116℃),oxygenated,and acidic environment conditions are favorable for forming a native sulfur chimney,and a "glue pudding" growth model can be used to understand the origin of native sulfur balls in the Kueishantao hydrothermal field;and 6) boron isotope from hydrothermal plumes and fluids can be used to describe their diffusive processes.The monitoring and understanding of the physical structure,chemical composition,geological processes,and diverse organism of subseafloor hydrothermal systems will be a future hot spot and frontier of submarine hydrothermal geology.  相似文献   

19.
The Beiya porphyry-skarn gold-polymetallic deposit is one of the largest gold deposits in China and it also contains significant amounts of silver and base metals.The ore-bearing monzonitic granite porphyry occurs as a stock,of which the skarn type gold-copper-iron ore bodies are controlled by the contact zone between alkali-rich monzonitic granite porphyry and the limestone,and the gold-silver polymetallic mineralization is controlled by interlayer structure.Alteration and mineralization occur around the intrusion and exterior of monzonitic granite porphyry.Ore mineral formation sequence is as follows:skarn minerals→magnetite→pyrite→chalcopyrite/bornite+pyrite+gold→pyrite+galena+gold(silver).Petrographic studies of fluid inclusions indicate that the following types of inclusions exist in the pre-mineralization quartz-pyrite stage:gas-liquid two-phase inclusions(L-type),three-phase inclusions with daughter minerals(D-type)and gas-rich inclusions(V-type).The colorless transparent quartz in the main gold-chalcopyrite-pyrite stage mainly consists of L-type and V-type inclusions,whereas the inclusions in the late gold-silver-galena stage are mainly L-type.The evolution of ore-forming fluids shows a trend from high temperature,high salinity to medium-low temperature and low salinity.Medium-low density fluids play a dominant role in mineral component migration and transportation.Fluid cooling and boiling are the main mechanisms of gold-copper precipitation,while the involvement of atmospheric water and pH reduction are the main mechanisms of gold-silver polymetallic precipitation.The fluids in the quartz-pyrite stage before mineralization and the main gold-chalcopyrite-pyrite stage are dominated by magmatic water,while in the gold-silver-galena stage the fluids are dominated by atmospheric water.Isotope tracers show that S and Pb are mainly derived from monzonitic granite porphyry,not from limestone of the Beiya Formation.  相似文献   

20.
Factors of shale gas accumulation can be divided into the external and internal factors, according to accumulation mechanism and characteristics of shale gas. The internal factors mainly refer to parameters of organic geochemistry, mineral components and physical parameters. Six factors were presented in this study, i. e. organic matter, maturity, quartz, carbonate, clay mineral and pore. The external factors mainly refer to geologic environment of shale gas reservoir, including four factors: temperature, pressure, depth and thickness. Based on the experiment results of 26 samples of drilling cores from Wuling fold belt in Lower Paleozoic Silurian of the Upper Yangtze Basin, combined with the integrated analysis of geology, logging and test, the correlation of the gas content of shale gas to the above-mentioned ten factors was concluded. Six important evaluation indicators were preliminarily established in the gas-bearing core area of marine shale in the Upper Yangtze Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号