首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
研究了长期暴露条件下Cu2+对序批式反应器(SBR)性能及其活性污泥胞外聚合物(EPS)特性的影响。结果表明,进水中加入10 mg·L-1的Cu2+后,在SBR运行的第16~55天,COD和NH+4-N的去除率保持稳定;在第56~75天,COD和NH+4-N的平均去除率与进水Cu2+浓度为0 mg·L-1时相比分别下降了3.88%和6.41%。浓度为10 mg·L-1的Cu2+长期作用下,活性污泥中EPS、松散附着EPS(LB-EPS)和紧密附着EPS(TB-EPS)产量及LB-EPS和TB-EPS中蛋白质(PN)含量增加。傅里叶变换红外光谱分析表明10 mg·L-1 Cu2+的长期暴露导致TB-EPS中PN的C=O键、N-H键和C-O键相对含量降低。X射线光电子能谱(XPS)测试结果显示在10 mg·L-1 Cu2+长期暴露条件下,LB-EPS和TB-EPS中元素Cu和O百分含量增加。  相似文献   

2.
研究了二氧化钛纳米颗粒(TiO_2 NPs)浓度变化对序批式反应器(SBR)性能及活性污泥胞外聚合物(EPS)特性的影响。结果表明,TiO_2 NPs浓度为0~5mg/L时SBR对COD平均去除率高于91.07%,但TiO_2 NPs浓度为10~60mg/L时对SBR对COD的去除产生轻微抑制。NH_4~+-N平均去除率在整个运行过程中均高于98.10%,表明TiO_2 NPs浓度小于60mg/L时对SBR中硝化过程没有影响。磷去除率随着TiO_2 NPs浓度从0mg/L增加到5mg/L而逐渐降低,随后在TiO_2 NPs浓度从10mg/L增加到60mg/L过程中出现了逐渐升高的趋势。活性污泥中松散附着EPS(LB-EPS)和紧密附着EPS(TB-EPS)产量随着进水TiO_2 NPs浓度从0 mg/L增加到60 mg/L而逐渐增加。LB-EPS和TB-EPS中蛋白质(PN)和多糖(PS)含量随着TiO_2 NPs浓度增加而增加。LB-EPS和TB-EPS的三维荧光(3D-EEM)光谱中代表芳环蛋白类物质、色氨酸蛋白类物质、胡敏酸类物质和富里酸类物质的荧光峰在不同TiO_2 NPs浓度下或增加或消失,且荧光峰位置和强度也发生了相应变化。LB-EPS和TB-EPS的傅里叶红外(FTIR)光谱中不同吸收峰的强度随着TiO_2 NPs浓度变化而变化,表明TiO_2 NPs对活性污泥中LB-EPS和TB-EPS的蛋白质和多糖中C=O键和C-H产生了影响。  相似文献   

3.
从水产养殖水体中分离出一株具有异养硝化-好氧反硝化能力的菌株Halomonas sp. GJWA3,该菌株在单一氮源条件下(10 mg·L~(-1))对NH~+_4-N、NO~-_2-N和NO~-_3-N的48 h去除率分别为96.44%、99.42%和78.27%,氮平衡分析结果表明该菌株能够去除水体中大部分无机氮。该菌株在pH为7.0~8.5、温度为25~35℃、C/N为10~20、盐度为24~40条件下表现出优良的NH~+_4-N、NO~-_2-N去除能力。通过酶联免疫吸附测定法建立菌株GJWA3的定量方法,定量范围为1×10~4~1×10~8 CFU·mL~(-1),线性相关性为R~2=0.957 2,通过此方法检测到该菌株在实际养殖水和废水中均能保持较高丰度,同时其48 h对TN的去除率分别为49.01%和62.48%。安全性实验表明,该菌株无溶血作用,且对凡纳滨对虾(Penaeus vannamei)有较高的生物安全性。研究结果表明,菌株GJWA3具有优异的脱氮能力、良好的水产养殖环境适应性和应用安全性,可在养殖水处理领域进行实际应用。  相似文献   

4.
本文通过纳米ZnO(ZnO-NPs)对具有高效脱氮能力的异养硝化-好氧反硝化菌Halomonas sp. KGL1的短期暴露实验,探讨在不同作用浓度下(0,1,10,50 mg·L~(-1)) ZnO-NPs对菌株的生物胁迫效应。结果表明,ZnO-NPs破坏菌株Halomonas sp. KGL1的细胞膜完整性并改变其粘滞性,使菌株形态结构改变,菌体发生团聚;同时诱导该菌株细胞产生活性氧(Reactive Oxygen Species,ROS),对菌株细胞产生氧化胁迫,进一步损伤菌株细胞,抑制菌株的生长和脱氮能力,且ZnO-NPs浓度越高,该菌株受胁迫程度越强。不同浓度的ZnO-NPs对菌株Halomonas sp. KGL1的NH~+_4-N去除率无显著影响,而其NO~-_3-N、NO~-_2-N的去除效率显著降低。研究结果可为提高海水养殖废水等高盐含氮废水中脱氮菌株的抗ZnO-NPs胁迫能力的理论研究和实际应用提供科学依据。  相似文献   

5.
分离自对虾养殖池塘的地衣芽孢杆菌(Bacillus licheniformis)MP15具有高效的异养硝化-好氧反硝化性能。为了进一步研究菌株MP15的脱氮特性和脱氮机制,本研究采用氮同位素标记法,对其在氮基础降解液中的脱氮特性和机制进行了深入的研究。研究结果显示:在初始无机氮浓度为42 mg/L的氮基础降解液中,其对NH~+_4-N、NO~-_2-N和NO~-_3-N的最大去除速率分别为1.03 mg NH~+_4-N/(L·h)、1.74 mg NO~-_2-N/(L·h)和1.02 mg NO~-_3-N/(L·h)。氮代谢过程中羟胺氧化还原酶、亚硝酸盐还原酶和硝酸盐还原酶的酶比活力分别为0.540 6、0.157 8和0.160 9 U/mg。对菌株MP15脱氮过程中的~(15)N同位素示踪结果显示,以NH~+_4-N作为唯一氮源时,仅产生~(15)N_2O;当菌株MP15分别以NO~-_2-N和NO~-_3-N作为唯一氮源时,可同时检测到~(15)N_2O和~(15)N_2。综合上述结果,菌株MP15对无机氮的去除主要包括:同化作用、硝化作用和反硝化作用。其中对NH~+_4-N的硝化途径为:NH~+_4-N→NH_2OH→N_2O;对NO~-_2-N的硝化-反硝化途径为:NO~-_3-N←NO~-_2-N→N_2O/N_2;其对NO~-_3-N的反硝化途径为:NO~-_3-N→NO~-_2-N→N_2O/N_2。  相似文献   

6.
采用模拟废水研究了1.5%盐度对厌氧反硝化上流式厌氧污泥反应器(DN-UASB)脱氮效能及工艺稳定性的影响。实验结果表明,当进水NO~-_3-N浓度为1 000 mg/L,C/N为4.5时,1.5%盐度下DN-UASB反应器最高氮去除速率(NRR)可达35.52 kg/(m~3·d),最高COD去除速率(CRR)可达127.8 kg/(m~3·d),高于无盐下DN-UASB反应器最高NRR与CRR(分别为28.61和94.5 kg/(m~3·d))。1.5%盐度可提高DN-UASB脱氮效能,且无明显NO~-_2-N积累。1.5%盐度、无盐条件下DN-UASB反应器C/N均随氮容积负荷(NLR)提升而降低,高负荷工况下1.5%盐度环境下C/N降幅达21.4%,高于无盐环境下的C/N降幅(4.7%)。1.5%盐度、无盐环境下,高负荷工况出水TN、COD浓度均较常负荷工况呈现明显波动。1.5%盐度可减缓出水水质波动,使出水水质更稳定,出水TN的变异系数比和极差系数比较无盐条件分别降低40.1%与32.8%,出水COD的变异系数比和极差系数比较无盐条件分别降低58.7%与44.3%,更有利于反应器稳定运行。  相似文献   

7.
应用缺氧/好氧—移动床生物膜反应器(Anoxic/Aerobic-Moving Bed Biofilm Reactor,A/O-MBBR)系统,通过固定进水COD与无机氮之比C/N为12,将COD依次设置为150、300、350和450mg·L~(-1)时,探讨反应器对海水养殖废水中氨氮、硝氮、亚硝氮及COD的去除效果,并分析微生物群落变化及响应。结果表明,在进水COD为150mg·L~(-1)、无机氮12.5mg·L~(-1)时,反应器运行效果最佳,此时氨氮、硝氮、COD和亚硝氮的去除率分别为93.7%(出水0.3 mg·L~(-1)),87.5%(出水0.7mg·L~(-1)),98.2%(出水3mg·L~(-1)),86.9%(出水0.1mg·L~(-1))。当COD提高至450mg·L~(-1)时,氨氮去除率逐渐降低到40.7%,亚硝氮在COD为350mg·L~(-1)时去除率降低至22.5%。在整个系统运行过程中,变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)是反应器中的绝对优势类群。当COD由150mg·L~(-1)上升到350mg·L~(-1)时,变形菌门的相对丰度却由63.9%~75.2%提高到88.1%~92.4%;拟杆菌门的相对丰度则由11.9%~13.0%降低到4.5%~5.4%;引起污泥膨胀的发硫菌属(Thiothrix)的相对丰度由6.24%~7.08%增加到58.16%~76.74%,表明反应器污泥膨胀趋势加剧。应用A/O-MBBR工艺处理海水养殖废水时,在COD为150mg·L~(-1)时效果较好,随着COD浓度提高,引起污泥膨胀的微生物开始大量滋生。  相似文献   

8.
本研究通对凡纳滨对虾(Litopenaeus vannamei)养殖池塘的底泥进行富集筛选,以菌株对人工海水培养基中的NH~+_4-N和NO~-_2-N的去除能力为依据,共筛选得到4株具有高效NH~+_4-N或NO~-_2-N去除能力的芽孢杆菌,分别命名为MP2、MP6、MP15和MP21。根据菌株的形态特征、生理生化特性以及16S rDNA序列和特异性序列比对分析,菌株MP2、MP6和MP15被初步鉴定为枯草芽孢杆菌(Bacillus subtilis)、短小芽孢杆菌(Bacillus pumlius)和地衣芽孢杆菌(Bacillus licheniformis)。进一步研究了不同菌株在人工海水培养基中的生长和脱氮特性,研究发现,4株菌均可同时去除人工海水培养基中的NH~+_4-N和NO~-_2-N,但不同菌株的脱氮特性有所差异,其中菌株MP2和MP15对人工海水培养基中的NO~-_2-N的去除能力优于对NH~+_4-N的去除能力,最高去除率分别为95.00%和100.00%,与此同时,2株菌株可分别同时去除人工海水培养基中约69.59%和54.97%的NH~+_4-N;而菌株MP6则表现出高效的NH~+_4-N去除特性,去除率高达100.00%,显著优于其对NO~-_2-N的去除率(约53.71%);菌株MP21虽能够同时去除NH~+_4-N和NO~-_2-N,但去除效果显著低于上述3株菌株,其对NH~+_4-N和NO~-_2-N的最大去除率分别为56.60%和34.80%。因此,综合菌株对NH~+_4-N和NO~-_2-N的去除效果,选取菌株MP2、MP6和MP15进行不同比例的配伍。对配伍后复配菌的脱氮特性研究表明,不同菌株经配伍后,通过菌株间功能互补,不仅可以高效的去除人工海水培养基中的NH~+_4-N和NO~-_2-N,且去除效果更加稳定和持续。本研究结果初步表明,菌株MP2、MP6和MP15不仅具有同时高效去除水体中的NH~+_4-N和NO~-_2-N的特性,且不同菌株通过一定比例配伍可更好的发挥脱氮特性,在水产养殖水环境调控和微生态制剂开发中具有潜在的应用价值。  相似文献   

9.
研究了粉末活性炭(Powdered Activated Carbon,PAC)投加对厌氧/好氧-移动床-动态膜组合生物膜反应器(A/O-MB-DMBR)处理海水养殖废水工艺中的膜污染控制过程与作用机制。结果表明:投加PAC使反应器中生物膜胞外聚合物(Extracellular Polymeric Substances,EPS)的含量下降45.5 mg·g~(-1),最高增长速率降低62.47%;同时PAC还可使悬浮物粒径增大,有效的控制EPS的积累和膜污染。PAC投加前,反应器在运行16 d时膜通量即降到0.4 L·(m~2·h)~(-1),而投加后,运行32 d后膜通量仍保持在9 L·(m~2·h)~(-1),反应器运行周期显著延长。微生物群落分析发现,PAC投加可促进动态膜微生物群落多样性以及物种丰富度,与污泥絮体水解及脱氮相关的拟杆菌门和浮霉菌门相对丰度显著增加,亮发菌属、黄单胞菌属等与EPS产生有关的变形菌丰度显著降低。可见,PAC通过改变反应器生物膜的微生物群落结构、降低EPS含量等过程控制膜污染进程,并最终延长了反应器的运行周期。  相似文献   

10.
从禽畜粪便发酵沼液中分离筛选出1株异养硝化-好氧反硝化菌株假单胞菌属(Pseudomonas sp.) GK-01,采用经16S rDNA同源性比对及系统发育分析方法鉴定该菌,通过单因素变量控制实验对该菌株生长和脱氮作用的影响因素进行优化,并在最优条件下考察其在单一和混合氮源中的脱氮效果。结果表明,该菌株为1株Pseudomonas sp.,最佳碳源为柠檬酸钠,最佳C/N为10,最佳初始pH为8~9,最佳培养温度为30~35℃。此外,当NH_4~+-N的初始浓度为400 mg·L~(-1)时,该菌株在混合氮源体系中24 h对NH_4~+-N和NO_3~--N的去除率分别为99.08%和96.12%,表明其对高氨氮废水具有高效的异养硝化-好氧反硝化能力,在高氨氮废水生物脱氮等领域具有广泛的应用前景。  相似文献   

11.
采用能耐受3%盐度的活性污泥处理高盐度废水,探究了盐度升至4%~7%对污染物去除的影响,考察了微生物活性和群落结构随盐度升高的变化。结果表明,盐度提升到4%、5%和6%对COD、NH~+_4-N和总无机氮(TIN)去除几乎没有影响,而7%盐度时三者的去除率均明显下降;盐度提高到4%对污泥的氨氧化活性和亚硝酸盐氧化活性有刺激作用,使两者提高,而盐度提高到5%、6%和7%时氨氧化活性受到明显抑制,亚硝酸盐氧化活性在6%和7%盐度条件下明显降低;盐度提升使硝酸盐和亚硝酸盐还原活性均受到明显抑制;耗氧速率测试结果表明,盐度提升对自养硝化菌的负面影响较异养好氧菌更大。微生物群落结构随盐度升高发生了明显变化,微生物群落丰富度和多样性均在6%盐度时最大,3%盐度时Roseovarius为优势菌属,而盐度提高至4%~7%时Azoarcus成为优势菌属。氨氧化菌(AOB)只在3%、4%和6%盐度下被检出,亚硝酸盐氧化菌(NOB)在所有盐度下均未检出,短程硝化反硝化(PND)为主要脱氮途径;自养反硝化菌、好氧反硝化菌和厌氧氨氧化菌的存在说明脱氮途径不局限于传统的自养硝化-异养反硝化。盐度驯化提高了活性污泥的抗盐能力,使生物法处理超高盐废水成为可能。  相似文献   

12.
为解决海水养殖环境中的无机氮污染问题,从河鲀(Takifugu rubripes)养殖池塘的水体和底泥中筛选出2株可有效去除氨态氮、亚硝态氮和硝态氮的菌株——盐单胞菌(Halomonas sp.DN3)和枯草芽孢杆菌(Bacillus subtilis HC),并初步探讨了2株菌在不同无机氮源中的氮去除特性。研究表明,2株细菌均具有较好的无机氮去除效果。在初始无机氮浓度为42 mg·L~(-1)的单一氮源基础降解液中,菌株DN3对氨态氮、亚硝态氮和硝态氮的去除率分别为84.1%、62.1%和98.8%;菌株HC对三者的去除率分别为81.2%、49.0%和90.3%。在氨态氮去除过程中,虽未检测到硝态氮和亚硝态氮的积累,但从系统的氮收支分析,总氮浓度均显著下降,推测可能存在硝化过程;在硝态氮和亚硝态氮去除过程中,菌株DN3还原硝态氮时具有亚硝态氮的积累,菌株HC氧化亚硝态氮时具有硝态氮的积累。而从总氮浓度均有下降推测,可能存在好氧反硝化过程。在初始无机氮浓度为42 mg·L~(-1)的混合氮源基础降解液中,2株菌均具有良好的同步去除无机氮能力。以氨态氮和亚硝态氮为氮源时,菌株DN3和HC的总无机氮去除率分别为75.4%和66.6%;以氨态氮和硝态氮为氮源时,菌株DN3和HC的总无机氮去除率为69.5%和75.6%,2株菌在2种混合氮源中的氨态氮去除率均在90.0%以上。综合分析,菌株DN3和HC对无机氮去除机制主要以菌体的同化作用为主,同时推测具有一定的硝化和反硝化作用。研究结果表明,菌株DN3和HC均可高效去除无机氮,其在海水养殖水环境调控中具有潜在的应用价值。  相似文献   

13.
为了高效进行水体脱氮,本实验从形成于凡纳滨对虾(Litopenaeus vannamei)养殖水体的生物絮团中分离到一株具产絮能力的脱氮菌xt1,经16S r RNA基因测序与生理生化分析确定菌株xt1为短小芽孢杆菌(Bacillus pumilus)。在此基础上,本文研究了该菌的脱氮特性。结果表明:菌株xt1最佳碳源为葡萄糖,以其为底物对氨氮、硝态氮去除率分别达95.56%和57.40%。以蔗糖为碳源亦具较高脱氮率,对氨氮、硝态氮去除率分别达69.95%和49.50%;该菌能利用有机氮加速生长,添加0.25%、0.5%、1%和2%的蛋白胨能促进OD600,分别达到0.925、1.034、1.103和1.314,均高于未加蛋白胨下的生长,且氨氮去除率均超过90%,硝态氮去除率均超过88%;该菌能适应20—200mg/L无机氮浓度;该菌能以NH4+-N、NO2–-N或NO3–-N为唯一氮源进行异养硝化-好氧反硝化,反应84h去除率分别达到94.16%、47.60%和91.17%。其中,该菌的硝化形式是将氨氮转化为气态氮脱除,其硝态氮反硝化形式是先将硝态氮转化为亚硝氮,再以气态氮脱除。在进行异养硝化-好氧反硝化同时,菌株xt1体现絮凝特性,絮凝率最高分别达到82.28%、73.15%和75.60%;此外,添加该菌于养殖水体中能加速生物絮团形成,同时提高脱氮率。各项结果表明,菌株xt1可作为水产养殖水体脱氮的备选菌株。  相似文献   

14.
为了分离好氧反硝化细菌,探究其好氧反硝化过程。利用BTB培养基,从珍珠龙胆(♀Epinephelus fuscoguttatus×♂Epinephelus lanceolatu)循环水养殖系统的生物滤池中筛选出具有硝酸盐去除能力的细菌,并选择脱氮效果良好的菌株进行好氧反硝化反应器的构建,开展反硝化应用研究。本研究共分离出8株具有去除硝酸盐能力的菌株,经反硝化性能测定,都可大幅去除硝酸盐,同时也存在不同程度的氨氮和亚硝酸盐的积累;选择Z1、Z8两株脱氮效果较好的菌株进行好氧反硝化反应器的混合接种试验,结果显示反应器挂膜迅速、高效,接种2周后即达到相对稳定的水处理状态,硝酸盐去除率超过98.8%(约0.827g NO-3-N/(m2·d)),总氮去除率超过71.8%(约0.687g TN/(m2·d)),亚硝酸盐和氨氮的积累不明显,脱氮效果良好。  相似文献   

15.
研究污水处理厂产生的污泥脱水液中的磷酸盐(PO43-)和铵盐(NH4 )的去除方法。依据化学沉淀法的原理,含有Ca2 和Mg2 的海水加入污泥脱水液后,可以使污水中的PO43-与金属离子发生化学沉淀反应,实现污水除磷的目的。采用正交试验优化得到这种方法处理污泥脱水液的工艺条件:水温20℃,海水与污水混合比例为2∶10,体系pH值为10.5,反应时间20min。经过静态处理,污泥脱水液中氨态氮(NH4 -N)的平均去除率为34%,无机磷(PO43--P)的平均去除率为95%,比不投加海水的处理提高26%,这表明投加海水有利于强化污泥脱水液的除磷效果。动态处理也有较好的效果,PO43--P和NH4 -N的去除率分别可达91%和18%。这种技术不仅除磷效果好,处理成本也较低,生成的沉淀物还可以作为肥料施用,因而是污泥脱水液除磷的有效途径,特别适用于沿海地区污水处理厂。  相似文献   

16.
本实验模拟了硬头鳟海水网箱养殖周期内的温度变动范围,研究了不同温度对硬头鳟(Oncorhynchus mykiss)幼鱼碳(C)、氮(N)、磷(P)营养要素收支的影响。实验选取体重为(150.27±22.90)g的硬头鳟幼鱼为研究对象,采用4个温度条件(9、13、16和19℃)进行培养,测定了不同温度处理组内硬头鳟幼鱼C、N、P营养要素的收支情况。研究表明:温度对海水环境中硬头鳟幼鱼的C、N、P营养要素收支具有显著影响(P0.05)。硬头鳟幼鱼的摄食率、排粪率、排氨率和排磷率在9℃处理组中分别为0.699mg·g~(-1)·h~(-1)、0.099mg·g~(-1)·h~(-1)、4.154μg·g~(-1)·h~(-1)和0.435μg·g~(-1)·h~(-1),显著低于其他处理组;在16℃处理组中,达到最大值,分别为1.118mg·g~(-1)·h~(-1)、0.150mg·g~(-1)·h~(-1)、7.173μg·g~(-1)·h~(-1)、0.577μg·g~(-1)·h~(-1)。硬头鳟幼鱼的耗氧率在低温环境中随温度的上升增加显著,耗氧率(OR)与温度(T)之间的变化规律符合方程OR=-0.816 2T2+33.224T-28.689(R2=0.798 5)。C、N、P营养要素的生长余力在9℃处理组中分别为0.213、0.036和0.008mg·g~(-1)·h~(-1),显著低于其他处理组;在16℃处理组中,达到最大值,分别为0.353、0.058和0.010mg·g~(-1)·h~(-1)。19℃处理组中,C、N营养要素的吸收效率分别为63.48%和82.56%,显著低于其他3个处理组;P营养要素的吸收效率为75.47%,显著低于16℃处理组。高温环境对硬头鳟幼鱼的营养要素收支会产生不利影响,网箱养殖过程中,水温过高时,应通过减少投喂并增加曝气的方式降低鱼体死亡的风险。  相似文献   

17.
污水污泥(MSS)中含有大量的氮磷营养盐,以其替代传统培养基作为微藻的营养来源,将显著降低微藻吸收固定CO2的成本,增强微藻在工业碳减排中的应用潜力。本研究以污水污泥提取液与海水的混合液作为纤细角毛藻(Chaetoceros gracilis)的生长介质,同时通入高浓度(5%~20%)CO2,在优化培养条件的基础上,将微藻接种到螺旋管式光生物反应器中进行动态试验,并逐日测定相应的藻生物量和固碳能力。结果表明,在污泥提取液和海水的混合体系中,纤细角毛藻的最适生长条件为:通入10%CO2气体,污泥提取液和海水按照1∶29比例混合,温度为30℃,光照强度为6 000lx。当保持10%CO2的通入速度为20mL·min-1时,生物反应器的适宜运行条件为:藻接种量1×106cells·mL-1,循环流量1 200mL·h-1。在上述优化条件下,最大藻生物量产率(0.36g·L-1·d-1)和最高固碳速率(0.67g·L-1·d-1)出现在循环培养第5d;此外,培养液中氮、磷营养盐的利用程度较高,NO3--N、NH4+-N、NO2--N、PO43--P的去除率分别达到96.9%、93.3%、78.0%和88.5%。  相似文献   

18.
盐度对毛蚶(Arca subcrenata Lischke)呼吸与代谢的影响   总被引:1,自引:0,他引:1  
在实验室的条件下.研究盐度(16、24、32、40)对不同规格(A:(50.79±3.24)cm,B:(42.24±0.78)cm,C:(34.82±1.51)cm)的毛蚶(Arca subcrenata Lischke)耗氧率(R_0)(mg·g~(-1)·h~(-1))、排氨率(R_n)(μg·g~(-1)·h~(-1))的影响。实验表明:在实验盐度(16~40)范围内,毛蚶的耗氧率(R_0)和排氨率(R_n)与软组织干质量(0.27~1.81g)呈幂指数关系,符合公式R= aW~b,其单位体重的耗氧率和排氨率在盐度为32时达到最大,而后随着盐度的升高其值逐渐减小。  相似文献   

19.
缢蛏串联养殖经由饵料藻类养殖塘(俗称肥水塘)投放适量含氮化合物以提高生产效率,了解此过程中的沉积物氮转化对调控和管理河口养殖塘氮的收支具有重要意义。以福建九龙江口肥水-缢蛏养殖塘为研究对象,运用同位素示踪技术和高通量测序技术探究缢蛏塘和肥水塘沉积物厌氧氨氧化速率及微生物群落结构,并分析其环境调控机制。结果表明,肥水塘沉积物厌氧氨氧化速率为(1.76±0.11) nmol/(g·h),相对贡献为9.16%±0.40%,显著高于缢蛏塘(P<0.05)。缢蛏塘和肥水塘厌氧氨氧化微生物主要由Candidatus Scalindua、Ca.Kuenenia、Ca.Brocadia和Ca.Anammoximicrobium属组成。其中,Ca.Kuenenia属为养殖塘的优势菌属。沉积物厌氧氨氧化微生物多样性和丰富度呈显著的空间分布特征,肥水塘中生物多样性更高(P<0.05)。厌氧氨氧化微生物活性和群落结构差异主要受养殖土地利用方式、溶解氧(DO)、NH4+和NO3-含量等环境因子的调控。该研究在一定...  相似文献   

20.
以组织培养间接获得的海黍子幼孢子体为实验对象,研究温度和氮、磷浓度对其营养盐吸收和生长的影响。结果显示,15~30℃范围内幼孢子体均可吸收NO-3-N、NH+4-N和PO3-4-P。25~30℃下NH+4-N的吸收显著高于10~15℃时,而NO-3-N和PO3-4-P的吸收速率在实验温度下差异不显著。NO-3-N、NH+4-N和PO3-4-P的最大吸收速率分别出现在15、25和25℃。当氮浓度3 000μg·L-1时,幼孢子体均可吸收NO-3-N和NH+4-N,且二者均呈现开放型吸收模式。当磷浓度30μg·L-1时,幼孢子体可吸收PO3-4-P,且呈现饱和型模式。温度对幼孢子体的生长影响显著。10~30℃范围内,富含氮磷组和去除氮磷组的特定生长率(SGR)均随着温度的升高先增大后减小,且最大SGR(分别为19.58%·d-1和14.58%·d-1)均在25℃时取得;叶绿素a、c的含量随着温度的升高先减小后增大。氮、磷浓度对幼孢子体的生长影响显著。富含氮磷组的SGR、叶绿素a含量和叶绿素c含量分别在15~25℃、15~30℃和20~30℃范围内显著高于去除氮磷组。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号