首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Military training activities reduce vegetation cover, disturb crusts, and degrade soil aggregates, making the land more vulnerable to wind erosion. The objective of this study was to quantify wind erosion rates for typical conditions at the Marine Corps Air Ground Combat Center, Twentynine Palms, CA, U.S.A. Five Big Spring Number Eight (BSNE) sampler stations were installed at each of five sites. Each BSNE station consisted of five BSNE samplers with the lowest sampler at 0·05 m and the highest sampler at 1·0 m above the soil surface. Once a month, sediment was collected from the samplers for analysis. Occurrence of saltating soil aggregates was recorded every hour using Sensits, one at each site. The site with the most erosion had a sediment discharge of 311 kg m−1 over a period of 17 months. Other sites eroded much less because of significant rock cover or the presence of a crust. Hourly sediment discharge was estimated combining hourly Sensit count and monthly sediment discharge measured using BSNE samplers. More simultaneously measured data are needed to better characterize the relationship between these two and reconstruct a detailed time-series of wind erosion. This measured time-series can then be used for comparison with simulation results from process-based wind erosion models such as the Wind Erosion Prediction System (WEPS), once it has been adapted to the unique aspects of military lands.  相似文献   

2.
塔克拉玛干沙漠南缘风沙跃移运动研究——以策勒为例   总被引:3,自引:0,他引:3  
 利用Sensit传感器、BSNE集沙仪、全方位跃移集沙仪结合2 m气象塔,于2010年7月5日至8月24日在策勒绿洲-荒漠过渡带开展了风沙跃移运动强化观测试验,分析了该区域风沙跃移运动的部分特征。结果表明:①试验点2 m高度临界跃移起动1 h平均风速为5.0 m·s-1;跃移颗粒数与风速呈现较好的幂函数关系;②跃移输沙量的方向分布以偏西方向为主,主要集中在SW、WSW、W、WNW、NW5个方位,共计占到80.9%;③跃移运动在一日之内的任何时间段都可能发生,发生频率较高的时段集中在白天的11:00—19:00;④观测期间0~40 cm高度范围的跃移输沙通量为199.4 kg·m-1。  相似文献   

3.
Wind tunnel experiments were conducted to determine the efficiency of sediment samplers designed to measure the deposition of aeolian dust. Efficiency was ascertained relative to a water surface, which was considered the best alternative for simulating a perfectly absorbent surface. Two types of samplers were studied: the Marble Dust Collector (MDCO) and the inverted frisbee sampler. Four versions of the latter catcher were tested: an empty frisbee, an empty frisbee surrounded by an aerodynamic flow deflector ring, a frisbee filled with glass marbles, and a frisbee filled with glass marbles and surrounded by a flow deflector ring. Efficiency was ascertained for five wind velocities (range: 1–5 m s− 1) and eight grain size classes (range: 10–89 μm). The efficiency of dust deposition catchers diminishes rapidly as the wind speed increases. It also diminishes as the particles caught become coarser. Adding a flow deflector ring to a catcher substantially improves the catcher's efficiency, by up to 100% in some cases. The addition of glass marbles to a catcher, on the other hand, does not seem to increase the efficiency, at least not at wind velocities inferior to the deflation threshold. For higher velocities the marbles protect the settled particles from resuspension, keeping them in the catcher. The following five parameters determine the accumulation of aeolian dust in a catcher: the horizontal dust flux, the weight of the particles, atmospheric turbulence, resuspension, and the dust shadow effect created by the catcher. The final accumulation flux depends on the combination of these parameters. The catchers tested in this study belong to the best catchers currently in use in earth science and have been the subject of various aerodynamic studies to improve their efficiency. Nevertheless the catching efficiency remains low, in the order of 20–40% for wind speeds above 2 m s− 1. Other catchers suffer from the same low efficiencies. There is, thus, evidence to believe that dust deposition rates published in the aeolian literature and obtained by collecting the sediment in a catcher largely underestimate the true deposition. The errors are considerable, of the order of 100% and more. A reconsideration of the literature data on aeolian dust deposition measured by catchers is, therefore, required.  相似文献   

4.
内蒙古拐子湖地区风沙运动若干参数计算   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用内蒙古拐子湖地区风沙观测场2011年3~5月的沙尘暴强化观测资料,分析计算了巴丹吉林沙漠北缘平坦沙地的地表粗糙度、临界摩擦速度、临界起沙风速等风沙运动关键参数。初步结论如下:观测期间地表粗糙度的变化范围为1.0×10-7~ 9.0×10-1cm,平均粗糙度为0.942 cm;临界摩擦速度约为0.34 m/s;2 m高度的起沙风速约为4.6 m/s。  相似文献   

5.
Wind erodibility of major soils in the farming-pastoral ecotone of China   总被引:2,自引:0,他引:2  
Wind erosion and desertification are severe problems in China's farming-pastoral ecotone. In this study, wind erodibility of five major soils in both uncultivated and simulated cultivated conditions, were determined through wind tunnel tests at nine wind speeds ranging from 10 to 26 m s−1. The average wind erosion rate (g m−2 min−1) under the uncultivated condition (q0) for the five soils could be set in the order: chestnut soil (28.5)>brown soil (24.8)>sierozem (21.8)>chernozem (19.9)>fixed sandy soil (11.4). The highest natural wind erosion might take place in the semi-arid steppe zone where the Chestnut soils predominate. Cultivation can significantly accelerate wind erosion, the mean wind erosion rate under the cultivated condition (qc) for all five soils was 743.7 g m−2 min−1 in the following order: sandy soil (3313.2)>brown soil (227.2)>chernozem (221.8)>sierozem (85.1)>chestnut soil (81.2). For both the uncultivated and cultivated soil samples, the relationship between wind erosion rate (q) and wind speed (U) could be expressed in general as q=A eBU (A and B are constant coefficients). There was a critical wind speed for each soil type except for the sandy soil. Below the critical wind speed, cultivation reduced wind erosion rate possibly due to soil clodiness and roughness effects. Above the critical speed, cultivation greatly intensified wind erosion rates due to the break down of the original soil structure. The critical wind speed measured at 20 cm above the soil surface was 20 m s−1 for the brown soil, 14 m s−1 for chernozem and the chestnut soils, and 10 m s−1 for the sierozem. Among the five tested soils, the high wind erosion rate of the cultivated sandy soil showed its extreme sensitivity to cultivation, possibly because of the structureless nature of the loose sand. The “effect of cultivation on wind erosion” index, η (=qc/q0), increased exponentially with the increase of wind speed, indicating that under higher wind speed conditions, cultivation could result in more severe wind erosion.  相似文献   

6.
Wind erosion of soil is an appreciable but unstudied event following fires in cold desert. We examined aeolian transport of sediment for 1 year following fire in semi-arid shrub steppe on loess soils in southern Idaho, USA. Sediment collectors were used to determine horizontal mass transport of soil and saltation sensors and anemometers were used to determine saltation activity (fraction of time having saltation) and threshold wind speed in an area burned in August and an unburned control site. Horizontal mass transport (per 30-day period) was negligible in the unburned area, but in the burned area was 5.40 kg m?1 in October and decreased to 2.80 kg m?1 in November and 0.32 kg m?1 in December. Saltation activity was high enough to determine threshold wind speeds only in the burn site during fall, when values ranged from 10.0 to 10.6 m s?1. Sediment flux and saltation activity in the burned site became much less pronounced following the emergence of herbaceous vegetation in the spring. Post-fire sediment flux in the shrub steppe we examined was of greater magnitude but shorter duration than post-fire fluxes in warm deserts or sandier regions that experience more frequent wind erosion.  相似文献   

7.
Detailed wind tunnel tests were carried out to establish the mean downwind velocity and transport rate of different-sized loose dry sand at different free-stream wind velocities and heights, as well as to investigate the vertical variation in the concentration of blowing sand in a cloud. Particle dynamic analyzer (PDA) technology was used to measure the vertical variation in mean downwind velocity of a sand cloud in a wind tunnel. The results reveal that within the near-surface layer, the decay of blown sand flux with height can be expressed using an exponential function. In general, the mean downwind velocity increases with height and free-stream wind velocity, but decreases with grain size. The vertical variation in mean downwind velocity can be expressed by a power function. The concentration profile of sand within the saltation layer, calculated according to its flux profile and mean downwind profile, can be expressed using the exponential function: cz=ae−bz, where cz is the blown sand concentration at height z, and a and bare parameters changing regularly with wind velocity and sand size. The concentration profiles are converted to rays of straight lines by plotting logarithmic concentration values against height. The slope of the straight lines, representing the relative decay rate of concentration with height, decreases with an increase in free-stream wind velocity and grain size, implying that more blown sand is transported to greater heights as grain size and wind speed increase.  相似文献   

8.
Sand velocity in aeolian sand transport was measured using the laser Doppler technique of PDPA (Phase Doppler Particle Analyzer) in a wind tunnel. The sand velocity profile, probability distribution of particle velocity, particle velocity fluctuation and particle turbulence were analyzed in detail. The experimental results verified that the sand horizontal velocity profile can be expressed by a logarithmic function above 0.01 m, while a deviation occurs below 0.01 m. The mean vertical velocity of grains generally ranges from − 0.2 m/s to 0.2 m/s, and is downward at the lower height, upward at the higher height. The probability distributions of the horizontal velocity of ascending and descending particles have a typical peak and are right-skewed at a height of 4 mm in the lower part of saltation layer. The vertical profile of the horizontal RMS velocity fluctuation of particles shows a single peak. The horizontal RMS velocity fluctuation of sand particles is generally larger than the vertical RMS velocity fluctuation. The RMS velocity fluctuations of grains in both horizontal and vertical directions increase with wind velocity. The particle turbulence intensity decreases with height. The present investigation is helpful in understanding the sand movement mechanism in windblown sand transport and also provides a reference for the study of blowing sand velocity.  相似文献   

9.
不同扰动方式对沙砾质戈壁地表风蚀量的影响   总被引:2,自引:1,他引:1  
通过野外风洞实验,测定了不同破坏方式、破坏面积和风速下的沙砾质戈壁风蚀量。结果表明:不同破坏方式引起的风蚀量不同,扰动强度越大造成的风蚀量越多;相同扰动方式下连续破坏造成的风蚀量稍高于间隔破坏。风蚀总量随破坏面积的增大而增加,且服从指数函数。风速为8~10 m·s-1时,扰动的戈壁地表以轻微侵蚀为主;10~12 m·s-1 是风蚀量增幅最大阶段;当风速大于 12 m·s-1时,以强烈风蚀为主。风沙流中沙物质的主体是细沙和极细沙,在20 cm高度范围内,自风沙流下层至上层细沙含量比较稳定,极细沙含量逐渐降低,中沙含量逐渐上升。  相似文献   

10.
Beach–dune seasonal elevation changes, aeolian sand transport measurements, bathymetric surveys and shoreline evolution assessments were used to investigate annual and seasonal patterns of dune development on Sfântu Gheorghe beach, the Danube delta coast, from 1997 to 2004. Dune volume increased consistently (1.96 m3 m− 1 y− 1 to 5.1 m3 m− 1 y− 1) over this 7-year period with higher rates in the southward (downdrift) direction. Dune aggradation is periodically limited by storms, each of which marks a new evolutionary phase of the beach–dune system. As a consequence of the variable beach morphology and vegetation density during a year, foredune growth occurs during the April–December interval while between December and April a slightly erosive tendency is present. The pattern of erosion and deposition shown by the topographical surveys is in good agreement with the sand transport measurements and demonstrates the presence of a vigorous sand flux over the foredunes which is 20–50% smaller than on the beach. This high sand flux, due to low precipitation and sparse vegetation cover, creates an aerodynamically efficient morphology on the seaward dune slope. The seaward dune face accretes during low to medium onshore winds (5.5–12 m s− 1) and erodes during high winds (> 12 m s− 1).  相似文献   

11.
It is usually recognized that relatively large amounts of soil particles cannot be transported by raindrop splashes under windless rain. However, the splash-saltation process can cause net transportation in the prevailing wind direction since variations in splash-saltation trajectory due to the wind are expected in wind-driven rain. Therefore, determining the combined effect of rain and wind on the process should enable improvement of the estimation of erosion for any given prediction technique. This paper presents experimental data on the effects of slope aspect, slope gradient, and horizontal wind velocity on the splash-saltation trajectories of soil particles under wind-driven rain. In a wind tunnel facility equipped with a rainfall simulator, the rains driven by horizontal wind velocities of 6, 10, and 14 m s−1 were allowed to impact three agricultural soils packed into 20×55 cm soil pans placed at both windward and leeward slopes of 7%, 15%, and 20%. Splash-saltation trajectories were measured by trapping the splashed particles at distances downwind on a 7-m uniform slope segment in the upslope and downslope directions, respectively, for windward and leeward slopes. Exponential decay curves were fitted for the mass distribution of splash-saltation sediment as a function of travel distance, and the average splash-saltation trajectory was derived from the average value of the fitted functions. The results demonstrated that the average trajectory of a raindrop-induced and wind-driven soil particle was substantially affected by the wind shear velocity, and it had the greatest correlation (r=0.96 for all data) with the shear velocity; however, neither slope aspect nor slope gradient significantly predicted the splash-saltation trajectory. More significantly, a statistical analysis conducted with nonlinear regression model of C1(u*2/g) showed that average trajectory of splash saltation was approximately three times greater than that of typical saltating sand grain.  相似文献   

12.
Dust and environment in the Southern High Plains of North America   总被引:1,自引:0,他引:1  
Continuous measurements of dust reveal the intermittent nature of dust events within the Southern High Plains of North America. Dust events appear as sudden peaks that project outward from a much lower background dust concentration. The measured dust record appears to follow a regular annual cycle with most dust events occurring in spring and considerably fewer during other seasons. The annual dust cycle reflects seasonal changes in environmental factors such as wind speed, surface cover, and moisture conditions. Most dust events are associated with a combination of strong winds, negligible surface cover, and dry conditions, all of which occur most frequently during the spring season. Wind speed alone is found to be an imperfect indicator of dust levels in the Southern High Plains because of the moderating effects of other important environmental factors such as humidity and surface cover. However, if one limits consideration to dry and bare conditions, dust concentration exhibits a positive correlation with daily wind speeds above 4 m s−1and a negligible correlation for light winds.  相似文献   

13.
The vertical distribution of the wind-blown sand flux in a 40-cm flow layer above the ground surface was investigated through laboratory wind-tunnel tests and field measurements on the mobile dune surface during sand storms in the Taklamakan Desert of China. Results show that vertical distribution of the horizontal mass flux of drifting sand is a discontinuous function of height. More than 90% of the total material is transported in the flow layer from the surface to 14 cm. From 2 to 4 cm above the surface, a distinct transition zone occurs wherein mixed transport by creep, saltation, and suspension becomes saltation and suspension. The flow layer from 14 to 15 cm represents a further transition from saltation to suspension, where the distribution curves of the transport rate against height converge. The basic natural exponential function cannot describe well the vertical distribution of the saltation mass flux in the Taklamakan Desert. As a function of height, saltation mass flux follows a function qsalt = a'Z-bZ, and the distribution of suspension mass flux fits the power function very well. A total transport rate from surface creep to saltation and suspension in the measured flow layer, which is directly proportional to the effective wind speed squared (V - Vt)2, can be predicted by integrating Q = a'Z-bZ + cZ-d. The height distribution of the average quantities of transported materials varies as an exponential function of wind speed, and deceases with the increase in total transport quantity. Higher wind speed results in a higher transport rate and a higher vertical gradient for the particle concentration. The increment of relative transport quantity in the higher flux layer increases as wind speed increases, which generates a higher concentration of drifting particles in the upper flow layer. [Key words: aeolian geomorphology, aeolian transport, horizontal sand flux, sand dune, vertical sediment distribution, Taklamakan Desert.]  相似文献   

14.
跃移质作为风沙流的主体,其近地表垂直分布规律是风沙物理学的重要研究内容,对防沙工程具有重要的指导意义。受研究条件与观测仪器限制,戈壁特别是极端大风区近地表风沙流结构特性研究较为薄弱。利用多梯度风蚀传感器与阶梯式集沙仪对兰新高铁烟墩风区戈壁近地表风沙流跃移质的垂直分布特性进行了观测研究。结果表明:兰新高铁烟墩风区戈壁沙粒发生跃移运动的2 m高临界风速达12 m·s-1;戈壁近地表风沙流具有明显的阵性特征,沙粒跃移发生的时间比例在50%以下,与平均风速成正相关关系,与风速脉动强度无显著相关关系;2 m高阵风7级风速下,戈壁跃移沙粒主要集中于地表50 cm范围内,近地表风沙流结构呈"象鼻效应",跃移质最大质量通量出现在地表2.5~5 cm高度处,沙粒最大跃移高度可达2 m,且沙粒跃移高度随2 m高风速的增加呈指数规律递增。因此,兰新高铁烟墩风区2 m高阻沙栅栏不足以完全阻截戈壁风沙流,是造成烟墩风区兰新高铁轨道积沙的重要原因之一。  相似文献   

15.
A portable wind tunnel was used to test the contribution of biological and physical elements to overall soil aggregation on a soil dominated by biological soil crusts in south-eastern Australia. After moderate disturbance and simulated wind erosion, 90% of surface aggregates on the loamy soil and 76% on the sandy soil were dominated by biological elements (cryptogams). Lower levels of biological bonding were observed on the severely disturbed treatment. Linear regression indicated a significant positive relationship (r2=0·72) between biological soil crust cover and dry aggregation levels greater than 0·85mm. To maintain sediment transport below an erosion control target of 5gm−1s−1 for a 65kmh−1 wind at 10m height, a crust cover of approximately 20% is required. When a multiple regression model which sequentially fitted biological crust cover and dry aggregation greater than 0·85mm was applied to the data, dry aggregation accounted for more of the variation in sediment transport rate than biological crust cover. These data were used to develop a conceptual model which integrates crust cover and dry aggregation, and provides a useful framework within which to predict the likely impacts of changes in soil crust cover and aggregation.  相似文献   

16.
The flux profile of a blowing sand cloud: a wind tunnel investigation   总被引:11,自引:0,他引:11  
The flux profile of a blowing sand cloud, or the variation of blown sand flux with height, is the reflection of blown sand particles that move in different trajectories, and also the basis for checking drifting sand. Here we report the wind tunnel results of systematic tests of the flux profiles of different sized sands at different free-stream wind velocities. The results reveal that within the 60-cm near-surface layer, the decay of blown sand flux with height can be expressed by an exponential function: qh=aexp(−h/b), where, qh is the blown sand transport rate at height h, a and b are parameters that vary with wind velocity and sand size. The significance of coefficient a and b in the function is defined: a represents the transport rate in true creep and b implies the relative decay rate with height of the blown sand transport rate. The true creep fraction, the ratio of the sand transported on the surface (h=0) to the total transport varies widely, decreasing with both sand size and wind speed. The flux profiles are converted to straight lines by plotting sand transport rate, qh, on a log-scale. The slope of the straight lines that represents the relative decay rate with height of sand transport rate decreases with an increase in free-stream wind velocity and sand grain size, implying that relatively more of the blown sand is transported to greater heights as grain size and wind speed increase. The average saltating height represented by the height where 50% of the cumulative flux percentage occurs increases with both wind speed and grain size, implying that saltation becomes more intense as grain size and/or wind velocity increase.  相似文献   

17.
丘间低地不同部位风沙流结构特征   总被引:6,自引:1,他引:5  
为了研究丘间低地不同部位风沙流结构特征,摸清风沙运动规律,为丘间低地风沙治理提供理论依据,使用阶梯式集沙仪对丘间低地风沙流进行了观测。结果表明,丘间低地不同部位风沙流结构存在明显差异,输沙率随沙源距离的增加而减小,风速越大,差异越明显,沙源丰富度和地形是造成差异的主要原因。在0~80 cm范围内,输沙量与风速呈指数函数关系,输沙率与高度呈幂函数关系。丘间低地风沙流结构特征值λ在沙源不同距离处均大于1,而且随着风速的增加,λ逐渐增加,风沙流趋向于更加不饱和状态。从近沙源处开始往后,λ基本呈增加趋势。  相似文献   

18.
WITSEG集沙仪:风洞用多路集沙仪   总被引:21,自引:9,他引:12  
风沙流通量廓线(风沙流结构)是以不同轨迹运动的沙粒在垂直方向上的宏观反映。建立风沙流通量廓线函数需要测定不同高度的输沙率。为此,我们设计了适用于风洞实验的多路集沙仪(WITSEG集沙仪),并通过风洞实验对其进行了检验。WITSEG集沙仪高60 cm,由60个进沙口和集沙盒组成,每个进沙口高1 cm。该集沙仪可以测量风沙流中60个不同高度的输沙率。在设计WITSEG集沙仪时,着重实用性和集沙效率。为了使用方便,带有进沙口的入口段、集沙盒和保护盖板设计为活动式。为了提高集沙效率,入口段设计成楔形,使得进沙口宽0.5 cm,而集沙盒宽度为1.5 cm。每个集沙盒留有两个过滤网排气孔,以减小集沙盒内的静压、提高采集效率。风洞实验检验表明,用WITSEG集沙仪测得的风沙流结构和总输沙率与风速的关系与已广泛接受的结论非常一致。WITSEG集沙仪能观测输沙率随高度的详细变化,是研究风沙流结构的较好工具。  相似文献   

19.
The sidewall effects of a wind tunnel on aeolian sand transport were investigated experimentally. A wind tunnel was used to conduct the experiments with a given channel height of 120 cm and varying widths (B) of 40, 60, 80, 100 and 120 cm. Both vertical profiles of wind velocity and sand mass flux were measured at different locations across the test section. The results show that the wind velocity with saltation first increases and then decreases to a minimum, from the sidewall to the central line of the wind tunnel. The discrepancy among wind velocities at different locations of the transverse section decreases with decreasing tunnel width. The wind friction velocity across the wind tunnel floor, with the exception of the region closest to the sidewalls, does not deviate strongly in wide wind tunnels from that along the central line, whereas it does vary in narrow tunnels. The sand mass fluxes, with the exception of some near-bed regions, are larger along the central line of the wind tunnel than they are at the quarter width location from the sidewall. Unlikely previously reported results, the dimensionless sand transport rate, Qg / (ρu3) (where Q is the total sand transport rate, g is the gravitational acceleration constant, ρ is the air density, and u is the wind friction velocity), first decreases and then increases with the dimensionless friction velocity, u / ut (where ut is the threshold friction velocity). The above differences may be attributed to the sidewall effects of the wind tunnel. A dimensionless parameter, FB = u / (gB)1/2, is defined to reflect the sidewall effects on aeolian sand transport. The flows with FB of 0.33 or less may be free from the sidewall effects of the wind tunnel and can ensure accurate saltation tunnel simulation.  相似文献   

20.
王萍  郑晓静 《中国沙漠》2013,33(6):1622-1628
基于风沙流实时测量系统对流沙地表的输沙强度以及不同高度风速进行实时测量所获得的数据,分析野外实际风场中的风沙流脉动特征。结果表明:沙粒的存在削弱平均流场,但对风速的高阶统计矩和分布形式影响不大,不同高度、不同来流平均风速条件下,风沙流中风速仍近似符合高斯分布;瞬时输沙强度服从指数分布,滞后风速约1 s,脉动强烈;30 min输沙强度平均值和脉动标准差均随平均风速的增大而呈幂函数增加,但随风速脉动强度的变化呈先增大后减小的趋势。这意味着脉动风速对输沙率具有重要影响,需要在输沙率预测公式中予以考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号