首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu  Yang  Xuepu Zhao  Hoeksema  J. Todd 《Solar physics》2004,219(1):39-53
Shutter noise induces a small random shift of the zero point in full-disk magnetograms obtained by the Michelson Doppler Imager (MDI) instrument aboard SOHO. In this paper, we develop a method to remove this offset by fitting the distribution of the magnetic field strength with a Gaussian function (Ulrich et al., 2002). We also discover a systematic error in the five-minute magnetograms that are the sum of five individual magnetograms computed on-board; this error can be removed together with the offset. The mean solar magnetic field and synoptic frames derived from corrected magnetograms show significant improvement. Standard synoptic charts benefit from reduced noise and elimination of systematic errors in the individual magnetograms. This indicates that this correction is effective and necessary.  相似文献   

2.
We compare line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). The line-of-sight magnetic signal inferred from the calibrated MDI data is greater than that derived from the HMI data by a factor of 1.40. This factor varies somewhat with center-to-limb distance. An upper bound to the random noise for the 1′′ resolution HMI 720-second magnetograms is 6.3 Mx?cm?2, and 10.2 Mx?cm?2 for the 45-second magnetograms. Virtually no p-mode leakage is seen in the HMI magnetograms, but it is significant in the MDI magnetograms. 12-hour and 24-hour periodicities are detected in strong fields in the HMI magnetograms. The newly calibrated MDI full-disk magnetograms have been corrected for the zero-point offset and underestimation of the flux density. The noise is 26.4 Mx?cm?2 for the MDI one-minute full-disk magnetograms and 16.2 Mx?cm?2 for the five-minute full-disk magnetograms observed with four-arcsecond resolution. The variation of the noise over the Sun’s disk found in MDI magnetograms is likely due to the different optical distortions in the left- and right-circular analyzers, which allows the granulation and p-mode to leak in as noise. Saturation sometimes seen in sunspot umbrae in MDI magnetograms is caused by the low intensity and the limitation of the onboard computation. The noise in the HMI and MDI line-of-sight magnetic-field synoptic charts appears to be fairly uniform over the entire map. The noise is 2.3 Mx?cm?2 for HMI charts and 5.0 Mx?cm?2 for MDI charts. No evident periodicity is found in the HMI synoptic charts.  相似文献   

3.
It is a common practice in the solar physics community to judge whether the measured photospheric vector magnetograms are force-free or not. In the previous work, it was studied how the measurement limitations such as the limited field of view, instrument sensitivity, and measurement error could affect the judgement of force-freeness based on the observed magnetograms. A further research on the influence of the spatial resolution on the force-freeness judgement is carried out in this article. The result shows that changing (mainly reducing) the spatial resolution has little influence on the force-freeness judgement in the ideal noiseless case. In the case when there are white noises in the magnetograms as those in the really observed magnetograms, it is opposite to the common intuition that properly reducing the spatial resolution can actually suppress the error, and significantly reduce the heavy influence of the measurement error on the force-freeness judgement, thus to enhance effectively the accuracy of the force-freeness judgement of magnetic field. This result sets up a theoretical foundation and an instructive guidance for judging the force-freeness of solar magnetic field correctly by using the observed magnetograms.  相似文献   

4.
Reliable information on the distribution of magnetic fields across the whole surface of the Sun is urgently needed to predict conditions in the solar corona, in the interplanetary medium, and in the near-Earth space (space weather). Several space- and ground-based solar instruments currently provide full-disk magnetograms. However, these measurements sometimes differ very significantly, which makes a cross-calibration of different datasets and searching for the reasons for such differences a very crucial task. Here, we analyze the Huairou Solar Observing Station (HSOS) Solar Magnetism and Activity Telescope (SMAT) full-disk line-of-sight magnetograms in comparison with magnetograms taken at the Solar Dynamic Observatory/Helioseismic and Magnetic Imager (SDO/HMI) and Solar Telescope for Operative Predictions (STOP) instruments. We show systematic differences between original SMAT magnetograms and those of other telescopes. The differences are caused by some SMAT instrumental problems, which we investigate. We suggest methods for compensating for these effects that have improved the quality of SMAT magnetograms. These methods will enable us to use SMAT measurements to solve many solar physics problems that are related to studying global solar magnetism and space weather.  相似文献   

5.
Kress  J.M.  Wilson  P.R. 《Solar physics》1999,189(1):147-161
The decay of several active regions which emerged early in cycle 22 has been studied using daily magnetograms and synoptic plots obtained at the Vacuum Telescope at the National Solar Observatory, Kitt Peak. The observed patterns are compared with simulations using the flux transport equation and some discrepancies are noted. For one region it is shown that, by including the emergence of a non-random pattern of small magnetic bipoles during the decay, the correspondence between the observed and simulated patterns may be improved.  相似文献   

6.
随着"环日轨道器"(Solar Orbiter, SO)的在轨运行,太阳磁场观测进入了双视角遥测的时代.对利用太阳磁场的双视角观测改正矢量磁图中存在的横场(垂直于视线方向的磁场分量) 180°不确定性进行了模拟,首先模拟了对解析解得到磁图的双视角观测,然后利用"日震学和磁学成像仪"(Helioseismic and Magnetic Imager, HMI)在不同时间观测到的一个老化黑子的磁图模拟了双视角观测.发现要改正一个磁图中横场方向的180°不确定性,在观测上只需要另外一个平行于视线方向的磁场即纵向磁场观测的协助.利用HMI的磁场观测模拟,估算显示30°的张角能够改正50 Gs磁场中的180°不确定性.更大的张角虽然更有利于更弱磁场的改正,但是考虑到投影效应的不利影响, 30°左右的张角应该是未来空间设备进行多视角观测太阳磁场的最佳张角.  相似文献   

7.
High-resolution MDI magnetograms are used to study the pattern of moving magnetic inhomogeneities in sunspots. We examine the inward and outward moving features in sunspots. The velocity of these features is small in the umbra while it is about 0.5 km s–1 in the outer penumbra. The inward and outward moving features may be the possible origin for the long-term fluctuations of magnetic field strength in sunspots.  相似文献   

8.
G.A. Chapman 《Solar physics》2002,209(1):141-152
This paper is a study of NOAA region 9144, an emerging flux region (EFR) which grew rapidly beginning 25 August 2000. This region was visible in SOHO data at 0 UT on 25 August 2000 as a small, isolated spot. It was recognizable as an active region with multiple spots by 06:00 UT on the 25th and was a fully developed AR by 24h UT on the 26th of August. Data are presented from the Michelson Doppler Imager (MDI) experiment on the Solar and Heliospheric Observatory satellite (SOHO), from Big Bear Solar Observatory (BBSO) and from the San Fernando Observatory (SFO). The MDI data are Dopplergrams, magnetograms, and continuum images. The BBSO data are high-resolution Hα filtergrams. The SFO data are Dopplergrams, magnetograms and continuum images from the Video SpectraSpectroHeliograph (VSSHG). MDI Doppler images show that during the rapid growth of this EFR during the day of 26 August, the most obvious feature in area and lifetime is a red-shifted area in the trailing part of the region. SFO Doppler images show a more complex pattern, but still dominated by red shifts in the trailing part of the region near the end of the day of 26 August.  相似文献   

9.
John R. Varsik 《Solar physics》1995,161(2):207-228
The Big Bear videomagnetograph is calibrated using three methods. Longitudinal magnetograms are calibrated by using the differences in radial velocity of the Sun caused by solar rotation, or by measuring the line profile in the Zeeman-sensitive 6103 line used by the magnetograph system. Transverse magnetograms can be calibrated by obtaining spectra in the more magnetically sensitive 5250 line which measure the total magnetic field and then subtracting the longitudinal component. The calibration of the transverse magnetograms is in agreement with that obtained by line profile measurements. Observations of an active region on 1993 March 8 with both the magnetograph system and with the BBSO spectrograph showed that good agreement was found between all three methods, provided the effect of seeing on the magnetograms is allowed for. Magnetograph saturation does not occur for magnetic fields below about 2100 G.  相似文献   

10.
Off-center vector magnetograms which use all three components of the measured field provide the maximum information content from the photospheric field and can provide the most consistent potential field independent of the viewing angle by defining the normal component of the field. The required transformations of the magnetic field vector and the geometric mapping of the observed field in the image plane into the heliographic plane have been described. Here we discuss the total transformation of specific vector magnetograms to detail the problems and procedures that one should be aware of in analyzing observational magnetograms. The effect of the 180-deg ambiguity of the observed transverse field is considered as well as the effect of curvature of the photosphere. Specific results for active regions AR 2684 (23 September, 1980) and AR 4474 (26 April, 1984) from the Marshall Space Flight Center Vector Magnetograph are described which point to the need for the heliographic projection in determining the field structure of an active region.  相似文献   

11.
Multiple recent investigations of solar magnetic-field measurements have raised claims that the scale-free (fractal) or multiscale (multifractal) parameters inferred from the studied magnetograms may help assess the eruptive potential of solar active regions, or may even help predict major flaring activity stemming from these regions. We investigate these claims here, by testing three widely used scale-free and multiscale parameters, namely, the fractal dimension, the multifractal structure function and its inertial-range exponent, and the turbulent power spectrum and its power-law index, on a comprehensive data set of 370 timeseries of active-region magnetograms (17?733 magnetograms in total) observed by SOHO’s Michelson Doppler Imager (MDI) over the entire Solar Cycle 23. We find that both flaring and non-flaring active regions exhibit significant fractality, multifractality, and non-Kolmogorov turbulence but none of the three tested parameters manages to distinguish active regions with major flares from flare-quiet ones. We also find that the multiscale parameters, but not the scale-free fractal dimension, depend sensitively on the spatial resolution and perhaps the observational characteristics of the studied magnetograms. Extending previous works, we attribute the flare-forecasting inability of fractal and multifractal parameters to i)?a?widespread multiscale complexity caused by a possible underlying self-organization in turbulent solar magnetic structures, flaring and non-flaring alike, and ii)?a?lack of correlation between the fractal properties of the photosphere and overlying layers, where solar eruptions occur. However useful for understanding solar magnetism, therefore, scale-free and multiscale measures may not be optimal tools for active-region characterization in terms of eruptive ability or, ultimately, for major solar-flare prediction.  相似文献   

12.
Huaning Wang 《Solar physics》1995,157(1-2):213-222
Longitudinal components of highly stressed magnetic fields in the active region NOAA 7640 on 26 December, 1993 have been studied. A physical parameter is suggested for describing the longitudinal components recorded in longitudinal magnetograms obtained before and after a 1N/M1.5 flare. By means of this parameter, quantitative comparisons among the pre-flare magnetograms, the post-flare magnetograms, and filtergrams (in H) have been executed. The main results are as follows: firstly, the areas with high values of the parameter are near the regions with newly emerging magnetic flux. Secondly, the maximum values of the parameter in the areas and the sizes of the areas are evidently decreased after the flare. Finally, the original bright point of the flare is near the areas and the flare kernels cover the areas when the flare is growing. According to these results, we conclude that the variation of the parameter is connected with that of highly stressed magnetic fields in the region and directly related to the flare.  相似文献   

13.
There are 4 types of evolution patterns of network magnetic fields: (1) flux cancellation, the mutual disappearance of encountering fluxes of opposite polarity, (2) flux increase by emergence of ephemeral regions, (3) flux decrease of one polarity and (4) flux increase of one polarity, without emergence of ephemeral regions.From a time sequence of magnetograms of a quiet region of 1983 October 14, the evolution of 300 network features was measured. The magnetograms have a spatial resolution of 2 to 3 arcsec and a time resolution of about 2 hr. The statistics show that the contribution to flux decrease by Type 3 is 1.28 times that by Type 1, and the contribution to flux increase by Type 4 is 7 times that by Type 2.  相似文献   

14.
Berger  T.E.  Lites  B.W. 《Solar physics》2003,213(2):213-229
Cotemporal Nii 676.8 nm full-disk magnetograms from the Michelson Doppler Interferometer (MDI) instrument on SOHO and the Advanced Stokes Polarimeter (ASP) are quantitatively compared using observations of active region AR 8218, a large negative polarity sunspot group observed at S20 W22 on 13 May 1998. MDI produces flux density estimates based on a polarized line center-of-gravity algorithm using moderate spectral resolution filtergrams with approximately 4 arc sec angular resolution. The magnetograms are formed by an on-board image processor and sent to the ground where they are calibrated using an empirical model to produce flux density maps. The ASP uses high spectral resolution Stokes polarimetric observations to produce very high precision vector magnetic field maps at angular resolution values on the order of 1 arc sec in good seeing. We use ASP inversion results to create a reference ASP `longitudinal magnetic flux density map' with which to calibrate the MDI full-disk magnetograms. The magnetograms from each instrument are scaled to a common reference frame and co-aligned with an accuracy of about 1.6 arc sec. Regions of invalid data, poor field-of-view overlap, and sunspots are masked out in order to calibrate MDI predominately on the relatively vertical `weak-field' plage magnetic elements. Pixel-to-pixel statistical comparisons are used to determine an MDI magnetogram linear calibration relative to reference ASP flux density values. We find that the current Level-1.5 MDI full-disk calibration gives flux density values lower on average by a factor of 0.64±0.013 compared to the ASP reference in active region plage. In sunspot regions (penumbra and umbra) the factor is 0.69±0.007.  相似文献   

15.
Physical understanding of total and spectral solar irradiance variation depends upon establishing a connection between the temporal variability of spatially resolved solar structures and spacecraft observations of irradiance. One difficulty in comparing models derived from different data sets is that the many ways for identifying solar features such as faculae, sunspots, quiet Sun, and various types of “network” are not necessarily consistent. To learn more about classification differences and how they affect irradiance models, feature “masks” are compared as derived from five current methods: multidimensional histogram analysis of NASA/National Solar Observatory/Kitt Peak spectromagnetograph data, statistical pattern recognition applied to SOHO/Michelson Doppler Imager photograms and magnetograms, threshold masks allowing for influence of spatial surroundings applied to NSO magnetograms, and “one-trigger” and “three-trigger” algorithms applied to California State University at Northridge Cartesian Full Disk Telescope intensity observations. In general all of the methods point to the same areas of the Sun for labeling sunspots and active-region faculae, and available time series of area measurements from the methods correlate well with each other and with solar irradiance. However, some methods include larger label sets, and there are important differences in detail, with measurements of sunspot area differing by as much as a factor of two. The methods differ substantially regarding inclusion of fine spatial scale in the feature definitions. The implications of these differences for modeling solar irradiance variation are discussed. K.L. Harvey and S.R. Walton are deseased, to whom this paper is dedicated.  相似文献   

16.
This paper analyzes the magnetic field structure of active regions at coronal heights determined by means of multi-wavelength observations of polarized radio emission in the microwave range, and compares it with the force-free magnetic field extrapolation into the corona from the photospheric magnetograms. Our method of one-dimensional radio stereoscopy indicates higher magnetic field strength compared with the field reconstructed from photospheric magnetograms. It is shown that the sense of inclinations of the field lines we obtained from the radio data matches the shape of the reconstructed magnetic field lines, although the degree of the inclinations is very different.  相似文献   

17.
During the international campaign of June 1991, the active region AR 6659 produced six very large, long-duration flares (X10/12) during its passage across the solar disk. We present the characteristics of four of them (June 4, 6, 9, 15). Precise measurements of the spot motions from Debrecen and Tokyo white-light pictures are used to understand the fragmentation of the main sunspot group with time. This fragmentation leads to a continuous restructuring of the magnetic field pattern while rapid changes are evidenced due to fast new flux emergence (magnetograms of MFSC, Huairou). The first process leads to a shearing of the field lines along which there is energy storage; the second one is the trigger which causes the release of energy by creating a complex topology. We conjecture that these two processes with different time scales are relevant to the production of flares.  相似文献   

18.
Joint vector magnetograph observations were carried out at Big Bear Solar Observatory (BBSO), Huairou Solar Observing Station (Huairou), and Mees Solar Observatory (MSO) in late September 1989. Comparisons of vector magnetograms obtained at the three stations show a high degree of consistency in the morphology of both longitudinal and transverse fields. Quantitative comparisons show the presence of noise, cross-talk between longitudinal field and transverse field, Faraday rotation and signal saturation effects in the magnetograms. We have tried to establish how the scatter in measurements from different instruments is apportioned between these sources of error.  相似文献   

19.
Contarino  L.  Romano  P.  Yurchyshyn  V.B.  Zuccarello  F. 《Solar physics》2003,216(1-2):173-188
We describe a filament destabilization which occurred on 5 May 2001 in NOAA AR 9445, before a flare event. The analysis is based on Hα data acquired by THEMIS operating in IPM mode, Hα data and magnetograms obtained at the Big Bear Solar Observatory, MDI magnetograms and 171 Å images taken by TRACE. Observations at 171 Å show that ~ 2.5 hours before the flare peak, the western part of the EUV filament channel seems to split into two parts. The bifurcation of the filament in the Hα line is observed to take place ~ 1.5 hours before the flare peak, while one thread of the filament erupts ~10 min before the peak of the flare. Our analysis of longitudinal magnetograms shows the presence of a knot of positive flux inside a region of negative polarity, which coincides with the site of filament bifurcation. We interpret this event as occurring in two steps: the first step, characterized by the appearance of a new magnetic feature and the successive reconnection in the lower atmosphere between its field lines and the field lines of the old arcade sustaining the filament, leads to a new filament channel and to the observed filament bifurcation; the second step, characterized by the eruption of part of the filament lying on the old PIL, leads to a second reconnection, occurring higher in the corona.  相似文献   

20.
Microwave maps of solar active region NOAA 8365 are used to derive the coronal magnetograms of this region. The technique is based on the fact that the circular polarization of a radio source is modified when microwaves pass through the coronal magnetic field transverse to the line of sight. The observations were taken with the Siberian Solar Radio Telescope (SSRT) on October 21 – 23 and with the Nobeyama Radio Heliograph (NoRH) on October 22 – 24, 1998. The known theory of wave mode coupling in quasi-transverse (QT) region is employed to evaluate the coronal magnetograms in the range of 10 – 30 G at the wavelength 5.2 cm and 50 – 110 G at 1.76 cm, taking the product of electron density and the scale of coronal field divergence to be constant of 1018 cm–2. The height of the QT-region is estimated from the force-free field extrapolations as 6.2 × 109 cm for the 20 G and 2.3 × 109 cm for 85 G levels. We find that on large spatial scale, the coronal magnetograms derived from the radio observations show similarity with the magnetic fields extrapolated from the photosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号