首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Sandstones occur in back-arc basins of the western Pacific at DSDP sites 299 (Sea of Japan), 297 (northern Shikoku Basin), 445 and 446 (Daito-Ridge-and-Basin Province), 453 (Mariana Trough), 286 (New Hebrides Basin) and 285 (South Fiji Basin). These sandstones are dominantly volcaniclastic arenites derived from andesitic island arcs. The degree of sandstone diagenesis is dependent on original composition, burial rate, heat flow history of the basin, and timing of sandstone deposition with respect to rifting processes and associated high heat flow.
Sandstones containing a larger proportion of volcaniclastic components showed more diagenetic effects than sandstones containing a significant volume of other rock fragments and mineral components. Sandstones deposited during early stages of rifting (sites 445, 446) with a slow burial rate and high crustal heat flow showed the greatest degree of downhole diagenetic change. These diagenetic changes include early pore-space reduction and rim cementation by clay minerals followed later by calcite, and subsequent pore-fill cementation by clinoptilolite, heulandite, analcite and later calcite. Replacement of recognizable volcanic rock fragments by chert, calcite and zeolites was observed in the deepest part of the hole. Sandstones deposited after rifting under conditions of associated lower heat flow showed considerably less diagenetic changes, particularly if burial was rapid.
The high heat flow associated with earliest rifting, associated fluid circulation driven by thermal convection, and slow burial rate controlled the diagenetic history of these sandstones. Thus, timing of sandstone deposition with rifting stage and associated burial rates were key factors in controlling sandstone diagenesis in back-arc basins.  相似文献   

2.
The stratigraphic and structural evolution of the Pattani Basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonic regime of continental Southeast Asia. E-W extension resulting from the northward collision of India with Eurasia since the Early Tertiary resulted in the formation of a series of N-S-trending sedimentary basins, which include the Pattani Basin. The sedimentary succession in the Pattani Basin is divisible into synrift and post-rift sequences. Deposition of the synrift sequence accompanied rifting and extension, with episodic block faulting and rapid subsidence. The synrift sequence comprises three stratigraphic units: (1) Upper Eocene to Lower Oligocene alluvial-fan, braidedriver, and floodplain deposits; (2) Upper Oligocene to Lower Miocene floodplain and channel deposits; and (3) a Lower Miocene regressive package consisting of marine to nonmarine sediments. Post-rift succession comprises: (1) a Lower to Middle Miocene regressive package of shallow marine sediments through floodplain and channel deposits; (2) an upper Lower Miocene transgressive sequence; and (3) an Upper Miocene to Pleistocene transgressive succession. The post-rift phase is characterized by slower subsidence and decreased sediment influx. The present-day shallow-marine condition in the Gulf of Thailand is the continuation of this latest transgressive phase.

The subsidence and thermal history of the Pattani Basin is consistent with a nonuniform lithospheric-stretching model. The amount of extension as well as surface heat flow generally increases from the margin to the basin center. The crustal stretching factor (β) varies from 1.3 at the basin margin to 2.8 in the center. The subcrustal stretching factor (5) ranges from 1.3 at the basin margin to more than 3.0 in the basin center. The stretching of the lithosphere may have extended the basement rocks by as much as 45 to 90 km and has led to passive upwelling of the aesthenosphere, resulting in high heat flow (1.9 to 2.5 Heat Flow Units [HFU]) and high geothermal gradient (45 to 60° C/km). The validity of nonuniform lithospheric stretching as a mechanism for the formation of the Pattani Basin is confirmed by the good agreement between the level of organic maturation modeled on the basis of the predicted heatflow history and measured vitrinite reflectance at various depths measured in some 30 boreholes.  相似文献   

3.
南海北部深水区新生代热演化史   总被引:2,自引:1,他引:1       下载免费PDF全文
在构造沉降史恢复的基础上确定拉张期次,再采用非瞬时非均匀多期拉张纯剪切模型恢复南海北部深水区新生代热流史,结果表明:始新世以来,南海北部深水区存在多期热流升高的加热事件。裂谷阶段盆地基底热流幕式升高,裂后阶段也并非完全处于热衰减期。琼东南盆地新生代存在56.5~32 Ma、32~16 Ma和5.3 Ma以来3期加热事件,珠江口盆地存在56.5~32 Ma和32~23.3 Ma两期加热事件。琼东南盆地深水区基底热流始新世末为56~62 mW/m2; 早中新世末上升到60~64 mW/m2; 上新世末在深断陷区最高达75mW/m2。珠江口盆地深水区基底热流始新世末升高到60 mW/m2; 渐新世末升高到70 mW/m2。深水区新生代裂谷阶段多期拉张决定了基底热流幕式升高的多期加热事件,琼东南盆地晚期加热事件与红河走滑断裂在10~5 Ma时由左旋走滑转变为右旋走滑拉张有关。  相似文献   

4.
The Songliao Basin, the largest oil-producing basin in China, was the centre of late Mesozoic rifting and lithospheric thinning in northeastern China. However, the rifts are still poorly revealed due to a thick cover of subsidence successions. By structural interpretation and sequential restoration of cross-sections based on new 2D seismic data and well data, this study presents the structural style, basin evolution, and horizontal crustal extension of the central Songliao Basin. We have developed a novel method to retrieve the regional extension principal strains. The results enable an assignment of rifting into two episodes. The earlier episode (ca. 157–130 Ma) was dominated by distributed faulting of numerous planar normal faults trending NNE–SSW, NNW–SSE, or near NS, probably reflecting pre-existing basement fabrics; in contrast, the later episode (ca. 130–102 Ma) was controlled by localized extension along several major listric faults. Horizontal crustal extension during rifting is estimated to have been 11–28 km (10.6%–25.5%), with the long-term average rate varying from 0.20 to 0.51 mm yr–1. Regional horizontal strains show a gradual evolution from biaxial extension at the beginning of rifting to WNW–ESE uniaxial stretching during the later rifting episode. Brittle crustal extension is interpreted to have been associated with vertical strain due to tectonic stretching, which is estimated to have contributed more in thinning the lower crust than the mantle lithosphere. Accordingly, a two-episode dynamic model is proposed to explain rifting in the Songliao Basin. We suggest that the earlier event was dominated by delamination of the thickened continental lithosphere, whereas the later event was probably controlled by regional crustal detachment due to slab subduction and stagnancy of the Izanagi lithospheric plate.  相似文献   

5.
The Reed Bank Basin in the southern margin of the South China Sea is considered to be a Cenozoic rifted basin. Tectono-thermal history is widely thought to be important to understand tectonics as well as oil and gas potential of basin. In order to investigate the Cenozoic tectono-thermal history of the Reed Bank Basin, we carried out thermal modeling on one drill well and 22 pseudo-wells using the multi-stage finite stretching model. Two stages of rifting during the time periods of ∼65.5–40.4 Ma and ∼40.4–28.4 Ma can be recognized from the tectonic subsidence rates, and there are two phases of heating corresponding to the rifting. The reconstructed average basal paleo-heat flow values at the end of the rifting events are ∼60 and ∼66.3 mW/m2, respectively. Following the heating periods, this basin has undergone a persistent thermal attenuation phase since ∼28.4 Ma and the basal heat flow cooled down to ∼57.8–63.5 mW/m2 at present. In combination with the radiogenic heat production of the sedimentary sequences, the surface heat flow of the Reed Bank Basin ranges from ∼60.4 to ∼69.9 mW/m2.  相似文献   

6.
The Bohai Bay Basin is a region where part of the North China Craton has been thinned and destroyed. It has experienced two periods of crustal thinning that occurred during the Cretaceous and Paleogene, but investigations of its Mesozoic and Cenozoic lithospheric thermal structure are limited. Therefore, in this study,the distributions of mantle heat flow, crustal heat flow, and Moho temperatures during the Meso-Cenozoic are calculated based on analyses of the thermal history of the Bohai Bay Basin. The results indicate that the ratio of mantle heat flow to surface heat flow peaked during the late stages of the early Cretaceous and during the middle to late Paleogene. The corresponding mantle heat flow was more than 65% of the surface heat flow. Moho temperatures reached three peaks: 900-1100℃ in the late stages of the early Cretaceous;820-900℃ in the middle to late Paleogene; and(in the Linqing Depression, Cangxian Uplift, and Jizhong Depression) 770-810℃ during the early Neogene. These results reveal that the Bohai Bay Basin experienced significant geological change during the Cretaceous, including the transformation of lithospheric thermal structure from "cold mantle and hot crust" before the Cretaceous to "hot mantle and cold crust" after the Cretaceous. The results also indicate that the basin experienced two large-scale rifting events.Therefore, this work may provide the thermal parameters for further investigations of the geodynamic evolution of eastern China.  相似文献   

7.
Tom Pedersen 《地学学报》1993,5(2):144-149
When continental rifting takes place above a hot asthenosphere, pressure-release melting of adiabatically upwelling mantle may generate large volumes of basaltic melts which subsequently are emplaced at crustal levels and cool. To correctly estimate the heat flow from tectonic subsidence and crustal thinning, it is necessary to account for the melt volumes. A simple physical model of heat flow that incorporates a crustal growth correction on lithospheric extension estimates, as well as the heat in the emplaced magma, has been developed. The principal result is that heat flow may be substantially increased for several million years after rifting, even for a moderately heated asthenosphere.  相似文献   

8.
《Tectonophysics》1999,301(1-2):61-74
In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with relatively small extension, concentrated in the western half of the Ross Sea, during Cenozoic time.  相似文献   

9.
Palaeo-heat flow values and thicknesses of eroded Permo-Carboniferous sediments in the Saar Basin were evaluated using one dimensional thermal modelling techniques. Thermal, burial and erosion histories for 16 wells were calibrated by comparing measured and calculated vitrinite reflectance using the kinetic EASY%Ro algorithm and by comparing measured and calculated temperature data. On the basis of 37 wells, coalification maps were constructed revealing a syn-kinematic coalification pattern. Thermal maturity of the sediments can only be explained by deep burial and moderate heat flows during time of maximum burial, i.e., in the Permo-Carboniferous. Calculated heat flow data range between 50 and 75 mW/m2, which implies a crustal thickness between 30 and 40 km during the time of maximum burial. These values are in accordance with the geodynamic setting of the basin. The influence of the Permo-Carboniferous volcanism on the palaeo-temperature distribution was overwhelmed by the subsequent deep burial. During Permian times, between 1800 and 3000 m of Permo-Carboniferous sediments were eroded. Different sedimentation and erosion histories are characteristic for anticlines and synclines, respectively.  相似文献   

10.
Analysis of a 1.15 km deep apatite fission track (AFT) thermochronology profile at the Underground Research Laboratory (URL), in the southwestern Canadian Shield suggests two Phanerozoic heating and cooling episodes indicating significant, previously unsuspected, Phanerozoic heat flow variations. Phanerozoic temperature and heat flow variations are temporally associated with burial and erosion of the Precambrian crystalline shield and its overlying Phanerozoic successions, which are now eroded completely. Maximum Phanerozoic temperatures occurred in the late Paleozoic when the geothermal gradient is estimated to have been ~ 40-50 °C/km (compared to a present day gradient of ~ 14 ± 2 °C/km) and the sedimentary cover was ~ 800-1100 m thick. Our thermal history models, confirm regional stratigraphic relationships that suggest that the Paleozoic succession was completely eroded prior to beginning of Mesozoic sedimentation. A second heating phase occurred during Late Cretaceous-Paleogene burial when the geothermal gradient is estimated to have been ~ 20-25 °C/km and the Mesozoic and Cenozoic succession was ~ 1200 to 1400 m thick. The Phanerozoic thermal history at the URL site shows a pattern similar to that inferred previously for the epicratonic Williston Basin, the centre of which lies several 100 km to the west. This implies a common regional thermal history for cratonic rocks underlying both the basin and the currently exposed shield. It is suggested that the morphotectonic differences between the Williston Basin and the exposed shield at the URL are due to a dissimilar thermomechanical response to a common, but more complicated than previously inferred, Phanerozoic geodynamic history. The two Phanerozoic periods of variations in geothermal gradient (heat flow) were coeval with epeirogenic movements related to the deposition and erosion of sediments. These paleogeodynamic variations are tentatively attributed to far-field effects of orogenic processes occurring at the plate margin (i.e. the Antler and the Cordilleran orogenies) and the associated accumulation of cratonic seaway sedimentary sequences (Kaskaskia and Zuni sequences).  相似文献   

11.
Apatite fission track (AFT) thermochronology has been applied to a composite depth profile of Precambrian basement rocks underlying the Phanerozoic Canadian Williston Basin. Thermal histories derived from the AFT data record cycles of heating and cooling which follow the pattern of regional burial history, but which also indicate major temporal and geographic variations in the timing and degree of maximum Phanerozoic temperatures. These variations in the thermal history were not previously recognised from organic maturity indicators and subsidence models. Specifically, our study suggests a late Paleozoic heat flow anomaly with a geographic extent closer to that of Middle Devonian–Carboniferous Kaskaskia subsidence patterns than to that of the Williston Basin proper. This thermal anomaly has both economic and geodynamic significance. The recognition that potential Upper Cambrian–Lower Ordovician petroleum source rocks became fully mature during the late Paleozoic distinguishes that petroleum system from others that entered the main hydrocarbon generation stage in latest Cretaceous and Paleogene time. The late Paleozoic heat flow anomaly suggested from the AFT data implies a geodynamic coupling between inelastic Kaskaskia subsidence and previously inferred late Paleozoic lithospheric weakening. While the temporally varying heat flow model is preferred, the lack of independent constraints on the maximum thickness of upper Paleozoic strata precludes the outright rejection of the previous constant heat flow model. The AFT data provide important new constraints on the evolution of the epicratonic Williston Basin and its geodynamic models.  相似文献   

12.
The Upper Carboniferous, coal-bearing sequence of the Intrasudetic Basin (SW Poland) includes coals ranging from high-volatile bituminous to anthracitic rank. The lowest values of reflectance are recorded around the basin margins (0.6% R0 max), the highest ones appear in the center of the basin (exceeding 4% R0 max). Reflectance gradients are very high, reaching 0.6%/100 m in the centre of the basin.A comparison of the isoreflectance maps for three lithostratigraphical units—the Walbrzych, Bialy Kamien and Zacler Formations, with the present-day burial depth and the depth of burial during the Westphalian B/C—indicates that there is a strong relationship between reflectance and the sediment cover during the Westphalian B/C, particularly in the vicinity of Walbrzych and Lubawka. This suggests that the increase in coal rank is related to the increase in cover which permitted the temperature to build-up to high values.In the eastern and central parts of the basin and the Nowa Ruda area, higher reflectance than that derived from burial depth is observed which is believed to result from higher heat flow from the basement. The volcanic rocks of the Intrasudetic Basin appear to have little effect on coal rank and are not considered to be a significant contributor to the heat flow of the region.During coalification, the oldest Westphalian coal seams were buried to about 700 m and the youngest seams of the Walbrzych Formation to 900 m. Around the basin margins the coals had reached their present-day rank by the Westphalian B/C and in the central part probably by the end of the Stephanian. Most effective coalification took place during the Westphalian A,B occupying a period of less than 20 million years. The coalification temperature is calculated to be 160–170°C with a geothermal gradient of 8–10°C/100 m. These geothermal conditions support the suggestion of a volcanic origin for the Intrasudetic Basin.  相似文献   

13.
Hot dry rock (HDR) is an important geothermal resource and clean energy source that may play an increasingly important role in future energy management. High-temperature HDR resources were recently detected in deep regions of the Gonghe Basin on the northeastern edge of the Tibetan Plateau, which led to a significant breakthrough in HDR resource exploration in China. This research analyzes the deep temperature distribution, radiogenic heat production, heat flow, and crustal thermal structure in the Qiaboqia Valley, Guide Plain, and Zhacanggou area of the Gonghe Basin based on geothermal exploration borehole logging data, rock thermophysical properties, and regional geophysical exploration data. The results are applied to discuss the heat accumulation mechanism of the HDR resources in the Gonghe Basin. The findings suggest that a low-velocity layer in the thickened crust of the Tibetan Plateau provides the most important source of constant intracrustal heat for the formation of HDR resources in the Gonghe Basin, whereas crustal thickening redistributes the concentrated layer of radioactive elements, which compensates for the relatively low heat production of the basal granite and serves as an important supplement to the heat of the HDR resources. The negative effect is that the downward curvature of the lithospheric upper mantle caused by crustal thickening leads to a small mantle heat flow component. As a result, the heat flows in the Qiaboqia Valley and Guide Plain of the Gonghe Basin are 106.2 and 77.6 mW/m2, respectively, in which the crust-mantle heat flow ratio of the former is 3.12:1, indicating a notably anomalous intracrustal thermal structure. In contrast, the crust-mantle heat flow ratio in the Guide Plain is 1.84:1, which reflects a typical hot crust-cold mantle thermal structure. The Guide Plain and Zhacanggou area show the same increasing temperature trend with depth, which reflects that their geothermal backgrounds and deep high-temperature environments are similar. These results provide important insight on the heat source mechanism of HDR resource formation in the Tibetan Plateau and useful guidance for future HDR resource exploration projects and target sites selection in similar areas.  相似文献   

14.
The Cauvery–Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India–Sri Lanka–East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-to-offshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery–Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusive rocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ~36 km thick and thins down to as much as 13–16 km in the Ocean Continent Transition (OCT) region and increases to around 19–21 km towards deep oceanic areas of the basin. The faulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India–Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.  相似文献   

15.
This study investigates the rifting structures of Santos Basin at the Southeastern Brazilian margin, based on an integrated geophysical approach. Our aim is to constrain the crustal basement topography of central and northern Santos basin, the presence of magmatism and the role of inherited structures in space and time through the rifting processes. We present a new high resolution aeromagnetic dataset, which in correlation with gravity anomalies enables us to interpret the tectonic trends and crustal basement structures. We calculated the magnetic basement depth for the central and northern Santos Basin using power spectrum analysis. The obtained depths range between 2 and 9 kms, and are comparable with results from previous works. From our integrated study, three margin domains could be identified, which display distinct rifting structures and are characterized by important lateral variation along the margin. The proximal domain displays trends and magnetic basement blocks NE–SW oriented, i.e., parallel to inherited onshore crustal basement with an inflexion to E–W oriented trends; the necking domain is characterized by oblique magnetic basement highs and lows (E–W and NW–SE) and a structural trend change. The trends and magnetic basement highs are bounded by NW–SE negative anomalies, interpreted as transfer zones. Oceanwards at the distal domain, the lineaments and transfer zones show a progressive structural inflexion to ENE and E–W, sub-parallel to adjacent South Atlantic Fracture Zones. The observed crustal basement architecture and segmentation suggest the reactivation of pre-rift structures at the proximal margin and the obliquity of rifting relative to them. From the proximal domain oceanwards the structural pattern may reflect the passage from a “continental type” domain, where lithospheric inheritance controls the deformation, to a distal margin where this influence diminishes and “new” structural trends are formed. We propose that northern Santos Basin show evidences of an intensely deformed zone, where rift evolved under oblique extension, similar to that observed at transform margin segments.  相似文献   

16.
This paper describes an approach for verifying thermal maturity data in a large historical dataset from the Canadian Arctic Islands. A compilation of more than 6000 maturity measurements (vitrinite reflectance and Rock-Eval Tmax) collected over the span of three decades involved a rigorous assessment of data quality. Some common anomalies in interpreting thermal maturity dataset include: (i) elevated thermal maturity due to Cretaceous igneous intrusion in the region, (ii) reworking of refractory material from older rocks into younger strata during the Triassic period, (iii) suppression of vitrinite reflectance and Tmax in hydrogen-rich samples, (iv) low maturity values due to cross-contamination by the younger sediments during drilling process (caving), and (v) offset maturity values obtained from different maturity measurements. The study discusses various independent checks to verify the obtained maturity parameters. The comparison between thermal maturity data with the sonic velocity of shale resulted in a satisfactory correlation. While such a correlation may vary in different sedimentary basins, it produces a useful independent assessment of thermal maturity. The results indicate that increased heat flow during the Jurassic–Early Cretaceous rifting of the Canada Basin may have caused the elevated maturity beyond the expected burial level as suggested by the discrepancy between thermal maturity and sonic velocity data. Given the fact that vitrinite reflectance records only the maximum temperature to which the enclosing rocks were exposed, deviation of the collected reflectance values from the current depth of burial serves as an indicator for the amount of geological uplift.  相似文献   

17.
Following Appalachian orogenesis, metamorphic rocks in central Newfoundland were exhumed and reburied under Tournaisian strata. New zircon fission‐track (ZFT) ages of metamorphic rocks below the Tournaisian unconformity yield post‐depositionally reset ages of 212–235 Ma indicating regional fluid‐absent reheating to at least ≥220°C. Post‐Tournaisian sedimentary thicknesses in surrounding basins show that burial alone cannot explain such temperatures, thus requiring that palaeo‐geothermal gradients increased to ≥30–40°C/km before final late Triassic accelerated cooling. We attribute these elevated palaeo‐geothermal gradients to localized thermal blanketing by insulating sediments overlying radiogenic high‐heat‐producing granitoids. Late Triassic rifting and magmatism before break up of Pangaea likely also contributed to elevated heat flow, as well as uplift, triggering late Triassic accelerated cooling and exhumation. Thermochronological ages of 240–200 Ma are seen throughout Atlantic Canada, and record rifting and basaltic magmatism on the conjugate margins of the Central Atlantic Ocean preceding the onset of oceanic spreading at ~190 Ma.  相似文献   

18.
Basic concepts of structural restoration are applied to crustal cross-sections through mountain belts to explore large-scale tectonic models and deep structure. However, restored sections should account for variations in pre-orogenic crustal thicknesses. Crustal balancing approaches are reviewed and applied to two Alpine sections, coinciding with deep seismic experiments: NRP-20 East (Central Alps) and ECORS-CROP (Western Alps). Existing studies assume large (>300 km) orogenic contraction and only moderately thinned pre-orogenic crust. The resulting restored sections contain more crust than is imaged beneath the present-day Alps, the missing crust generally assumed to be subducted. Two kinematic modifications reduce the requirement for subduction: thinning and buoyancy-driven return flow of ultra-high-pressure metamorphic rocks during orogenesis; and pre-orogenic hyperextension. Using large stretching factors for the pre-orogenic crust negates crustal subduction on both Alpine transects. If the lower crust was approximately rigid, restorations of the Central Alps require strongly depth-heterogeneous stretching of upper and lower crust during Mesozoic rifting. Relaxing this requirement allows uniform lithospheric stretching, a corollary consistent with published subsidence estimates. Restorations make implicit statements on the form of pre-orogenic basins and the structure of continental margins incorporated into mountain belts that can in turn provide tests of tectonic models.  相似文献   

19.
The Hvalfjördur area, 30 km north of Iceland’s capital Reykjavik, belongs to the sequence of Late Tertiary to early Quaternary flood basalts with minor intercalations of hyaloclastites and rhyolites. The basalts are affected by progressive low-temperature metamorphism, caused by the burial of the lava succession and higher heat flow from nearby central volcanoes. Low-grade zeolite facies metamorphism of basaltic lavas in the Hvalfjördur area results in two distinct mineral parageneses that can be correlated to events in the burial and hydrothermal history of the lava pile. Stage Ia represents syn-eruptive near-surface alteration in which celadonite and silica were precipitated along primary pores. During regional burial metamorphism (stage Ib), hydrolysis of olivine and glass led to the formation of mixed-layer chlorite/smectite clays. The chlorite content of stage Ib phyllosilicate vesicle rims increases with increasing burial depth and temperature. Stage II occurred after the burial and is marked by zeolite mineralization caused by higher heat flow from the Laxárvogur and Hvalfjördur central volcanoes. Altogether 11 different zeolites were found in the Hvalfjördur area: analcime, chabazite, epistilbite, heulandite, laumontite, levyne, mesolite, stilbite, stellerite, thomsonite and yugawaralite. In total, three separate depth and temperature-controlled “zeolite zones” occur in the Hvalfjördur area.  相似文献   

20.
ABSTRACT

The relationships in ocean depth and heat flow with crustal age place valuable constraints on the thermal evolution of the oceanic lithosphere. This work aims to establish the relationships for the V-shaped Southwest Subbasin, the southwestern end of the South China Sea formed during 23.6–16 Ma. Using high-resolution multichannel seismic profiles and heat flow measurements, we calculate sediment-corrected topography and heat flow, which are then plotted against crustal age to establish their relationships. The results show that the post-spreading volcanism in the South China Sea influences less on the present-day heat flow than topography. In addition, the topography data are evidently deeper and heat flow data are much lower in the Southeast Asian marginal seas than other oceans. Previous explanation suggested that the abnormal features resulted from lateral heat loss, which would predict a deeper lithosphere–asthenosphere boundary and a high slope in topography and heat flow with age, contrary to the observations. Possible explanations for the abnormal features of the Southeast Asian marginal seas include (1) lack of long-time upwelling magma at the onset of spreading, and (2) reduced magma supply during the seafloor spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号