首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We collected, processed, identified, and analyzed the spores and pollen samples from the Zhuanchengzi Bed of the Yixian Formation in the Yingwoshan area of western Liaoning. As a result, we confirm a palynomorph assemblage of Cicatricosisporites-Protoconiferus. The pollen was primarily from gymnosperms, dominated especially by conifer pollen. Pteridophyte spores were less common and some questionable angiosperm pollen occurred occasionally. The age of the palynomorph assemblage is dated as the late Valanginian or Hauterivian-Barremian stage, the Early Cretaceous. The study applies the concept of Palynological Vegetation based on palynological spectra and the paleoecological characteristics of palynological taxa for the first time. Palynological vegetation type, climatic zone type, and humidity type are divided quantitatively for the Zhuanchengzi Bed in the Yixian Formation of western Liaoning. We then obtained the evolutionary trends. The results showed that the overall climate was warm and humid during the deposition period of the Zhuanchengzi Bed in the Yixian Formation. Palynological vegetation types are various and include coniferous forest, deciduous broadleaf forest, evergreen broad-leaved forest, grass, and shrubs. The local temperature changed from warm to much warmer and from a semi-humid to humid climate. Palynological vegetation types are always dominated by coniferous forest. The coexistence of deciduous broad-leaved forest, evergreen broad-leaved forest, shrubs, grass, and some xerophytic plants indicates vertical zonation and seasonal climate change The vertical vegetation types and the warm humid climate may imply a large geomorphological contrast in the Yixian Formation of western Liaoning.  相似文献   

2.
Reconstructing the spatial patterns of regional climate and vegetation during specific intervals in the past is important for assessing the possible responses of the ecological environment under future global warming scenarios. In this study, we reconstructed the history of regional vegetation and climate based on six radiocarbon-dated pollen records from the North China Plain. Combining the results with existing pollen records, we reconstruct the paleoenvironment of the North China Plain during the Last Glacial Maximum(LGM) and the Holocene Climatic Optimum(HCO). The results show that changes in the regional vegetation since the LGM were primarily determined by climatic conditions, the geomorphic landscape and by human activity.During the LGM, the climate was cold and dry; mixed broadleaf-coniferous forest and deciduous-evergreen broadleaf forest developed in the southern mountains, and cold-resistant coniferous forest and mixed broadleaf-coniferous forest were present in the northern mountains. The forest cover was relatively low, with mesophytic and hygrophilous meadow occupying the southern part of the plain, and temperate grassland and desert steppe were distributed in the north; Chenopodiaceae-dominated halophytes grew on the exposed continental shelf of the Bohai Sea and Yellow Sea. During the HCO, the climate was warm and wet;deciduous broadleaf forest and deciduous-evergreen broadleaf forest, with subtropical species, developed in the southern mountains, and deciduous broadleaf forest with thermophilic species was present in northern mountains. Although the degree of forest cover was greater than during the LGM, the vegetation of the plain area was still dominated by herbs, while halophytes had migrated inland due to sea level rise. In addition, the expansion of human activities, especially the intensification of cultivation,had a significant influence on the natural vegetation. Our results provide data and a scientific basis for paleoclimate modelling and regional carbon cycle assessment in north China, with implications for predicting changes in the ecological environment under future global warming scenarios.  相似文献   

3.
L&#;  Houyuan  Wang  Sumin  Wu  Naiqin  Tong  Guobang  Yang  Xiangdong  Sheng  Caiming  Li  Shijie  Zhu  Liping  Wang  Luo 《中国科学:地球科学(英文版)》2001,44(1):292-300

A new pollen record from the lake of Co Ngoin in the central Tibetan Plateau provides information on the vegetation and climate changes during the last 2.8 Ma. Seven major significant changes in pollen associations indicate the processes of vegetation change and possible tectonic uplifts. The seven changes in vegetation succession include a temperate montane conifer and broad-leaved mixed forest, cold temperate montane dark conifer forest, alpine shrub-meadow and alpine desert, montane dark coniferous forest and alpine shrub meadow, montane dark coniferous forest and alpine shrub meadow, montane dark coniferous forest and alpine meadow, and alpine desert and meadow. The pollen record provides the evidence of at least five times tectonic uplifts occurring at about 2.58 Ma, 1.87 Ma, 1.17 Ma, 0.83 Ma, and 0.3 Ma ago, respectively. Before 0.8 Ma, this region maintained the altitude below 4000 m a.s.l. Larger amplitude of uplift occurring at about 0.8 Ma ago enforced the plateau rising into cryosphere, shaping the basic topographic pattern of modern plateau. The major successions in vegetation of this area were largely controlled by stepwise uplift of the Tibetan Plateau.

  相似文献   

4.
Continental differences in the variability of annual runoff were investigated using an expanded and improved database to that used in previous work. A statistical analysis of the data, divided by continent and Köppen climate type, revealed that continental differences exist in the variability of annual runoff. The variability of annual runoff for temperate Australia, arid southern Africa and possibly temperate southern Africa were noted to be generally higher than that of other continents with data in the same climate type. A statistical analysis of annual precipitation by continent and Köppen climate type revealed that differences in the variability of annual precipitation could account for some but not all the observed differences in the variability of annual runoff. A literature review of potential causes of continental differences in evapotranspiration resulted in the hypothesis that the significantly higher variability of annual runoff in temperate Australia and possibly temperate southern Africa may be due to the distribution of evergreen and deciduous vegetation. The process model Macaque was used to test this hypothesis. The model results indicate that the variability of annual runoff may be between 1 and 99% higher for catchments covered in evergreen vegetation as opposed to deciduous vegetation, depending on mean annual precipitation and the seasonality of precipitation. It is suggested that the observed continental differences in the variability of annual runoff are largely caused by continental differences in the variability of annual precipitation and in temperate regions the distribution of evergreen and deciduous vegetation in conjunction with the distribution of mean annual precipitation and precipitation seasonality.  相似文献   

5.
The belowground part of terrestrial ecosystem is a huge carbon pool. It is believed that of the total 2500Gt carbon stored in global terrestrial ecosystem, soil carbon storage within the 1 m surface layer ac- counts for 2000Gt, which is 4-fold of vegetation car- bon storage[1,2]. Compared with the carbon in the vegetation, carbon in the deep soil layers is much more stable, and it will stay in soil profile permanentlyunless geological vicissitude occurs. Essentially, forest restoration is the…  相似文献   

6.
Advances in carbon flux observation and research in Asia   总被引:7,自引:0,他引:7  
As an important component of FLUXNET, Asia is increasingly becoming the hotspot in global carbon research for its vast territory, complex climate type and vegetation diversity. The present three regional flux observation networks in Asia (i.e. AsiaFlux, KoFlux and ChinaFLUX)have 54 flux observation sites altogether, covering tropic rainforest, evergreen broad-leaved forest, broad-leaved and coniferous mixed forest, shrubland, grassland, alpine meadow and cropland ecosystems with a latitudinal distribution from 2°N to 63°N. Long-term and continuous fluxes of carbon dioxide, water vapor and energy between the biosphere and atmosphere are mainly measured with eddy covariance technique to (1) quantify and compare the carbon, water and energy budgets across diverse ecosystems; (2) quantify the environmental and biotic controlling mechanism on ecosystem carbon, water and energy fluxes; (3) validate the soil-vegetation-atmosphere model; and (4) serve the integrated study of terrestrial ecosystem carbon and water cycle. Over the last decades, great advancements have been made in the theory and technology of flux measurement, ecosystem flux patterns, simulation and scale conversion by Asian flux community. The establishment of ChinaFLUX has greatly filled the gap of flux observation and research in Eurasia. To further promote the flux measurement and research,accelerate data sharing and improve the data quality, it is necessary to present a methodological system of flux estimation and evaluation over complex terrain and to develop the integrated research that combines the flux measurement, stable isotope measurement, remote sensing observation and GIS technique. It also requires the establishment of the Joint Committee of Asian Flux Network in the Asia-Pacific region in order to promote the cooperation and communication of ideas and data by supporting project scientists, workshops and visiting scientists.  相似文献   

7.
Abundant palynological fossils are found from the drill core in the west slope of Songliao Basin, the first full coring borehole that drilled throughout the Neogene. Two Palynological assemblages are recognized according to their vertical distributions, i.e., the late early Miocene–middle Miocene assemblage from the Da'an Formation named as Caryapollenites simplex-Momipites coryloides-Celtispollenites sp.-Tsugaepollenites igniculus, and the late Miocene-early Pliocene assemblage from the Taikang Formation named as Artemisiaepollenites minor-Betulaceoipollenites sp.-Carpinipites sp.-Polypodiaceaesporites sp. On the basis of the composition of each assemblage, we infer that the climate was warm-temperate to sub-tropic during the late early Miocene–middle Miocene and the vegetation was mainly deciduous broadleaved forest and subordinate coniferous and broad-leaved mixed forest with few understory ferns, and probably some shallow fresh water wetlands. The climate then turned cooler and drier in the late Miocene–early Pliocene, represented by the development of xerophytic herbs and temperate plants, although the canopy of the forest remained relatively stable. The results significantly improve the understanding of the Cenozoic palynostratigraphy in the Songliao Basin, and provide new data for both stratigraphical correlation and paleovegetational and paleoclimatical analysis in adjacent area.  相似文献   

8.
通过对“中国大陆环境钻探计划”首钻——云南鹤庆深钻前155 m约800 ka以来的岩芯进行孢粉研究,探讨了云南鹤庆盆地中更新世以来的植被演替与古气候变迁.研究表明鹤庆盆地周围山地的植被在约800 kaBP至6.98 kaBP之间经历了以松为主的针叶林、山地针阔叶混交林、寒温性针叶林的多次相互演替;从6.98 kaBP开始,植被发生了转折性变化,森林植被迅速退化,以草本为主,此时开始受到人类活动的影响,人类活动表现在砍伐森林和种植农作物等方面.与植被演替相应的古气候可划分为五个大的阶段,包含多次冷暖、干湿旋回.  相似文献   

9.
ABSTRACT

Hydrological processes in hilly watersheds are significantly affected by variations in elevation; however, the hydrological functions of different vertical vegetation belts, have rarely been reported. The distributed hydrological model WEP-L (Water and Energy transfer Process in Large river basins) was applied to analyse vertical variations in the hydrological processes of Qingshui River basin (QRB), Wutai Mountain (altitude: 3058 m a.s.l.), China. The results show that the highest ratio of evapotranspiration to precipitation occurs at 1800 m a.s.l. Below 1800 m, evapotranspiration is mainly controlled by precipitation, and in regions above1800 m it is controlled by energy. The runoff coefficients for different vertical vegetation belts may be ranked as follows: farmland > grassland > subalpine meadow > evergreen coniferous shrub forest > deciduous broad-leaved forest. Grassland is the largest runoff production area, contributing approximately 39.10% to the annual water yield of the QRB. The runoff from forested land decreased to a greater extent than the grassland runoff. Increasing forest cover may increase evapotranspiration and reduce runoff. These results are important, not only for further understanding of the hydrological mechanisms in this basin, but also for implementing the sustainable management of water resources and ecosystems in other mountainous regions.  相似文献   

10.
According to widely held belief, annual evapotranspiration (ET) for broadleaf forests is less than that for coniferous forests, resulting in higher annual runoff for broadleaf forests. We processed 82 catchment runoff and 126 interception loss data from temperate regions and found that although the belief is valid under conditions of broadleaf deciduous forests and high winter precipitation (e.g. the United States), it is invalid under conditions of broadleaf evergreen forests (e.g. New Zealand) or low winter precipitation (e.g. Japan). Thus, forest management policies based on this belief should be reconsidered on the basis of our results for regions with broadleaf evergreen forests or low winter precipitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   

12.
The clay mineralogy of Tulare Lake sediment was examined to investigate hydroclimatic and environmental changes in the southern Sierra Nevada Mountains (SNM) since the most recent glacial maximum. Evolution of clay mineral assemblages elucidates significant changes in weathering, erosion, and hydroclimatic condition in the catchment. During the last glacial period (24.4–15.1 cal ka BP), low illite content implies less physical erosion of the granitic batholith rocks and a cold and arid environment in the southern SNM. Abrupt increases of illite content at 21.8–20.8 and 17.6 cal ka BP resulted from the glacier advances to the ablation zone and illite-rich glacier flour was transported down to the lake. The gradual increase of smectite induced by progressive depletion of illite-rich glacier flour from 17.6 cal ka BP toward the end of this period indicates climate was beginning to get warm and wet. From 11.9 to 5.3 cal ka BP, two warm and wet periods (10.7–9.4 and 8.2–5.2 cal ka BP) were characterized by high smectite/illite content ratios and low illite crystallinity values, suggesting intensive rainfall precipitation and more physical erosion in the highland and lowland catchment as well as more smectite formation in the terrace soils. Since the last glacial period, physical erosion, in comparison to the chemical weathering, was the dominant process responding to the hydroclimatic change in the Tulare Lake catchment. Moderate to weak chemical weathering was signified by the mostly low illite chemical weathering index of the core sediments. Such results suggest that vegetation cover in the southern SNM was low and limited.  相似文献   

13.
We present the carbon isotopic composition of the total organic carbon (TOC) and fine roots in the sedimentary profile from the underground ancient forest in Sihui to study the climatic and environmental changes from 4.5 ka BP to 0.6 ka BP. Results show that C3 plant was the main vegetation from 4.5 ka BP to 0.6 ka BP in this region. The ancient forest began to develop in the wetland at around 4 ka BP and disappeared together with the wetland at about 3.0 ka BP, implying that the climate had changed greatly at around 3.0 ka BP. As indicated by the simulation results, the content of atmospheric CO2 increased slightly during 3.5 ka BP to 3.0 ka BP, implying climate warming during that period. The interval of radiocarbon age between 3.0 ka BP to 1.2 ka BP was possibly caused by the strong erosion when the block was lifted in the neotectonic movement. From 1.2 ka BP to 0.6 ka BP, the region remained in terrestrial sedimentary environment, and the surface plant biomass declined gradually. Drought caused by the climate change was the likely cause for the disappearance of the ancient forest. South transition of Intertropical Convergence Zone (ITCZ) was probably the main mechanism for the climate change. Supported by National Natural Science Foundation of China (Grant Nos. 40231015 and 40473002), National Basic Research Program of China (Grant No. 2005CB422004), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KSCX2-SW-133) and Open Funds of State Key Laboratory of Organic Geochemistry (Grant No. OGL-200607)  相似文献   

14.
Anthropogenic global warming might cause expansion of the drylands and trigger socio-economic challenges in the water-deficit subtropical regions. Changes in hydroclimate during the intervals of variable global temperature over the recent geological past, however, could provide useful information about the possible responses of these arid ecosystems to the near future warmer conditions. We evaluated hydroclimates of two different parts of subtropical North America by generating new records of surface processes and regional vegetation from drought-prone northeast Mexico and subsequently compared them with the paleoclimate of the central-southern United States. Our study suggests that congruent changes occurred in both parts during ~13.5–9.5 cal ka BP, an interval with no warm pool in the northern Gulf of Mexico. The precipitation and erosion responded to temperature-modulated variations in positions of the Inter-Tropical Convergence Zone (ITCZ). Conditions were wetter than today in the subsequent warmer interval (~9.5–8.2 cal ka BP) with generally stable ITCZ and the highest summer insolation. Hydroclimate changes of both parts lacked congruency during ~8.2–6.8 cal ka BP as the northern Gulf of Mexico began hosting a warm pool. Similar to the modern conditions, this warm pool might have modified trajectories of the tropical storms. Erosion and abundance of C3 plants decreased in northeast Mexico. Higher wetness in the Mississippi River Basin and the southern Great Plains during this interval suggested that the storms made landfall more frequently in the central-southern United States. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
China's Loess Plateau was formed under special conditions. The tectonic movement, topographical characteristics, and monsoon patterns combined to create a favourable environment for the accumulation of thick loessic deposits. The Loess Plateau itself is part of the ‘Monsoon Triangle’ of China, a region very susceptible to climatic changes. Throughout the Upper Pleistocene the palaeoenvironment on the Loess Plateau alternated from steppe, to deciduous forest and coniferous forest, in response to shifts in the atmospheric circulation. Three monsoon patterns appear to be indicated: (1) a full glacial monsoon pattern (18000–15000 yr BP) which induced a cold and dry climate favouring loess accumulation in steppe conditions; (2) an interglacial monsoon pattern (last interglacial and Holocene) in which a warm humid climate prevailed with deciduous forests, leaving palaeosols interbedded within the loess sequence; and (3) a transitional or interstadial monsoon pattern (50 000–23 000 yr BP) in which the climate was cold and humid in the Loess Plateau, encouraging the development of coniferous forest.  相似文献   

16.
The East Asian monsoon Holocene optimal period has been debated both about duration and whether conditions were a maximum in thermal conditions or in precipitation. In this study we show Holocene climate variability inferred by a forest reconstruction of a subalpine pollen sequence from peat bog deposits in central Taiwan, based on modern analogues of various altitudinal biomes in the region. A warmer interval occurred between 8 and 4 ka BP (calibrated 14C years) when the subtropical forests were more extensive. The Holocene thermal optimum is represented by an altitudinal tropical forest at 6.1–5.9 ka BP and 6.9 ka BP and only the latter was accompanied by wet conditions, indicating decoupling of thermal and precipitation mechanism in the middle Holocene. Abrupt and relative severe cold phases, shown by biome changes, occurred at about 11.2–11.0 ka BP; 7.5 ka BP; 7.2 ka BP; 7.1 ka BP; 5.2 ka BP, 5.0 ka BP and 4.9 ka BP. A spectral analysis of pollen of a relatively cold taxon — Salix, reveals that the time series is dominated by a 1500 yr periodicity and similar to the cold cycle reported in the marine records of Indian and western Pacific Oceans. The cold–warm conditions inferred by the change of forests show close relationship to solar energy in comparison with the production rate of Be-10.  相似文献   

17.
固城湖晚全新世以来的孢粉组合及环境变迁   总被引:8,自引:0,他引:8  
羊向东  王苏民  吉磊  沈吉  马燕 《湖泊科学》1994,6(3):233-239
本文依据固城湖GD钻孔系统的孢粉分析资料,将井深6.3m岩心所做的孢粉图式,结合~(14)C测年,从下面上分为8个孢粉组合带,进而论述了4000年来该区的植被发展和气候的4次冷暖交替的变化。4次冷期约为3.0—2.5KaB.P.2.0—1.5KaB.P.、1.0—0.8KaB.P.和0.4Ka以来。此外,还根据沉积物中的硅藻分析、有机质δ~(13)C值、有机碳含量及历史记载等资料,侧重讨论了气候及人类活动对湖泊环境演变的影响。  相似文献   

18.
The response of local forest ecosystems to changes in summer soil moisture content in the context of possible climate changes. A procedure for local hydrological forecasting is presented. Calculations based on prediction climate models GISS and HadCM3 for forest ecosystems on zonal ecotones between forest and steppe showed a progressive development in the XXI century of a thermoarid trend with pronounced soil drying during the vegetation period, which should result in decay of broad-leaved and mixed forests and their replacement by small-leaved-pine and oak-grove forest-steppe.  相似文献   

19.
During the late Pleistocene, a number of climatic fluctuations such as the Heinrich events were recorded in the climatic proxies in the Loess Plateau and in North China[1―7]. Most of these records were based on geophysical and geochemical evidence[1―4]. Therefore, more biologic evidence is necessary for explaining the regional ecosystems in response to climatic change in the Loess Plateau during this period since pollen re-cords in other areas presented strong evidence to cli-matic fluctu…  相似文献   

20.
Based on weathering characteristics of the fifth palaeosol layer (S5) of four sections in Guanzhong Plain, the thickness of the weathered profile of the paleosol is determined to be greater than the ordi- nary soil, a weathered and leached loess layer thicker than 2 m. The distribution depth of the red argil- lans, the weathered and leached loess layer, Fe2O3, CaCO3 and Sr content under the S5 all indicate that the precipitation in Guanzhong Plain was over 900 mm at that time. The distribution depth of gravity water zone reached 4.2 m at least, and the soil moisture content was generally more than 20% within the range of 4.2 m. At that time there was sufficient soil moisture and no dried earth layer developed in Guanzhong Plain, suitable for the forest to develop. When this soil developed, the mean annual pre- cipitation was more than the annual soil moisture evaporation. The value of soil moisture balance was positive and the atmospheric precipitation could supply the underground water normally. Soil water was weak acidic in the middle and late stages when S5 developed in Guanzhong Plain. It was a kind of subtropical climate and even more humid and warmer than the northern edge of the subtropical climate zone in Guanzhong Plain when the S5 developed. At that time the subtropical climate was prevailing over the northern side and southern side of Qingling Mountains, showing the Mountains no longer to be the boundary between the subtropical zone and the temperate zone in China. The summer monsoon acted intensely and could go over Qingling Mountains frequently bring abundant precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号