首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper aims to study the dynamics of spherical star having anisotropic pressure, heat dissipation and shear viscosity with radial four-velocity. We formulate the field equations, equations of motion and equations for the Weyl tensor to study the inhomogeneity factor of the tilted congruence. An evolution equation for the shear is established to explore the stability of the non-tilted congruence. We conclude that the non-tilted congruence is stable for shear-free case.  相似文献   

2.
In this paper, we concentrate on the analysis of the anisotropic Rankine-Hugoniot equations for perpendicular and oblique fast shocks. In particular, as additional information to the anisotropic set of equations, the threshold conditions of the fire-hose and mirror instability are used to bound the range of the pressure anisotropy downstream of the discontinuity. These anisotropic threshold conditions of the plasma instabilities are obtained via a kinetic approach using a generalized Lorentzian distribution function, the so-called kappa distribution function. Depending on up-stream conditions, these instabilities further define stable and unstable regions with regard to the pressure anisotropy downstream of the shock. The calculations are done for different upstream Alfvén Mach numbers. We found that low values of the parameter kappa reduce the pressure anisotropy downstream of the shock.  相似文献   

3.
The linear self-gravitational instability of finitely conducting, magnetized viscoelastic fluid is investigated using the modified generalized hydrodynamic (GH) model. A general dispersion relation is obtained with the help of linearized perturbation equations using the normal mode analysis and it is discussed for longitudinal and transverse modes of propagation. In longitudinal propagation, we find that Alfven mode is uncoupled with the gravitating mode. The Jeans criterion of instability is determined which depends upon shear viscosity and bulk viscosity while it is independent of magnetic field. The viscoelastic effects modify the fundamental Jeans criterion of gravitational instability. In transverse mode of propagation, the Alfven mode couples with the acoustic mode, compressional viscoelastic mode and gravitating mode. The growth rate of Jeans instability is compared in weakly coupled plasma (WCP) and strongly coupled plasma (SCP) which is larger for SCP in both the modes of propagations. The presence of finite electrical resistivity removes the effect of magnetic field in the condition of Jeans instability and expression of critical Jeans wavenumber. It is found that Mach number and shear viscosity has stabilizing while finite electrical resistivity has destabilizing influence on the growth rate of Jeans instability.  相似文献   

4.
In this work we present new solutions of Einstein's equations assuming a spherically symmetric anisotropic fluid with shear in comoving coordinates. We study two limit cases: when the tangential pressure vanishes and when the radial pressure vanishes. The new solutions are based on the Tolman's solutions.  相似文献   

5.
Irregular structure in planetary rings is often attributed to the intrinsic instabilities of a homogeneous state undergoing Keplerian shear. Previously these have been analysed with simple hydrodynamic models. We instead employ a kinetic theory, in which we solve the linearised moment equations derived in Shu and Stewart 1985 for a dilute ring. This facilitates an examination of velocity anisotropy and non-Newtonian stress, and their effects on the viscous and viscous/gravitational instabilities thought to occur in Saturn's rings. Because we adopt a dilute gas model, the applicability of our results to the actual dense rings of Saturn are significantly curtailled. Nevertheless this study is a necessary preliminary before an attack on the difficult problem of dense ring dynamics. We find the Shu and Stewart formalism admits analytic stability criteria for the viscous overstability, viscous instability, and thermal instability. These criteria are compared with those of a hydrodynamic model incorporating the effective viscosity and cooling function computed from the kinetic steady state. We find the two agree in the ‘hydrodynamic limit’ (i.e., many collisions per orbit) but disagree when collisions are less frequent, when we expect the viscous stress to be increasingly non-Newtonian and the velocity distribution increasingly anisotropic. In particular, hydrodynamics predicts viscous overstability for a larger portion of parameter space. We also numerically solve the linearised equations of the more accurate Goldreich and Tremaine 1978 kinetic model and discover its linear stability to be qualitatively the same as that of Shu and Stewart's. Thus the simple collision operator adopted in the latter would appear to be an adequate approximation for dilute rings, at least in the linear regime.  相似文献   

6.
The gravitational instability of an infinite, anisotropic, heat-conducting plasma is studied in this paper. It is found that, for the case of parallel propagation, the inclusion of heat-conduction terms in the fluid equations, in general, leads to overstability of the system, whereas the transverse propagation remains unaffected. We have solved numerically the dispersion relation corresponding to the parallel propagation and find that except for a range of wave numbers, the system is overstable. We also found that in the limit of vanishing zeroth-order heat flux, the condition for gravitational instability is similar to the Jeans's condition for instability for an isotropic plasma.  相似文献   

7.
Though entropy production is forbidden in standard FRW Cosmology, Berman and Som presented a simple inflationary model where entropy production by bulk viscosity, during standard inflation without ad hoc pressure terms can be accommodated with Robertson–Walker’s metric, so the requirement that the early Universe be anisotropic is not essential in order to have entropy growth during inflationary phase, as we show. Entropy also grows due to shear viscosity, for the anisotropic case. The intrinsically inflationary metric that we propose can be thought of as defining a polarized vacuum, and leads directly to the desired effects without the need of introducing extra pressure terms.  相似文献   

8.
A model is proposed of a collapsing radiating star consisting of an isotropic fluid with shear viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but owing to the presence of the shear viscosity the pressure becomes more and more anisotropic. The behaviour of the density, pressure, mass, luminosity and the effective adiabatic index is analysed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 M.  相似文献   

9.
A recent laboratory experiment suggests that a Kelvin–Helmholtz (KH) instability at the interface between two superfluids – one rotating and anisotropic, the other stationary and isotropic – may trigger sudden spin-up of the stationary superfluid. This result suggests that a KH instability at the crust–core (  1 S03 P2  –superfluid) boundary of a neutron star may provide a trigger mechanism for pulsar glitches. We calculate the dispersion relation of the KH instability involving two different superfluids including the normal fluid components and their effects on stability, particularly entropy transport. We show that an entropy difference between the core and crust superfluids reduces the threshold differential shear velocity and threshold crust–core density ratio. We evaluate the wavelength of maximum growth of the instability for neutron star parameters and find the resultant circulation transfer to be within the range observed in pulsar glitches.  相似文献   

10.
We consider a collapsing sphere and discuss its evolution under the vanishing expansion scalar in the framework of f(R) gravity. The fluid is assumed to be locally anisotropic which evolves adiabatically. To study the dynamics of the collapsing fluid, Newtonian and post Newtonian regimes are taken into account. The field equations are investigated for a well-known f(R) model of the form R+δR 2 admitting Schwarzschild solution. The perturbation scheme is used on the dynamical equations to explore the instability conditions of expansionfree fluid evolution. We conclude that instability conditions depend upon pressure anisotropy, energy density and some constraints arising from this theory.  相似文献   

11.
The objective of the present paper is to study an anisotropic Bianchi-I cosmological model filled with bulk viscous fluid and magnetic field in string cosmology. The magnetic field is due to an electric current produced along the x-axis. The expansion in the model is considered to be proportional to one of the components of the shear tensor. We obtain two different quadrature forms of volume scale factor by considering two different relations between bulk viscosity and expansion scalar. We discuss the behavior of the classical potential with respect to the volume scale factor in the presence or absence of magnetic field and bulk viscosity in each case. We observe the role of bulk viscosity on the classical potential and also on the choices of bulk viscous pressure. By introduction of magnetic field or bulk viscosity or both into the model it results in changes in the potential as well as in volume scale factors. The physical and geometrical aspects of the solutions are discussed in detail.  相似文献   

12.
Conformally flat line-elements are applied to imperfect fluids in cosmology. Explicit solutions of the field equations are given for an equation of state for which the pressure is proportional to the density. Both the isotropic case (for which the shear viscosity vanishes) and the non-isotropic case are considered and expressions derived for the appropriate coefficients of shear and bulk viscosity, as well as density.  相似文献   

13.
The standard thin accretion disk model predicts that the inner regions of alpha model disks, where radiation pressure is dominant, are thermally and viscously unstable. However, observations show that the bright X-ray binaries and AGN accretion disks, corresponding to radiation-pressure thin disks, are stable. In this paper, we reconsider the linear and local instability of accretion disks in the presence of a toroidal magnetic field. In the basic equations, we consider physical quantities such as advection, thermal conduction, arbitrary viscosity, and an arbitrary cooling function also. A fifth order diffusion equation is obtained and is solved numerically. The solutions are compared to non-magnetic cases. The results show that the toroidal magnetic field can make the thermal instability in radiation pressure-dominated slim disks disappear if ? m ≥0.3. However, it causes a more thermal instability in radiation pressure alpha disks without advection. Also, we consider the thermal instability in accretion disks with other values of the viscosity and obtain a general criterion for thermal instability in the long-wavelength limit and in the presence of a toroidal magnetic field.  相似文献   

14.
Spatially homogeneous and anisotropic LRSBianchi type-I string cosmological models are studied in the frame work of general relativity when the source for the energy momentum tensor is a bulk viscous fluid containing one dimensional strings embedded in a magnetic field. A barotropic equation of state for the pressure and density is assumed to get determinate solutions of the field equations. The bulk viscous pressure is assumed to be proportional to the energy density. The effects of viscosity and electromagnetic field on the properties of the model are investigated. The role of bulk viscosity and electromagnetic field in getting an inflationary phase and in establishing a string phase in the universe is studied.  相似文献   

15.
The stability of an inhomogeneous anisotropic plasma flowing along a straight magnetic field has been investigated. Both the flow velocity and the plasma density are spatially varying in a direction perpendicular to the magnetic field. The stability of an interface between an inhomogeneous anisotropic plasma flowing along the magnetic field and the non-conducting compressible gas of uniform density flowing parallel to the interface has also been discussed. The effect of gyroviscosity and inhomogeneity on the Kelvin-Helmholtz shear instability has been discussed in certain limiting situations.  相似文献   

16.
The effects of arbitrary radiative heat-loss functions and Hall current on the self-gravitational instability of a homogeneous, viscous, rotating plasma has been investigated incorporating the effects of finite electrical resistivity, finite electron inertia and thermal conductivity. A general dispersion relation is obtained using the normal mode analysis with the help of relevant linearized perturbation equations of the problem, and a modified Jeans criterion of instability is obtained. The conditions of modified Jeans instabilities and stabilities are discussed in the different cases of our interest. We find that the presence of arbitrary radiative heat-loss functions and thermal conductivity modifies the fundamental Jeans criterion of gravitational instability into a radiative instability criterion. The Hall parameter affects only the longitudinal mode of propagation and it has no effect on the transverse mode of propagation. For longitudinal propagation, it is found that the condition of radiative instability is independent of the magnetic field, Hall parameter, finite electron inertia, finite electrical resistivity, viscosity and rotation; but for the transverse mode of propagation it depends on the finite electrical resistivity, the strength of the magnetic field, and it is independent of rotation, electron inertia and viscosity. From the curves we find that the presence of thermal conductivity, finite electrical resistivity and density-dependent heat-loss function has a destabilizing influence, while viscosity and magnetic field have a stabilizing effect on the growth rate of an instability. The effect of arbitrary heat-loss functions is also studied on the growth rate of a radiative instability.  相似文献   

17.
The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.  相似文献   

18.
In this paper, we study the effects of polynomial f(R) model on the stability of homogeneous energy density in self-gravitating spherical stellar object. For this purpose, we construct couple of evolution equations which relate the Weyl tensor with matter parameters. We explore different factors responsible for density inhomogeneities with non-dissipative dust, isotropic as well as anisotropic fluids and dissipative dust cloud. We find that shear, pressure, dissipative parameters and f(R) terms affect the existence of inhomogeneous energy density.  相似文献   

19.
Kantowski-Sachs cosmological model in the presence of magnetized anisotropic dark energy is investigated. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS p=ωρ and a uniform magnetic field of energy density ρ B . We obtain exact solutions to the field equations using the condition that expansion is proportional to the shear scalar. The physical behavior of the model is discussed with and without magnetic field. We conclude that universe model as well as anisotropic fluid does not approach isotropy through the evolution of the universe.  相似文献   

20.
The paper models the suprathermal plasma as the concatenation of two different gravitating fluids each having its own separate density and pressure. One of the fluids has isotropic pressure while the other has an anisotropic pressure. The system is subjected to a uniform magnetic field which is frozen with the fluids. The gravitational instability of the model for low frequency plane waves has been investigated in a linear framework for plasma parameters relevant to the spiral arms of the galaxy and the cosmic gas clouds. The analysis shows that the wavelength of the instability is strongly dependent upon the anisotropy of the non-thermal plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号