首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present new XMM–Newton observations of the hot-gas environments of two low-power twin-jet radio galaxies, 3C 66B and 3C 449, showing direct evidence for the interactions between X-ray-emitting gas and radio plasma that are thought to determine the large-scale radio structure of these sources. The temperatures that we measure for the two environments are significantly higher than those predicted by standard luminosity–temperature relations for clusters and groups. We show that luminosity–temperature relations for radio-quiet and radio-loud X-ray groups differ, in the sense that radio-source heating may operate in most groups containing radio galaxies. If the radio lobes are expanding subsonically, we find minimum ages of  3 × 108 yr  for 3C 66B, and  5 × 108 yr  for 3C 449, older than the values obtained from spectral ageing, which would give the radio source sufficient time to heat the groups to the observed temperatures for plausible values of the jet power. The external pressures in the atmospheres of both radio galaxies are an order of magnitude higher than equipartition estimates of their radio-lobe pressures, confirming that the radio lobes either are out of equipartition or require a pressure contribution from non-radiating particles. Constraints from the level of X-ray emission we measure from the radio lobes allow us to conclude that a departure from equipartition must be in the direction of magnetic domination, and that the most plausible candidates for a particle contribution to lobe pressure are relativistic protons, an additional population of low-energy electrons, or entrained and heated thermal material.  相似文献   

2.
We present Chandra , Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the nucleus of NGC 4696, a giant elliptical in the Centaurus cluster of galaxies. Like M87 in the Virgo cluster, PKS 1246−410 in the Centaurus cluster is a nearby example of a radio galaxy in a dense cluster environment. In analysing the new X-ray data, we have found a compact X-ray feature coincident with the optical and radio core. While nuclear emission from the X-ray source is expected, its luminosity is low,  <1040 erg s−1  . We estimate the Bondi accretion radius to be 30 pc and the accretion rate to be  0.01 M yr−1  , which under the canonical radiative efficiency of 10 per cent would overproduce by 3.5 orders of magnitude the radiative luminosity. Much of this energy can be directed into the kinetic energy of the jet, which over time inflates the observed cavities seen in the thermal gas. The VLBA observations reveal a weak nucleus and a broad, one-sided jet extending over 25 pc in position angle −150°. This jet is deflected on the kiloparsec-scale to a more east–west orientation (position angle of −80°).  相似文献   

3.
Chandra ACIS observations of PKS 0521−365 find that the X-ray emission of this BL Lac object consists of emission from an unresolved core, a diffuse halo and a 2-arcsec jet feature coincident with the inner radio/optical jet. A comparison with a new ATCA 8.6-GHz map also finds X-ray emission from the bright hotspot south-east of the nucleus. The jet spectrum, from radio to X-ray, is probably synchrotron emission from an electron population with a broken power-law energy distribution, and resembles the spectra seen from the jets of low-power (FR I) radio galaxies. The hotspot X-ray flux is consistent with the expectations of synchrotron self-Compton emission from a plasma close to equipartition, as seen in studies of high-power (FR II) radio galaxies. While the angular structure of the halo is similar to that found by an analysis of the ROSAT High Resolution Imager image, its brightness is seen to be lower with Chandra , and the halo is best interpreted as thermal emission from an atmosphere of similar luminosity to the haloes around FR I radio galaxies. The X-ray properties of PKS 0521−365 are consistent with it being a foreshortened, beamed, radio galaxy.  相似文献   

4.
We have used a deep Chandra observation of the central regions of the twin-jet Fanaroff–Riley class I (FRI) radio galaxy 3C 31 to resolve the thermal X-ray emission in the central few kpc of the host galaxy, NGC 383, where the jets are thought to be decelerating rapidly. This allows us to make high-precision measurements of the density, temperature and pressure distributions in this region, and to show that the X-ray emitting gas in the centre of the galaxy has a cooling time of only  5×107 yr  . In a companion paper, these measurements are used to place constraints on models of the jet dynamics.
A previously unknown one-sided X-ray jet in 3C 31, extending up to 8 arcsec from the nucleus, is detected and resolved. Its structure and steep X-ray spectrum are similar to those of X-ray jets known in other FRI sources, and we attribute the radiation to synchrotron emission from a high-energy population of electrons. In situ particle acceleration is required in the region of the jet where bulk deceleration is taking place.
We also present X-ray spectra and luminosities of the galaxies in the Arp 331 chain of which NGC 383 is a member. The spectrum and spatial properties of the nearby bright X-ray source 1E 0104+3153 are used to argue that the soft X-ray emission is mostly due to a foreground group of galaxies rather than to the background broad absorption-line quasar.  相似文献   

5.
Measurements of the velocities of galaxies thought to be associated with the giant radio galaxy NGC 6251 confirm the presence of a poor cluster with a systemic redshift of and a line-of-sight velocity dispersion of z =283(+109,52) km s1. This suggests a cluster atmosphere temperature of T =0.7(+0.6,0.2) keV, which is not enough to confine the radio jet by gas pressure. The core of NGC 6251 shows strong emission lines of [O  iii ] and H +[N  ii ], but there is no evidence for line emission from the jet (detected in optical continuum by Keel).  相似文献   

6.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

7.
We present a Chandra observation of the powerful radio galaxy 3C 294 showing clear evidence for a surrounding intracluster medium. At a redshift of 1.786 this is the most distant cluster of galaxies yet detected in X-rays. The radio core is detected as a point source, which has a spectrum consistent with a heavily absorbed power law, implying an intrinsic 2–10 keV luminosity of ∼1045 erg s−1. A small excess of emission is associated with the southern radio hotspots. The soft, diffuse emission from the intracluster medium is centred on the radio source. It has an hourglass shape in the north–south direction, extending to radii of at least 100 kpc, well beyond the radio source. The X-ray spectrum of this extended component is fitted by a thermal model with temperature ∼5 keV, or by gas cooling from above 7 keV at rates of ∼ 400–700 M yr−1. The rest-frame 0.3–10 keV luminosity of the cluster is ∼ 4.5×1044 erg s−1. The existence of such a cluster is consistent with a low-density universe.  相似文献   

8.
We present a study of the X-ray emission from the nuclei of galaxies observed in the core of the Perseus cluster in a deep exposure with Chandra . Point sources are found coincident with the nuclei of 13 early-type galaxies, as well as the central galaxy NGC 1275. This corresponds to all galaxies brighter than M B > −18 in the Chandra field. All of these sources have a steep power-law spectral component and four have an additional thermal component. The unabsorbed power-law luminosities in the 0.5–7.0 keV band range from 8 × 1038 to 5 × 1040 erg s−1. We find no simple correlations between the K -band luminosity, or the FUV and NUV AB magnitudes of these galaxies and their X-ray properties. We have estimated the black hole masses of the nuclei using the K -band   M BH– L K bol  relation and again find no correlation between black hole mass and the X-ray luminosity. Bondi accretion on to the black holes in the galaxies with minihaloes should make them much more luminous than observed.  相似文献   

9.
We report the first detection, with Chandra , of X-ray emission from the jet of the powerful narrow-line radio galaxy 3C 346. X-rays are detected from the bright radio and optical knot at which the jet apparently bends by approximately 70°. The Chandra observation also reveals a bright galaxy-scale atmosphere within the previously known cluster and provides a good X-ray spectrum for the bright core of 3C 346. The X-ray emission from the knot is synchrotron radiation, as seen in lower-power sources. In common with these sources, there is evidence of morphological differences between the radio/optical and X-ray structures, and the spectrum is inconsistent with a one-component continuous-injection model. We suggest that the X-ray-bright knot is associated with a strong oblique shock in a moderately relativistic, light jet, at ∼ 20° to the line of sight, and that this shock is caused by the jet interacting with the wake in the cluster medium behind the companion galaxy of 3C 346. The general jet curvature can result from pressure gradients in the cluster atmosphere.  相似文献   

10.
Using a deep Chandra observation of the Perseus cluster of galaxies, we find a high-abundance shell 250 arcsec (93 kpc) from the central nucleus. This ridge lies at the edge of the Perseus radio mini-halo. In addition we identify two Hα filaments pointing towards this shell. We hypothesize that this ridge is the edge of a fossil radio bubble, formed by entrained enriched material lifted from the core of the cluster. There is a temperature jump outside the shell, but the pressure is continuous indicating a cold front. A non-thermal component is mapped over the core of the cluster with a morphology similar to the mini-halo. Its total luminosity is  4.8 × 1043 erg s−1  , extending in radius to ∼75 kpc. Assuming the non-thermal emission to be the result of inverse Compton scattering of the cosmic microwave background and infrared emission from NGC 1275, we map the magnetic field over the core of the cluster.  相似文献   

11.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   

12.
We examine the properties of the X-ray gas in the central regions of the distant ( z =0.46) , X-ray luminous cluster of galaxies surrounding the powerful radio source 3C 295, using observations made with the Chandra Observatory . Between radii of 50 and 500 kpc, the cluster gas is approximately isothermal with an emission-weighted temperature, kT ∼5 keV . Within the central 50-kpc radius this value drops to kT ∼3.7 keV . The spectral and imaging Chandra data indicate the presence of a cooling flow within the central 50-kpc radius of the cluster, with a mass deposition rate of approximately 280 M yr−1. We estimate an age for the cooling flow of 1–2 Gyr , which is approximately 1000 times older than the central radio source. We find no evidence in the X-ray spectra or images for significant heating of the X-ray gas by the radio source. We report the detection of an edge-like absorption feature in the spectrum for the central 50-kpc region, which may be caused by oxygen-enriched dust grains. The implied mass in metals seen in absorption could have been accumulated by the cooling flow over its lifetime. Combining the results on the X-ray gas density profile with radio measurements of the Faraday rotation measure in 3C 295, we estimate the magnetic field strength in the region of the cluster core to be B ∼12 μG .  相似文献   

13.
We examine the core of the X-ray bright galaxy cluster 2A 0335+096 using deep Chandra X-ray imaging and spatially resolved spectroscopy, and include new radio observations. The set of around eight X-ray bright blobs in the core of the cluster, appearing like eggs in a bird's nest, contains multiphase gas from ∼0.5 to 2 keV. The morphology of the coolest X-ray emitting gas at 0.5 keV temperature is similar to the Hα emitting nebula known in this cluster, which surrounds the central galaxy. XMM–Newton grating spectra confirm the presence of material at these temperatures, showing reasonable agreement with Chandra emission measures. On scales of 80 to 250 kpc, there is a low temperature, high metallicity, swirl of intracluster medium as seen in other clusters. In the core, we find evidence for a further three X-ray cavities, in addition to the two previously discovered. Enhancements in 1.5 GHz radio emission are correlated with the X-ray cavities. The total  4 PV   enthalpy associated with the cavities is around  5 × 1059 erg  . This energy would be enough to heat the cooling region for  ∼5 × 107 yr  . We find a maximum pressure discontinuity of 26 per cent (2σ) across the surface brightness edge to the south-west of the cluster core. This corresponds to an upper limit on the Mach number of the cool core with respect to its surroundings of 0.55.  相似文献   

14.
Jet physics is again flourishing as a result of Chandra’s ability to resolve high-energy emission from the radio-emitting structures of active galaxies and separate it from the X-ray-emitting thermal environments of the jets. These enhanced capabilities have coincided with an increasing interest in the link between the growth of super-massive black holes and galaxies, and an appreciation of the likely importance of jets in feedback processes. I review the progress that has been made using Chandra and XMM-Newton observations of jets and the medium in which they propagate, addressing several important questions, including: Are the radio structures in a state of minimum energy? Do powerful large-scale jets have fast spinal speeds? What keeps jets collimated? Where and how does particle acceleration occur? What is jet plasma made of? What does X-ray emission tell us about the dynamics and energetics of radio plasma/gas interactions? Is a jet’s fate determined by the central engine?  相似文献   

15.
Centaurus B (PKS B1343−601) is one of the brightest and closest radio galaxies, with flux density ∼250 Jy at 408 MHz and redshift 0.01215, but it has not been studied much because of its position (i) close to the Galactic plane (it is also known as G309.6+1.7 and Kes 19) and (ii) in the southern sky. It has recently been suggested as the centre of a highly obscured cluster behind the Galactic plane. We present radio observations made with the Australia Telescope Compact Array and Molonglo Observatory Synthesis Telescope to study the jets and lobes. The total intensity and polarization radio images of the FR I jets are used to determine the jet brightness and width variations, magnetic field structure and fractional polarization. The equipartition pressure calculated along the jets declines rapidly over the first 1 arcmin from the galaxy reaching a constant pressure of 10−13  h −4/7 Pa in the lobes blown in the intracluster medium.  相似文献   

16.
We report long, pointed ROSAT HRI observations of the hyperluminous galaxies IRAS F00235+1024, F12514+1027, F14481+4454 and F14537+1950. Two of them are optically classified as Seyfert-like. No X-ray sources are detected at the positions of any of the objects, with a mean upper limit L X/ L Bol ≃ 2.3 × 10−4. This indicates that any active nuclei are either atypically weak at X-ray wavelengths or obscured by column densities N H > 1023 cm−2. They differ markedly from 'ordinary' Seyfert 2 galaxies, bearing a closer resemblance in the soft X-ray band to composite Seyfert 2 galaxies or to some types of starburst.  相似文献   

17.
We present Chandra and Very Large Array observations of two galaxy clusters, Abell 160 and Abell 2462, whose brightest cluster galaxies (BCGs) host wide angle tailed radio galaxies (WATs). We search for evidence of interactions between the radio emission and the hot, X-ray emitting gas, and we test various jet termination models. We find that both clusters have cool BCGs at the cluster centre, and that the scale of these cores (∼30–40 kpc for both sources) is of approximately the same scale as the length of the radio jets. For both sources, the jet flaring point is coincident with a steepening in the host cluster's temperature gradient, and similar results are found for 3C 465 and Hydra A. However, none of the published models of WAT formation offers a satisfactory explanation as to why this may be the case. Therefore, it is unclear what causes the sudden transition between the jet and the plume. Without accurate modelling, we cannot ascertain whether the steepening of the temperature gradient is the main cause of the transition, or merely a tracer of an underlying process.  相似文献   

18.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

19.
We present high-quality long-slit spectra for three nearby powerful radio galaxies – 3C 293, 3C 305 and PKS 1345+12. These were taken with the aim of characterizing the young stellar populations (YSP), and thereby investigating the evolution of the host galaxies, as well as the events that triggered the activity. Isochrone spectral synthesis modelling of the wide wavelength coverage spectra of nuclear and off-nuclear continuum-emitting regions have been used to estimate the ages, masses and luminosities of the YSP component, taking full account of reddening effects and potential contamination by activity-related components. We find that the YSP make a substantial contribution to the continuum flux in the off-nuclear regions on a radial scale of 1–20 kpc in all three objects. Moreover, in two objects we find evidence for reddened post-starburst stellar populations in the near-nuclear regions of the host galaxies. The YSP are relatively old (0.1–2 Gyr), massive  (109 < M YSP < 2 × 1010 M)  and make up a large proportion (∼1–50 per cent) of the total stellar mass in the regions of the galaxies sampled by the observations. Overall, these results are consistent with the idea that the nuclear activity of active galactic nuclei in some radio galaxies is triggered by major gas-rich mergers. Therefore, these radio galaxies form part of the subset of early-type galaxies that is evolving most rapidly in the local Universe. Intriguingly, the results also suggest that the radio jets are triggered relatively late in the merger sequence, and that there is an evolutionary link between radio galaxies and luminous/ultraluminous infrared galaxies.  相似文献   

20.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号