首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为进一步改善精密单点定位(PPP)探测大气可降水量(PWV)的性能,本文提出采用GPS/BDS/GLONASS/Galileo组合PPP进行PWV反演的方法,并利用国内3个MGEX(multi-GNSS experiment)观测站的实测数据,对GPS/BDS/GLONASS/Galileo组合PPP在大气水汽探测方面的性能进行了评估。试验结果表明:相较于GPS PPP、GPS/BDS组合PPP和GPS/GLONASS组合PPP,GPS/BDS/GLONASS/Galileo组合PPP估计天顶对流层延迟(ZTD)的初始化时间分别缩短了33%、26%、20%,且能获得更高精度的ZTD估值和PWV信息,在大气水汽探测方面的性能更优。  相似文献   

2.
2020年6月北斗卫星导航系统(BDS)完成全面组网,为分析其解算水汽信息的精度,选用15个MGEX (Multi-GNSS Experiment)测站2021年10月至11月的观测数据进行水汽反演. 利用GAMIT软件分别解算BDS、GPS、Galileo和GLONASS的观测数据,将得到的对流层天顶延迟(ZTD)与国际GNSS服务(IGS)发布的结果进行对比,并将解算的大气可降水量(PWV)分别与探空数据、ERA5数据计算得到的PWV对比. 实验结果表明:截止高度角设置为5°时,4个卫星系统估计的ZTD均方根 (RMS)均小于13 mm,GPS-PWV、BDS-PWV、Galileo-PWV、GLONASS-PWV与无线电探空可降水量(RS-PWV)相比,RMS平均值分别为2.25 mm、2.46 mm、2.52 mm和2.84 mm,RMS均小于3 mm;与ERA5-PWV相比,RMS平均值分别为1.63 mm、1.86 mm、1.76 mm和1.99 mm,RMS均小于2 mm. GPS探测水汽的精度最高,BDS探测水汽的精度低于GPS和Galileo,高于GLONASS,均满足气象学应用需求.   相似文献   

3.
This paper addresses real-time monitoring of the precipitable water vapor (PWV) from GNSS measurements and presents some results obtained from 6-month long GNSS PWV experiments using international and domestic GNSS networks. In the real-time GNSS PWV monitoring system a server/client structure is employed to facilitate formation of PWV networks and single-differenced GNSS measurements are utilized to mitigate errors in GNSS satellites’ orbits and clocks. An issue relating to baseline length between the server and clients is discussed in detail and as a result the PWV monitor is configured to perform in two modes depending on the baseline length. The server estimates sequentially the zenith wet delay of the individual stations, which is then converted into the PWV of the stations. We evaluate system performance by comparing the real-time PWV solution with reference solutions including meteorological measurements obtained with radiosondes and deferred-time precision GNSS PWV solutions. Results showed that the standard deviation of difference between the real-time PWV and the reference solutions ranged from 2.1 to 3.4 mm in PWV for a 6-month long comparison, which was improved to 1.4 to 2.9 mm by reducing comparison period to 20 days in winter.  相似文献   

4.
对流层延迟差异影响合成孔径雷达干涉测量技术(InSAR)形变测量精度;水汽的变化影响天气变化.对流层延迟与水汽具有较好的对应,因此有必要开展全球导航卫星系统(GNSS)对流层延迟的插值研究.以京津冀地区为例,针对GNSS对流层延迟,开展对流层延迟的空间插值研究.首先开展了GNSS对流层延迟与水汽的比较分析,两者存在显著正相关特性,相关性超过91.7%,论证了对流层延迟取代水汽的可行性.然后利用反距离权重法对京津冀地区2016年9月至2017年8月的12组GNSS测站对流层延迟进行空间插值,通过提取插值点对流层延迟与GNSS站点对流层延迟比较验证空间插值精度.全年数据平均偏差最大为1.12 cm,均方根误差最大为0.89 cm;未发生降水过程平均偏差最大为1.25 cm,均方根误差最大为0.82 cm;发生降水过程平均偏差最大为1.08 cm,均方根误差最大为1.38 cm.京津冀平原区域的GNSS对流层延迟空间插值结果精度满足气象等应用要求,可为气象预报和InSAR大气校正提供参考.   相似文献   

5.
气象参数(温度T、气压P)是GPS大气可降水汽(PWV)反演中必不可少的数据,也是PWV反演的重要误差源之一。文中主要对GPT/2(GPT、GPT2)模型用于PWV反演的精度进行验证和分析。基于非差精密单点定位(PPP)技术,选取SuomiNet网9个测站的观测数据,借助研制的PPP软件,分别采用GPT模型、改进的GPT2模型以及测站实测气象数据进行大气可降水汽(PWV)反演。以实测气象数据处理结果为参考,对两种模型解算的PWV进行了对比和精度分析。结果表明:改进的GPT2模型优于GPT模型,尤其是当测站的高程较大时,GPT2模型的稳定性更优、适用性更广;采用GPT2模型解算的PWV偏差均值小于±1.0mm,精度(RMS)优于±1.5mm。在缺少实测气象数据的情况下,利用GPT2模型数据仍然能够取得较为理想的PWV反演结果。  相似文献   

6.
Multi-GNSS precise point positioning (MGPPP) using raw observations   总被引:5,自引:2,他引:3  
A joint-processing model for multi-GNSS (GPS, GLONASS, BDS and GALILEO) precise point positioning (PPP) is proposed, in which raw code and phase observations are used. In the proposed model, inter-system biases (ISBs) and GLONASS code inter-frequency biases (IFBs) are carefully considered, among which GLONASS code IFBs are modeled as a linear function of frequency numbers. To get the full rank function model, the unknowns are re-parameterized and the estimable slant ionospheric delays and ISBs/IFBs are derived and estimated simultaneously. One month of data in April, 2015 from 32 stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) tracking network have been used to validate the proposed model. Preliminary results show that RMS values of the positioning errors (with respect to external double-difference solutions) for static/kinematic solutions (four systems) are 6.2 mm/2.1 cm (north), 6.0 mm/2.2 cm (east) and 9.3 mm/4.9 cm (up). One-day stabilities of the estimated ISBs described by STD values are 0.36 and 0.38 ns, for GLONASS and BDS, respectively. Significant ISB jumps are identified between adjacent days for all stations, which are caused by the different satellite clock datums in different days and for different systems. Unlike ISBs, the estimated GLONASS code IFBs are quite stable for all stations, with an average STD of 0.04 ns over a month. Single-difference experiment of short baseline shows that PPP ionospheric delays are more precise than traditional leveling ionospheric delays.  相似文献   

7.
Homogeneous reprocessing of GPS,GLONASS and SLR observations   总被引:3,自引:2,他引:1  
The International GNSS Service (IGS) provides operational products for the GPS and GLONASS constellation. Homogeneously processed time series of parameters from the IGS are only available for GPS. Reprocessed GLONASS series are provided only by individual Analysis Centers (i. e. CODE and ESA), making it difficult to fully include the GLONASS system into a rigorous GNSS analysis. In view of the increasing number of active GLONASS satellites and a steadily growing number of GPS+GLONASS-tracking stations available over the past few years, Technische Universität Dresden, Technische Universität München, Universität Bern and Eidgenössische Technische Hochschule Zürich performed a combined reprocessing of GPS and GLONASS observations. Also, SLR observations to GPS and GLONASS are included in this reprocessing effort. Here, we show only SLR results from a GNSS orbit validation. In total, 18 years of data (1994–2011) have been processed from altogether 340 GNSS and 70 SLR stations. The use of GLONASS observations in addition to GPS has no impact on the estimated linear terrestrial reference frame parameters. However, daily station positions show an RMS reduction of 0.3 mm on average for the height component when additional GLONASS observations can be used for the time series determination. Analyzing satellite orbit overlaps, the rigorous combination of GPS and GLONASS neither improves nor degrades the GPS orbit precision. For GLONASS, however, the quality of the microwave-derived GLONASS orbits improves due to the combination. These findings are confirmed using independent SLR observations for a GNSS orbit validation. In comparison to previous studies, mean SLR biases for satellites GPS-35 and GPS-36 could be reduced in magnitude from \(-35\) and \(-38\)  mm to \(-12\) and \(-13\)  mm, respectively. Our results show that remaining SLR biases depend on the satellite type and the use of coated or uncoated retro-reflectors. For Earth rotation parameters, the increasing number of GLONASS satellites and tracking stations over the past few years leads to differences between GPS-only and GPS+GLONASS combined solutions which are most pronounced in the pole rate estimates with maximum 0.2 mas/day in magnitude. At the same time, the difference between GLONASS-only and combined solutions decreases. Derived GNSS orbits are used to estimate combined GPS+GLONASS satellite clocks, with first results presented in this paper. Phase observation residuals from a precise point positioning are at the level of 2 mm and particularly reveal poorly modeled yaw maneuver periods.  相似文献   

8.
The main challenge of dual-frequency precise point positioning (PPP) is that it requires about 30 min to obtain centimeter-level accuracy or to succeed in the first ambiguity-fixing. Currently, PPP is generally conducted with GPS only using the ionosphere-free combination. We adopt a single-differenced (SD) between-satellite PPP model to combine the GPS and GLONASS raw dual-frequency carrier phase measurements, in which the GPS satellite with the highest elevation is selected as the reference satellite to form the SD between-satellite measurements. We use a 7-day data set from 178 IGS stations to investigate the contribution of GLONASS observations to both ambiguity-float and ambiguity-fixed SD PPP solutions, in both kinematic and static modes. In ambiguity-fixed PPP, we only attempt to fix GPS integer ambiguities, leaving GLONASS ambiguities as float values. Numerous experimental results show that PPP with GLONASS and GPS requires much less convergence time than that of PPP with GPS alone. For ambiguity-float PPP, the average convergence time can be reduced by 45.9 % from 22.9 to 12.4 min in static mode and by 57.9 % from 40.6 to 17.7 min in kinematic mode, respectively. For ambiguity-fixed PPP, the average time to the first-fixed solution can be reduced by 27.4 % from 21.6 to 15.7 min in static mode and by 42.0 % from 34.4 to 20.0 min in kinematic mode, respectively. Experimental results also show that the less the GPS satellites are used in float PPP, the more significant is the reduction in convergence time when adding GLONASS observations. In addition, on average, more than 4 GLONASS satellites can be observed for most 2-h observation sessions. Nearly, the same improvement in convergence time reduction is achieved for those observations.  相似文献   

9.
Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations.  相似文献   

10.
Continuous, very long baseline interferometry (VLBI) campaigns over 2 weeks have been carried out repeatedly, i.e., CONT02 in October 2002, CONT05 in September 2005, CONT08 in August 2008, and CONT11 in September 2011, to demonstrate the highest accuracy the current VLBI was capable at that time. In this study, we have compared zenith total delays (ZTD) and troposphere gradients as consistently estimated from the observations of VLBI, Global Navigation Satellite Systems (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) at VLBI sites participating in the CONT campaigns. We analyzed the CONT campaigns using the state-of-the-art software following common processing strategies as closely as possible. In parallel, ZTD and gradients were derived from numerical weather models, i.e., from the global European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields, the High Resolution Limited Area Model (European sites), the Japan Meteorological Agency-Operational Meso-Analysis Field (MANAL, over Japan), and the Cloud Resolving Storm Simulator (Tsukuba, Japan). Finally, zenith wet delays were estimated from the observations of water vapor radiometers (WVR) at sites where the WVR observables are available during the CONT sessions. The best ZTD agreement, interpreted as the smallest standard deviation, was found between GNSS and VLBI techniques to be about 5–6 mm at most of the co-located sites and CONT campaigns. We did not detect any significant improvement in the ZTD agreement between various techniques over time, except for DORIS and MANAL. On the other hand, the agreement and thus the accuracy of the troposphere parameters mainly depend on the amount of humidity in the atmosphere.  相似文献   

11.
We compare precipitable water vapor (PWV) time series measured by water vapor radiometers (WVRs) to PWV time series estimated using global positioning system (GPS) observations in a regional network of stations in western Europe. Inside this network, we focus on the baseline Brussels – Wettzell which presents the advantage to have the collocation of a GPS receiver and a WVR at both endpoints. The comparison between our GPS and WVR estimations of precipitable water vapor shows an agreement at the millimeter level. In addition, we show that the zenith total delay (ZTD) estimations computed with our GPS processing strategy agrees with the GPS estimations of ZTD done by the CODE analysis center at the millimeter level. Electronic Publication  相似文献   

12.
CONT08 was a 15 days campaign of continuous Very Long Baseline Interferometry (VLBI) sessions during the second half of August 2008 carried out by the International VLBI Service for Geodesy and Astrometry (IVS). In this study, VLBI estimates of troposphere zenith total delays (ZTD) and gradients during CONT08 were compared with those derived from observations with the Global Positioning System (GPS), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), and water vapor radiometers (WVR) co-located with the VLBI radio telescopes. Similar geophysical models were used for the analysis of the space geodetic data, whereas the parameterization for the least-squares adjustment of the space geodetic techniques was optimized for each technique. In addition to space geodetic techniques and WVR, ZTD and gradients from numerical weather models (NWM) were used from the European Centre for Medium-Range Weather Forecasts (ECMWF) (all sites), the Japan Meteorological Agency (JMA) and Cloud Resolving Storm Simulator (CReSS) (Tsukuba), and the High Resolution Limited Area Model (HIRLAM) (European sites). Biases, standard deviations, and correlation coefficients were computed between the troposphere estimates of the various techniques for all eleven CONT08 co-located sites. ZTD from space geodetic techniques generally agree at the sub-centimetre level during CONT08, and??as expected??the best agreement is found for intra-technique comparisons: between the Vienna VLBI Software and the combined IVS solutions as well as between the Center for Orbit Determination (CODE) solution and an IGS PPP time series; both intra-technique comparisons are with standard deviations of about 3?C6?mm. The best inter space geodetic technique agreement of ZTD during CONT08 is found between the combined IVS and the IGS solutions with a mean standard deviation of about 6?mm over all sites, whereas the agreement with numerical weather models is between 6 and 20?mm. The standard deviations are generally larger at low latitude sites because of higher humidity, and the latter is also the reason why the standard deviations are larger at northern hemisphere stations during CONT08 in comparison to CONT02 which was observed in October 2002. The assessment of the troposphere gradients from the different techniques is not as clear because of different time intervals, different estimation properties, or different observables. However, the best inter-technique agreement is found between the IVS combined gradients and the GPS solutions with standard deviations between 0.2 and 0.7?mm.  相似文献   

13.
Utilization of frequency-division multiple access (FDMA) leads to GLONASS pseudorange and carrier phase observations suffering from variable levels inter-frequency bias (IFB). The bias related with carrier phase can be absorbed by ambiguities. However, the unequal code inter-frequency bias (cIFB) will degrade the accuracy of pseudorange observations, which will affect positioning accuracy and convergence of precise point positioning (PPP) when including GLONASS satellites. Based on observations made on un-differenced (UD) ionospheric-free combinations, GLONASS cIFB parameters are estimated as a constant to achieve GLONASS cIFB real-time self-calibration on a single station. A total of 23 stations, with different manufacturing backgrounds, are used to analyze the characteristics of GLONASS cIFB and its relationship with variable receiver hardware. The results show that there is an obvious common trend in cIFBs estimated using broadcast ephemeris for all of the different manufacturers, and there are unequal GLONASS inter-satellite cIFB that match brand manufacture. In addition, a particularly good consistency is found between self-calibrated receiver-dependent GLONASS cIFB and the IFB products of the German Research Centre for Geosciences (GFZ). Via a comparative experiment, it is also found that the algorithm of cIFB real-time self-calibration not only corrects receiver-dependent cIFB, but can moreover eliminate satellite-dependent cIFB, providing more stable results and further improving global navigation satellite system (GNSS) point positioning accuracy. The root mean square (RMS) improvements of single GLONASS standard point positioning (SPP) reach up to 54.18 and 53.80% in horizontal and vertical direction, respectively. The study’s GLONASS cIFB self-estimation can realize good self-consistency between cIFB and stations, working to further promote convergence efficiency relative to GPS?+?GLONASS PPP. An average improvement percentage of 19.03% is observed, realizing a near-consistent accuracy with GPS?+?GLONASS fusion PPP.  相似文献   

14.
GLONASS precise point positioning (PPP) performance is affected by the inter-frequency biases (IFBs) due to the application of frequency division multiple access technique. In this contribution, the impact of GLONASS pseudorange IFBs on convergence performance and positioning accuracy of GLONASS-only and GPS + GLONASS PPP based on undifferenced and uncombined observation models is investigated. Through a re-parameterization process, the following four pseudorange IFB handling schemes were proposed: neglecting IFBs, modeling IFBs as a linear or quadratic polynomial function of frequency number, and estimating IFBs for each GLONASS satellite. One week of GNSS observation data from 132 International GNSS Service stations was selected to investigate the contribution of simultaneous estimation of GLONASS pseudorange IFBs on GLONASS-only and combined GPS + GLONASS PPP in both static and kinematic modes. The results show that considering IFBs can speed up the convergence of PPP using GLONASS observations by more than 20%. Apart from GLONASS-only kinematic PPP, the positioning accuracy of GLONASS-only and GPS + GLONASS PPP is comparable among the four schemes. Overall, the scheme of estimating IFBs for each GLONASS satellite outperforms the other schemes in both convergence time reduction and positioning accuracy improvement, which indicates that the GLONASS IFBs may not strictly obey a linear or quadratic function relationship with the frequency number.  相似文献   

15.
分析了由无线电探空数据计算可降水份中逼近误差和观测误差的影响 ,利用香港的无线电探空资料计算出逼近误差和观测误差的影响分别为 0 .5mm和 1 .2mm ,两者的综合影响为 1 .3mm。  相似文献   

16.
利用船载全球卫星导航系统(global navigation satellite system,GNSS)方式探测海洋水汽含量,可丰富海洋水汽观测量和观测密度。利用印度洋航次试验实测数据,基于精密单点定位技术对海洋上空可降水份探测的精度问题进行了研究,主要分析了GNSS高程与可降水份之间存在的耦合关系,标定了动态GNSS的高程精度,分析了不同算法对可降水份估值的影响。结果显示:①固定解与浮点解、多系统与单系统对可降水份估算的影响不大,而不同软件、不同卫星星历和钟差产品对可降水份估算的影响较大,量级为2~4 mm;②高程与可降水份之间存在耦合关系,经初步估算,高程的均方根误差每增加24mm,则可降水份估值的均方根误差相应增加约1mm;③惯性测量单元垂荡值与精密单点定位高程结果之间的相关系数高达99%,二者的互差优于30mm,满足动态GNSS海洋水汽估计对高程精度的要求。  相似文献   

17.
Three permanent GPS tracking stations in the trans Antarctic mountain deformation (TAMDEF) network were used to estimate precipitable water vapor (PWV) using measurement series covering the period of 2002–2005. TAMDEF is a National Science Foundation funded joint project between The Ohio State University and the United States Geological Survey. The TAMDEF sites with the longest GPS data spans considered in this research are Franklin Island East (FIE0), the International GNSS Service site McMurdo (MCM4), and Cape Roberts (ROB1). For the experiment, PWV was extracted from the ionosphere-free double-difference carrier phase observations, processed using the adjustment of GPS ephemerides (PAGES) software. The GPS data were processed with a 30 s sampling rate, 15-degree cutoff angle, and precise GPS orbits disseminated by IGS. The time-varying part of the zenith wet delay is estimated using the Marini mapping function, while the constant part is evaluated using the corresponding Marini tropospheric model. Previous studies using TAMDEF data for PWV estimation show that the Marini mapping function performs the best among the models offered by PAGES. The data reduction to compute the zenith wet delay follows the step piecewise linear strategy, which is subsequently transformed to PWV. The resulting GPS-based PWV is compared to the radiosonde observations and to values obtained from the Antarctic mesoscale prediction system (AMPS). This comparison revealed a consistent bias of 1.7 mm between the GPS solution and the radiosonde and AMPS reference values.  相似文献   

18.
大气水汽是对流层的重要组成部分之一,研究影响水汽的因素及精度具有重要意义。主要研究黄土高原地区大气可降水量(precipitable water vapor, PWV)的影响因素,并对其实际精度进行评估。首先,对ERA5(the fifth-generation atmospheric reanalysis data of ECMWF)的气压、气温数据和全球导航卫星系统(global navigation satellite system, GNSS)获取的天顶对流层延迟(zenith troposphere delay, ZTD)进行评定;然后,依据ERA5的气压、气温数据和GNSS的ZTD数据计算1 h分辨率的PWV,并利用误差传播理论推导PWV的理论误差; 最后, 与PWV实际计算误差进行对比,分析黄土高原地区PWV的精度。结果表明,基于GAMIT/GLOBK软件获得的GNSS ZTD与PANDA软件解算的GNSS ZTD差值的均方根(root mean square, RMS)和Bias分别为4.05 mm和-0.46 mm;ERA5气压和气温的平均RMS和Bias分别为3.36 hPa/1.97 K和-0.01 ?hPa/0.04 K;黄土高原地区PWV的理论误差为1.51 mm,实际误差为1.94 mm。计算得到的PWV精度较高,对水汽分布以及气候监测的研究具有重要意义。  相似文献   

19.
收集了2002-2007年6年期间的北京房山站(BJFS)连续观测数据,利用BERN高精度GPS数据处理软件计算出该站的对流层延迟,再利用该站的气象观测资料分离干延迟获得2mm精度的湿延迟,计算出BJFS站的可降水量(PWV),组成长达6年的时间序列,初步探讨北京地区的季节性降水量变化,特别是第三季度的可降水量影响,通过数据走势,预测计算不同季度的降水概率。  相似文献   

20.
地震前后的水汽变化特征分析可为震前地震预测和灾后次生灾害预警提供参考.该文借助小波变换方法开展地震前后全球卫星导航系统(GNSS)天顶对流层延迟(ZTD)(水汽)的异常变化研究.通过对ZTD结合地震与降水数据来分析地震前后水汽变化特征,利用小波变换的方法分解重构ZTD数据,分析GNSS ZTD在地震前后的异常变化.研究发现:地震前后存在水汽突变情况,小波变换后的ZTD能更清楚显示震后水汽变化特征与地震关系及水汽周期变化.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号