首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
高精度、高可靠性的卫星轨道是实现低轨卫星精密应用的重要前提,而模糊度固定技术是提高卫星定轨精度的关键途径。研究了基于整数钟的星间单差模糊度固定原理和方法,并利用2019年4月—5月的两颗GRACE-FO(gravity recovery and climate experiment follow on)卫星数据(GRACE-C/D)系统评估了固定解对低轨卫星简化动力学和运动学定轨的精度提升效果。结果表明,两颗卫星简化动力学和运动学定轨的宽巷模糊度固定率均达到99%,而窄巷模糊度固定率在95%左右。对于简化动力学定轨,GRACE-C/D固定解轨道的重叠轨道的3D均方根误差(root mean square error, RMSE)分别从7.1 mm和7.4 mm减小到了4.2 mm和3.6 mm;卫星激光测距(satellite laser ranging, SLR)残差标准差(standard deviation, STD)分别从15.9 mm和14.4 mm降低到了10.8 mm和11.0 mm,精度提升了32%和24%;K波段测距残差RMSE从8.0 mm减小到2.9 mm,进一步表明固定解还能有效提升低轨卫星间相对位置精度。对于运动学定轨,与精密科学轨道产品互差3D RMSE,浮点解分别为37.5 mm和36.4 mm,固定解分别为27.7 mm和25.5 mm,精度提升约28%,SLR残差STD也减小了约20%。  相似文献   

2.
Kinematic positions of Low Earth Orbiters based on GPS tracking are frequently used as pseudo-observations for single satellite gravity field determination. Unfortunately, the accuracy of the satellite trajectory is partly limited because the receiver synchronization error has to be estimated along with the kinematic coordinates at every observation epoch. We review the requirements for GPS receiver clock modeling in Precise Point Positioning (PPP) and analyze its impact on kinematic orbit determination for the two satellites of the Gravity Recovery and Climate Experiment (GRACE) mission using both simulated and real data. We demonstrate that a piecewise linear parameterization can be used to model the ultra-stable oscillators that drive the GPS receivers on board of the GRACE satellites. Using such a continuous clock model allows position estimation even if the number of usable GPS satellites drops to three and improves the robustness of the solution with respect to outliers. Furthermore, simulations indicate a potential accuracy improvement of the satellite trajectory of at least 40 % in the radial direction and up to 7 % in the along-track and cross-track directions when a 60-s piecewise linear clock model is estimated instead of epoch-wise independent receiver clock offsets. For PPP with real GRACE data, the accuracy evaluation is hampered by the lack of a reference orbit of significantly higher accuracy. However, comparisons with a smooth reduced-dynamic orbit indicate a significant reduction of the high-frequency noise in the radial component of the kinematic orbit.  相似文献   

3.
GNSS receivers estimate 3D antenna position and receiver clock bias when at least four satellites are tracked. If only three satellites are available, a 2D antenna position solution is still possible. We derive an almost exact algorithm for the determination of two possible antenna positions and the corresponding receiver clock biases based on pseudorange measurements to three GNSS satellites and a height measurement. The two ambiguous solutions exactly reflect the same height measurement. One of the solutions can be eliminated if some prior knowledge of the user position, for example, near the Earth, is available. In general, a less accurate height measurement gives a less accurate 2D GNSS solution, and vice versa. The determination of the receiver antenna position is based upon the intersection of two confocal hyperboloid sheets and the ellipsoid, resulting in a hyperbola along which the user is located. The algorithm is verified by numerical computations.  相似文献   

4.
星载原子钟作为导航卫星上维持时间尺度的关键载荷,其性能会对用户进行导航、定位与授时的精度带来影响。介绍了原子钟评估常用的三个指标(频率准确度、飘移率和稳定度)的定义及计算方法,利用事后卫星精密钟差数据,开展了全球卫星导航系统(global navigation satellite system,GNSS)星载原子钟性能评估,分析了GNSS星载原子钟特性。结果表明,GPS(global position system)BLOCKIIF星载铷钟与Galileo星载氢钟综合性能最优;北斗系统中地球轨道卫星与倾斜同步轨道卫星星载原子钟天稳定度达到2~4×10-14量级,与BLOCK IIR卫星精度相当;频率准确度达到1~4×10-11量级;频率漂移率达到10-14量级。  相似文献   

5.
高性能原子钟钟差建模及其在精密单点定位中的应用   总被引:2,自引:2,他引:0  
张小红  陈兴汉  郭斐 《测绘学报》2015,44(4):392-398
鉴于当前许多IGS跟踪站均配置有高性能原子钟的现状,本文首先采用修正Allan方差法分析了不同IGS跟踪站的接收机钟随机噪声的时域特性,进而评估了不同类型接收机的短期稳定度及钟差建模的可行性,然后利用IGS站配有氢原子钟的观测数据,在精密单点定位算法中,通过对钟差参数进行短时建模约束接收机钟差的随机变化,进而改进精密单点定位(PPP)的定位性能。试验结果表明钟差建模方法显著降低了高程分量参数、天顶对流层延迟参数与接收机钟差参数之间的相关性,GNSS高程分量的精度可提高50%。该方法对于提升PPP技术在地壳形变监测、低轨卫星定轨、水汽监测及预报等高精度GNSS地学领域的应用水平具有一定意义。  相似文献   

6.
Stochastic modeling of high-stability ground clocks in GPS analysis   总被引:2,自引:1,他引:1  
In current global positioning system (GPS) applications, receiver clocks are typically estimated epoch-wise in the data analyses even for clocks with high performance like Hydrogen-masers (H-maser). Applying an appropriate clock model for high-stability receiver clocks should, in view of the strong correlation between the station height and the clock parameters, significantly improve the positioning results. Recent experiments have shown that modeling the deterministic behavior of high-quality receiver clocks can improve the kinematic precise point positioning considerably. In this paper, well-behaving ground clocks are studied in detail applying constraints between subsequent and near-subsequent clock parameters. The influence of different weights for these relative clock constraints on the positioning quality, especially on the height, is investigated. For excellent clocks, an improvement of up to a factor of 3 can be obtained for the repeatability of the kinematic height estimates. This may be essential to detect small but sudden changes in the vertical component (e.g., caused by earthquakes). Troposphere zenith path delays (ZPD) are also heavily correlated with the receiver clock estimates and station heights. All these parameters are usually estimated simultaneously. We show that the use of relative clock constraints allows for a higher time resolution of the ZPD estimates (smaller than 2 h) without compromising the quality of the kinematic height estimates.  相似文献   

7.
Short-term analysis of GNSS clocks   总被引:6,自引:6,他引:0  
A characterization of the short-term stability of the atomic frequency standards onboard GNSS satellites is presented. Clock performance is evaluated using two different methods. The first method derives the temporal variation of the satellite’s clock from a polynomial fit through 1-way carrier-phase measurements from a receiver directly connected to a high-precision atomic frequency standard. Alternatively, three-way measurements using inter-station single differences of a second satellite from a neighboring station are used if the receiver’s clock stability at the station tracking the satellite of interest is not sufficient. The second method is a Kalman-filter-based clock estimation based on dual-frequency pseudorange and carrier-phase measurements from a small global or regional tracking network. Both methods are introduced and their respective advantages and disadvantages are discussed. The analysis section presents a characterization of GPS, GLONASS, GIOVE, Galileo IOV, QZSS, and COMPASS clocks based on these two methods. Special focus has been set on the frequency standards of new generation satellites like GPS Block IIF, QZSS, and IOV as well as the Chinese COMPASS/BeiDou-2 system. The analysis shows results for the Allan deviation covering averaging intervals from 1 to 1,000 s, which is of special interest for real-time PPP and other high-rate applications like processing of radio-occultation measurements. The clock interpolation errors for different sampling rates are evaluated for different types of clocks and their effect on PPP is discussed.  相似文献   

8.
Various types of onboard atomic clocks such as rubidium, cesium and hydrogen have different frequency accuracies and frequency drift rate characteristics. A passive hydrogen maser (PHM) has the advantage of low-frequency drift over a long period, which is suitable for long-term autonomous satellite time keeping. The third generation of Beidou Satellite Navigation System (BDS3) is equipped with PHMs which have been independently developed by China for their IGSO and MEO experimental satellites. Including Galileo, it is the second global satellite navigation system that uses PHM as a frequency standard for navigation signals. We briefly introduce the PHM design at the Shanghai Astronomical Observatory (SHAO) and detailed performance evaluation of in-orbit PHMs. Using the high-precision clock values obtained by satellite-ground and inter-satellite measurement and communication systems, we analyze the frequency stability, clock prediction accuracy and clock rate variation characteristics of the BDS3 experimental satellites. The results show that the in-orbit PHM frequency stability of the BDS3 is approximately 6 × 10?15 at 1-day intervals, which is better than those of other types of onboard atomic clocks. The BDS3 PHM 2-, 10-h and 7-day clock prediction precision values are 0.26, 0.4 and 2.2 ns, respectively, which are better than those of the BDS3 rubidium clock and most of the GPS Block IIF and Galileo clocks. The BDS3 PHM 15-day clock rate variation is ? 1.83 × 10?14 s/s, which indicates an extremely small frequency drift. The 15-day long-term stability results show that the BDS3 PHM in-orbit stability is roughly the same as the ground performance test. The PHM is expected to provide a highly stable time and frequency standard in the autonomous navigation case.  相似文献   

9.
We present the joint estimation model for Global Positioning System/BeiDou Navigation Satellite System (GPS/BDS) real-time clocks and present the initial satellite clock solutions determined from 106 stations of the international GNSS service multi-GNSS experiment and the BeiDou experimental tracking stations networks for 1 month in December, 2012. The model is shown to be efficient enough to have no practical computational limit for producing 1-Hz clock updates for real-time applications. The estimated clocks were assessed through the comparison with final clock products and the analysis of post-fit residuals. Using the estimated clocks and corresponding orbit products (GPS ultra-rapid-predicted and BDS final orbits), the root-mean-square (RMS) values of coordinate differences from ground truth values are around 1 and 2–3 cm for GPS-only and BDS-only daily mean static precise point positioning (PPP) solutions, respectively. Accuracy of GPS/BDS combined static PPP solutions falls in between that of GPS-only and BDS-only PPP results, with RMS values approximately 1–2 cm in all three components. For static sites, processed in the kinematic PPP mode, the daily RMS values are normally within 4 and 6 cm after convergence for GPS-only and BDS-only results, respectively. In contrast, the combined GPS/BDS kinematic PPP solutions show higher accuracy and shorter convergence time. Additionally, the BDS-only kinematic PPP solutions using clock products derived from the proposed joint estimation model were superior compared to those computed using the single-system estimation model.  相似文献   

10.
在GNSS高精度数据处理中,卫星钟差往往是决定结果精度的核心因素之一。采用20 Hz的双频观测数据对GNSS星载原子钟0.05~100 s平滑时间下的短期稳定性进行分析,通过星间单差的方法消除接收机钟差,采用无电离层组合及夜间观测避免电离层高阶项短期变化的影响,同时采用经验模型和映射函数来进行对流层延迟改正。通过Lag 1自相关函数分析了影响GNSS卫星钟稳定性的主要噪声类型,并使用阿伦方差计算分析GPS、GLONASS及BDS各自系统内不同卫星组合之间的钟差。结果表明,GPS、GLONASS及BDS系统钟差稳定性0.05秒稳均可达到10-10量级,秒稳可达10-11量级。可以认定,GPS、GLONASS及BDS在短期内的稳定性量级相当,从而验证了基于星间单差的BDS掩星数据处理方案的可行性。  相似文献   

11.
A technique for obtaining clock measurements from individual GNSS satellites at short time intervals is presented. The methodology developed in this study allows for accurate satellite clock stability analysis without an ultra-stable clock at the ground receiver. Variations in the carrier phase caused by the satellite clock are isolated using a combination of common GNSS carrier-phase processing techniques. Furthermore, the white phase variations caused by the thermal noise of the collection and processing equipment are statistically modeled and removed, allowing for analysis of clock performance at subsecond intervals. Allan deviation analyses of signals collected from GPS and GLONASS satellites reveal distinct intervals of clock noise for timescales less than 100 s. The clock data collected from GPS Block IIA, IIR, IIR-M, and GLONASS satellites reveal similar stability performance at time periods greater than 20 s. The GLONASS clock stability in the 0.6–10 s range, however, is significantly worse than GPS. Applications that rely on ultra-stable clock behavior from the GLONASS satellites at these timescales may therefore require high-rate corrections to estimate and remove oscillator-based errors in the carrier phase.  相似文献   

12.
Orbit and clock analysis of Compass GEO and IGSO satellites   总被引:11,自引:5,他引:6  
China is currently focussing on the establishment of its own global navigation satellite system called Compass or BeiDou. At present, the Compass constellation provides four usable satellites in geostationary Earth orbit (GEO) and five satellites in inclined geosynchronous orbit (IGSO). Based on a network of six Compass-capable receivers, orbit and clock parameters of these satellites were determined. The orbit consistency is on the 1–2 dm level for the IGSO satellites and on the several decimeter level for the GEO satellites. These values could be confirmed by an independent validation with satellite laser ranging. All Compass clocks show a similar performance but have a slightly lower stability compared to Galileo and the latest generation of GPS satellites. A Compass-only precise point positioning based on the products derived from the six-receiver network provides an accuracy of several centimeters compared to the GPS-only results.  相似文献   

13.
GPS接收机工作原理及发展现状   总被引:1,自引:0,他引:1  
根据GPS接收机的工作原理,分为连续接收机、序贯接收机和多元接收机。讨论了接收机的应用分类,分别为高精度测量型接收机,导航接收机及授时型接收机。根据GPS卫星信号的情况,介绍了GPS接收机的性能指标。根据GNSS的发展现状和卫星信号的实施论述了新一代多模双频接收机指标,根据测试结果证明:这种接收机将是未来GPS接收机的发展方向。  相似文献   

14.
Global navigation satellite systems (GNSS) have been widely used to monitor variations in the earth’s ionosphere by estimating total electron content (TEC) using dual-frequency observations. Differential code biases (DCBs) are one of the important error sources in estimating precise TEC from GNSS data. The International GNSS Service (IGS) Analysis Centers have routinely provided DCB estimates for GNSS satellites and IGS ground receivers, but the DCBs for regional and local network receivers are not provided. Furthermore, the DCB values of GNSS satellites or receivers are assumed to be constant over 1?day or 1?month, which is not always the case. We describe Matlab code to estimate GNSS satellite and receiver DCBs for time intervals from hours to days; the software is called M_DCB. The DCBs of GNSS satellites and ground receivers are tested and evaluated using data from the IGS GNSS network. The estimates from M_DCB show good agreement with the IGS Analysis Centers with a mean difference of less than 0.7?ns and an RMS of less than 0.4?ns, even for a single station DCB estimate.  相似文献   

15.
Benefits of the third frequency signal on cycle slip correction   总被引:3,自引:1,他引:2  
Cycle slip detection and correction are important issues when carrier phase observations are used in high-precision GNSS data processing and have, therefore, been intensively investigated. Along with the GNSS modernization, the cycle slip correction (CSC) problem has been raised to deal with more signals from multi-frequencies. We extend the geometry-based approach by integrating time-differenced pseudorange and carrier phase observations to estimate the integer number of triple-frequency cycle slips together with the receiver clock offset, ionospheric delay variations and receiver displacements. The Least-squares AMBiguity Decorrelation Adjustment method can be employed. The benefit of the third frequency observation on the cycle slip estimate is first investigated with simulation tests. The results show that adding the third frequency observation can significantly improve the model strength and that a reliable triple-frequency CSC with a theoretical success rate of higher than 99.9 % can still be achieved, even under the condition that the range or ionosphere delay variation is poorly defined. The performance of triple-frequency CSC is validated with real triple-frequency BDS data since all BDS satellites in orbit are transmitting triple-frequency signals. The results show that the fixing rate of CSC can reach 99.1 % in static precise point positioning (PPP) and 98.8 % in the kinematic case. PPP solutions with cycle slip-uncorrected and cycle slip-corrected data sets are compared to validate the correctness of triple-frequency CSC. The standard deviations of the PPP solution in east, north and vertical component, respectively, can be improved by 31.1, 30.7 and 37.6 % for static, and by 42.0, 53.8 and 39.7 % for kinematic after cycle slips are corrected. The performance of dual- and triple-frequency CSC is also compared. Results show that the performance of dual-frequency CSC is slightly worse than that of triple-frequency CSC. These results demonstrate that the performance of CSC can be significantly improved with triple-frequency observations.  相似文献   

16.
Single receiver phase ambiguity resolution with GPS data   总被引:26,自引:12,他引:14  
Global positioning system (GPS) data processing algorithms typically improve positioning solution accuracy by fixing double-differenced phase bias ambiguities to integer values. These “double-difference ambiguity resolution” methods usually invoke linear combinations of GPS carrier phase bias estimates from pairs of transmitters and pairs of receivers, and traditionally require simultaneous measurements from at least two receivers. However, many GPS users point position a single local receiver, based on publicly available solutions for GPS orbits and clocks. These users cannot form double differences. We present an ambiguity resolution algorithm that improves solution accuracy for single receiver point-positioning users. The algorithm processes dual- frequency GPS data from a single receiver together with wide-lane and phase bias estimates from the global network of GPS receivers that were used to generate the orbit and clock solutions for the GPS satellites. We constrain (rather than fix) linear combinations of local phase biases to improve compatibility with global phase bias estimates. For this precise point positioning, no other receiver data are required. When tested, our algorithm significantly improved repeatability of daily estimates of ground receiver positions, most notably in the east component by approximately 30% with respect to the nominal case wherein the carrier biases are estimated as real values. In this “static” test for terrestrial receiver positions, we achieved daily repeatability of 1.9, 2.1 and 6.0 mm in the east, north and vertical (ENV) components, respectively. For kinematic solutions, ENV repeatability is 7.7, 8.4, and 11.7 mm, respectively, representing improvements of 22, 8, and 14% with respect to the nominal. Results from precise orbit determination of the twin GRACE satellites demonstrated that the inter-satellite baseline accuracy improved by a factor of three, from 6 to 2 mm up to a long-term bias. Jason-2/Ocean Surface Topography Mission precise orbit determination tests results implied radial orbit accuracy significantly below the 10 mm level. Stability of time transfer, in low-Earth orbit, improved from 40 to 7 ps. We produced these results by applying this algorithm within the Jet Propulsion Laboratory’s (JPL’s) GIPSY/OASIS software package and using JPL’s orbit and clock products for the GPS constellation. These products now include a record of the wide-lane and phase bias estimates from the underlying global network of GPS stations. This implies that all GIPSY–OASIS positioning users can now benefit from this capability to perform single-receiver ambiguity resolution.  相似文献   

17.
北斗在轨卫星钟产品质量分析   总被引:1,自引:0,他引:1  
星载原子钟是卫星导航系统的星上时间基准,其性能的优劣直接决定了导航定位服务的质量。我国BDS目前处于全面建设阶段,对BDS卫星钟产品进行质量分析以及在轨星载原子钟的性能评估是一项重要的工作。目前,多个GNSS分析中心同时提供BDS卫星钟差产品,但对于不同分析中心的钟差产品特性对比和分析却鲜有报道。因此,本文从连续性指标、一致性指标、拟合精度指标、预报特性指标,对CODE、GFZ和WHU分析中心的北斗卫星钟差不同采样间隔数据进行了对比和分析。同时,基于北斗卫星钟产品对北斗系统星载原子钟短期频率稳定性进行了评估,得出了一些有益的结论。  相似文献   

18.
Since the Selective Availability was turned off, the velocity and acceleration can be determined accurately with a single GPS receiver using raw Doppler measurements. The carrier-phase-derived Doppler measurements are normally used to determine velocity and acceleration when there is no direct output of the raw Doppler observations in GPS receivers. Due to GPS receiver clock drifts, however, a GPS receiver clock jump occurs when the GPS receiver clock resets itself (typically with 1 ms increment/decrement) to synchronize with the GPS time. The clock jump affects the corresponding relationship between measurements and their time tags, which results in non-equidistant measurement sampling in time or incorrect time tags. This in turn affects velocity and acceleration determined for a GPS receiver by the conventional method which needs equidistant carrier phases to construct the derived Doppler measurements. To overcome this problem, an improved method that takes into account, GPS receiver clock jumps are devised to generate non-equidistant-derived Doppler observations based on non-equidistant carrier phases. Test results for static and kinematic receivers, which are obtained by using the conventional method without reconstructing the equidistant continuous carrier phases, show that receiver velocity and acceleration suffered significantly from clock jumps. An airborne kinematic experiment shows that the greatest impact on velocity and acceleration reaches up to 0.2 m/s, 0.1 m/s2 for the horizontal component and 0.5 m/s, 0.25 m/s2 for the vertical component. Therefore, it can be demonstrated that velocity and acceleration measurements by using a standalone GPS receiver can be immune to the influence of GPS receiver clock jumps with the proposed method.  相似文献   

19.
Due to their low cost and low power consumption, single-frequency GPS receivers are considered suitable for low-cost space applications such as small satellite missions. Recently, requirements have emerged for real-time accurate orbit determination at sub-meter level in order to carry out onboard geocoding of high-resolution imagery, open-loop operation of altimeters and radio occultation. This study proposes an improved real-time kinematic positioning method for LEO satellites using single-frequency receivers. The C/A code and L1 phase are combined to eliminate ionospheric effects. The epoch-differenced carrier phase measurements are utilized to acquire receiver position changes which are further used to smooth the absolute positions. A kinematic Kalman filter is developed to implement kinematic orbit determination. Actual flight data from China’s small satellite SJ-9A are used to test the navigation performance. Results show that the proposed method outperforms traditional kinematic positioning method in terms of accuracy. A 3D position accuracy of 0.72 and 0.79 m has been achieved using the predicted portion of IGS ultra-rapid products and broadcast ephemerides, respectively.  相似文献   

20.
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号