首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 997 毫秒
1.
Cold‐water coral ecosystems present common carbonate factories along the Atlantic continental margins, where they can form large reef structures. There is increasing knowledge on their ecology, molecular genetics, environmental controls and threats available. However, information on their carbo‐nate production and accumulation is still very limited, even though this information is essential for their evaluation as carbonate sinks. The aim of this study is to provide high‐resolution reef aggradation and carbonate accumulation rates for Norwegian cold‐water coral reefs from various settings (sunds, inner shelf and shelf margin). Furthermore, it introduces a new approach for the evaluation of the cold‐water coral preservation within cold‐water coral deposits by computed tomography analysis. This approach allows the differentiation of various kinds of cold‐water coral deposits by their macrofossil clast size and orientation signature. The obtained results suggest that preservation of cold‐water coral frameworks in living position is favoured by high reef aggradation rates, while preservation of coral rubble prevails by moderate aggradation rates. A high degree of macrofossil fragmentation indicates condensed intervals or unconformities. The observed aggradation rates with up to 1500 cm kyr?1 exhibit the highest rates from cold‐water coral reefs so far. Reef aggradation within the studied cores was restricted to the Early and Late Holocene. Available datings of Norwegian cold‐water corals support this age pattern for other fjords while, on the shelf, cold‐water coral ages are reported additionally from the early Middle Holocene. The obtained mean carbonate accumulation rates of up to 103 g cm?2 kyr?1 exceed previous estimates of cold‐water coral reefs by a factor of two to three and by almost one order of magnitude to adjacent sedimentary environments (shelf, slope and deep sea). Only fjord basins locally exhibit carbonate accumulation rates in the range of the cold‐water coral reefs. Furthermore, cold‐water coral reef carbonate accumulation rates are in the range of tropical reef carbonate accumulation rates. These results clearly suggest the importance of cold‐water coral reefs as local, maybe regional to global, carbonate sinks.  相似文献   

2.
湖南慈利晚二叠世海绵礁与珊瑚礁的古生态研究   总被引:5,自引:0,他引:5       下载免费PDF全文
王永标  徐桂荣 《地球科学》1997,22(2):135-138
中国南方晚二叠世生物礁分布广泛,但绝大多数属于海绵礁,湖南慈利晚二叠世除发育有海绵礁外,还有至今为止发现的世界上发育最好的古代珊瑚礁,而且海绵礁与珊瑚礁在同一条带上连续分布;因此是研究海绵礁与珊瑚礁古生态关系十分理想的场所,通过对慈利晚二叠世海绵礁及珊瑚礁内部造礁生物群落、沉积相特征,礁化演化序列及成岩作用特征等的分析和对比来研究它们之间的生态关系,发现其中的海绵礁为台地边缘礁,而珊瑚礁则应属于岸  相似文献   

3.
The Neuquén back-arc basin is located on the west margin of the South American platform between latitudes 36° and 40° S. The basin is famous for its continuous sedimentary record from the Late Triassic to Cenozoic comprising continental and marine clastic, carbonate, and evaporitic deposits up to 2.600 m in thickness.The stratigraphical and paleontological studies of the outcrops of the La Manga Formation, Argentina, located near the Bardas Blancas region, Mendoza province (35° S and 69° O) allow the reconstruction of the sedimentary environments of an Oxfordian carbonate ramp, where outer ramp, middle ramp, inner ramp (oolitic shoal), inner ramp margin (patch reef) lagoon and paleokarst were differentiated. The reefs consist of back reef facies and in situ framework of coral boundstones that was formed at the top of shallowing-upward succession.Coral reefs were analyzed by defining coral colonies shapes, paleontological content, coral diversity and taphonomy studies. In some studied sections abundant fragments of gryphaeids, encrusting bryozoans, and isolated sponges provided a suitable substrate for coral colonization; however, other sections show an increase in the proportions of ooids, peloidal and coral intraclasts.The core reef facies is composed of white-grey unstratified and low diversity scleractinian coral limestone dominated by robust and thinly branching corals with cerioid–phocoid growths and massive coral colonies with meandroid–thamnasteroid growth forms.The assemblage is characterized by Actinastraea sp., Australoseris sp., Thamnasteria sp. and Garateastrea sp. Internal facies organization and different types of coral colonies allow to recognize the development of varying framework as well as intercolony areas. A superstratal growth fabric characterizes the coral assemblage. On the basis of coral growth fabric (branche and domal types), the reef of La Manga Formation is considered a typical mixstones. The intercolony areas consist of biomicrites and biomicrorudites containing abundant coral fragments, parautochthonous gryphaeids and another bivalves (Ctenostreon sp.), gastropods (Harpagodes sp., Natica sp.), echinoderms test and spines (Plegiocidaris sp.), miliolids, Cayeuxia sp., Acicularia sp., Salpingoporella sp., intraclasts, ooids, peloids and coated grains.The domal growth forms are probably more protected against biological and physical destruction, meanwhile delicate branching growth forms with very open and fragile framework were more affected and fragmented due to wave action and bioerosion.The reef fabric shows different intervals of truncation as consequence of erosion resulting from coral destruction by storm waves or currents. The maximum flooding surface separates oolitic shoal facies below from the aggradational and progradational coralline limestones facies above. Subsequent sea-level fall and karstification (148 Ma) affected reef and oolitic facies.  相似文献   

4.
石炭纪生物礁在晚古生代礁体演化序列中处于特殊地位。石炭纪是生物礁地史演化过程中一个非常关键的时期,发育的生物礁类型有:(1)叶状藻礁丘;(2)叠层石礁丘;(3)珊瑚礁;(4)Waulsortian灰泥丘;(5)Chaetetes礁丘;(6)钙质微生物—藻礁丘。石炭纪生物礁总体上表现为礁相结构、造礁群落组成及礁体建造阶段的造礁作用相对比较简单,这些都体现出生物礁在石炭纪的发展受到生物灭绝事件的影响。在以藻礁占主导地位的宾夕法尼亚亚纪,中国后生动物骨架礁发育,尤其是发育有Fomitchevella大型珊瑚礁,成为世界石炭纪生物礁的一个亮点。从石炭纪整个生物礁的发展情况来看,后生动物骨架礁与以微生物和钙藻为主导的生物礁或许是两个平行发展的礁系统,后生动物骨架礁的发展在大规模生物灭绝事件之后有明显的演化滞后现象,以钙藻和微生物为主导的造礁群落的复苏在生物灭绝事件之后更为迅速。从石炭纪生物礁古地理分布来看,石炭纪生物礁基本上分布在南北纬30°之间的区域,因此,它们代表了在相对温暖的气候条件下生长的礁体,与现代珊瑚礁的分布相近似。  相似文献   

5.
西沙海域西琛1井生物礁主要是由红藻门壳状珊瑚藻、有节珊瑚藻和绿藻门仙掌藻等钙藻组成的植物礁,其次为珊瑚礁。礁相类型主要有礁核相和礁后泻湖相。岩石矿物成分单一,以碳酸盐矿物为主,包括低镁方解石和铁白云石;结构组分有生物骨架、粒屑、泥晶和亮晶;结构类型有生物格架结构、生物障积结构、生物节片结构、生物捆扎结构和生物粘结结构。岩石类型包括骨架石灰岩/白云岩、粘结石灰岩/白云岩、粒屑石灰岩/白云岩。储集空间类型有粒间孔、生物体腔孔和藻架孔等原生孔隙和铸模孔、裂缝、颗粒内溶蚀孔、藻类溶孔和扩大的粒间溶孔等次生孔隙。孔隙组合类型以粒间孔+溶孔+晶间孔最为发育,储集性能较好。  相似文献   

6.
Bryozoan–stromatolite associations (bryostromatolites) formed conspicuous reef structures throughout the Sheinwoodian (Wenlock) to Ludfordian (Ludlow) stratigraphy on Gotland but have not been described so far. They are mainly composed of encrusting bryozoans forming a complex intergrowth with porostromate and spongiostromate microbes and are different from the abundant stromatoporoid–coral–algal reefs with respect to their composition. In the bryostromatolite different growth stages can be identified. The observed succession can be taken as evidence for cyclic environmental changes during reef formation. Stenohaline reef-dwelling organisms, such as echinoderms, sponges, corals and trilobites, indicate fully marine salinities. Ten localities exposing bryostromatolites were discovered. Individual bryostromatolites are small with few decimetres up to one metre in size, and occur solely in shallow marine areas. Common features of these reefs on Gotland are cauliflower-like growth, a high bryozoan diversity, a high abundance of phosphatic fossils and components such as bryozoan pearls and inarticulate phosphatic brachiopods, enhanced bioerosion, Palaeomicrocodium crusts, vadose silt and gypsum pseudomorphs. The high abundance of Palaeomicrocodium, as well as the alternation with other crust-forming contributors, suggest that it could have been formed directly at the palaeo-sea surface, probably in times of minor but high-frequency sea-level fluctuations. Vadose silt and pseudomorphs after gypsum in reef cavities indicate subaerial exposure shortly after reef growth. The high amount of phosphatic components indicates a high nutrient input, probably by dust. All bryostromatolites were formed in times of strongly elevated δ13C values. The unusual combination of sedimentological and palaeoecological features, as well as their occurrence exclusively during strong positive δ13C excursions, are evidence that the bryostromatolite development responded to climatic/oceanographic changes, which may have played an important role in reef control.  相似文献   

7.

Elizabeth and Middleton Reefs are atoll-like structures that have developed on top of volcanic edifices and are close to the southern environmental limit of reef development in the southwest Pacific. Reef morphology and vertical accretion rates during the Holocene appear similar to those on other more tropical reefs. Sediment samples were collected from the lagoon of both reefs and around the flanks of Middleton Reef. A distinctly chlorozoan assemblage was observed with coral, molluscs, Halimeda, coralline algae and foraminifers being the dominant sediment constituents. Lagoon sediment samples show little variation within or between reefs, lacking the concentric zonation characteristic of larger atolls. Samples collected from the flanks of Middleton Reef, and subsurface material from vibrocores, differ compositionally from the surficial lagoon sand and were typically more tropical in character. A comparison of the sediment constituents from these reefs with those of samples from within a fringing reef and from the shelf around Lord Howe Island, further south, indicated regional patterns in sediment composition. Halimeda rapidly decreased in abundance with increased latitude, and appeared confined to deeper water, whereas coralline red algae increased significantly. The rapid change in these major sediment contributors is coincident with the general decrease in coral growth rates with latitude. This reinforces the notion that the latitudinal limit of reef development is constrained by factors other than coral growth alone.  相似文献   

8.
Stacked stromatoporoid‐dominated biostromes of the Ludlow‐age Hemse Group (Silurian) in eastern Gotland, Sweden, are 0·5–5 m thick and a few tens of metres to >1 km in lateral extent. They form one of the world's richest Palaeozoic stromatoporoid deposits. This study compiles published and new data to provide an overall facies model for these biostromes, which is assessed in relation to possible modern analogues. Some biostromes have predominantly in‐place fossils and are regarded as reefs, but lack rigid frameworks because of abundant low‐profile non‐framebuilding stromatoporoids; other biostromes consist of stromatoporoid‐rich rudstones interpreted here as storm deposits. Variation between these two `end‐members' occurs both between interlayered biostromes and also vertically and laterally within individual biostromes. Such variation produces problems of applying established reef classification terms and demonstrates the need for the development of terminology that recognizes taphonomic destruction of reef fabrics. An approach to such terminology is found in all four categories of a recent biostrome classification scheme that are easily recognized in the Hemse biostrome facies: autobiostromes (>60% in place); autoparabiostromes (a mixture of in‐place and overturned reef‐building organisms, 20–60% in place); parabiostromes (builders are overturned and damaged, <20% in place); and allobiostromes (transported and detrital reef material, nothing in place). These categories provide a broad taphofacies scheme for the Hemse biostromes, which are mostly autoparabiostrome to allobiostrome. The biostromes developed on crinoidal grainstone sheets and expanded laterally across relatively flat substrates in a marine setting of low siliciclastic input. Planar erosion surfaces commonly terminate biostrome tops. Three broadly similar modern analogues are identified, each of which has elements in common with the Hemse biostromes, but none of which is an exact equivalent: (a) laterally expanded and coalesced back‐barrier patch reefs behind the Belize barrier, an area influenced by limited accommodation space; (b) a hurricane‐influenced shelf, interpreted for Grand Cayman, where reef cores consist of rubble and lack substantial framework; the wide distribution of rounded pebbles and cobbles of stromatoporoids in the Hemse biostromes most probably resulted from hurricanes; (c) coral carpets in 5–15 m water depth of the northern Red Sea, where lateral expansion of low‐diversity frames dominated by Porites coral has produced low‐profile biostromes up to 8 m thick and several km long. Such carpets accumulated large amounts of carbonate, with little export, as in the Hemse biostromes, although the latter did not build frameworks because of the nature of growth of the stromatoporoids. The notable lack of algae in the Hemse biostrome facies is also a feature of Red Sea coral carpets; nevertheless, coral carpets are ecologically different. Hemse biostromes lack evidence of a barrier reef system, although this may not be exposed; the facies assemblage is consistent with either a storm/hurricane‐influenced mid‐ to upper ramp or back‐barrier system.  相似文献   

9.
10.
南海诸岛全新世珊瑚礁演化的特征   总被引:8,自引:0,他引:8       下载免费PDF全文
本文概括了南海诸岛珊瑚礁的分布,礁体地形、地貌和地质的一般特征,论述了老灰沙岛、新灰沙岛和礁坪等几类典型的全新世珊瑚礁礁体演化的基本过程,讨论了全新世珊瑚礁演化与季风、气候和海平面的关系。礁坪是随着冰后期海平面上升在晚更新世侵蚀面上堆积的,全新世中期高海面出现前后分别形成老灰沙岛和新灰沙岛。  相似文献   

11.
南沙群岛中央水道及南华水道两侧的珊瑚礁,大部分为环礁,分属开放型、半开放型、准封闭型、封闭型和台礁化型,反映了环礁向灰砂岛演变的不同阶段。每个环礁,从礁前斜坡向礁坪至潟湖,可相应划分出3种沉积相和细分9种沉积带。礁顶是全新世中期以来形成发育的。  相似文献   

12.
Studies on the coral reefs of the South China Sea (SCS) was the theme of the 6th Session of the 3rd Conference on Earth System Science (CESS) in Shanghai, 2014. This session discussed the most recent study developments on the SCS coral reefs, including coral reefs’ responses to global changes, coral reefs’ records on past climatic variations, and the activities about constructions and oil gas explorations in the coral reefs areas of the SCS. Disturbed by intensive anthropogenic activities and global climate warming, coral reefs in the SCS have declined dramatically, reflecting the up to 80% decrease of living coral cover and many areas having less than 20% of living coral cover. Geochemical data of SCS coral skeletons clearly show that since the Industry Revolution, the pollution situation of the SCS have dramatically increased and the seawater pH values have been continuously lowering, i.e. oceanic acidification. All these environmental phenomenon are further stressing the healthy development of the coral reef ecosystem in the SCS. Meanwhile, the poor coral reef ecosystems in the SCS are facing more anthropogenic disturbances such as coastal developments and engineering constructions. Obviously, the SCS coral reefs will be faced with more environmental challenges in the coming future. We therefore suggest that the policy makers should realize the extreme importance and the fragile of the coral reef ecosystems, and scientifically and with great cautions design construction project when in coral reef areas. We initiated the concept of “green engineering” for future developments in coral reef areas. Coral reefs are widely spreading in the whole SCS, and most of them developed since Miocene. Variations in coral reef structures provide good future oil-gas exploration. Because the SCS coral reefs have a long-developing history and a wide spatial distribution, they provide great potential in recording past environmental changes.  相似文献   

13.
A sequence of shallow reef cores from Heron Reef, Great Barrier Reef, provides new insights into Holocene reef growth models. Isochron analysis of a leeward core transect suggests that the north‐western end of Heron Reef reached current sea‐level by ca 6·5 kyr bp and then prograded leeward at a rate of ca 19·6 m/kyr between 5·1 kyr and 4·1 kyr bp (pre‐1950) to the present reef margin. A single short core on the opposing margin of the reef is consistent with greater and more recent progradation there. Further to the east, one windward core reached modern sea‐level by ca 6·3 kyr bp , suggesting near ‘keep‐up’ behaviour at that location, but the opposing leeward margin behind the lagoon reached sea‐level much more recently. Hence, Heron Reef exhibited significantly different reef growth behaviour on different parts of the same margin. Mean reef accretion rates calculated from within 20 m of one another in the leeward core transect varied between ca 2·9 m and 4·7 m/kyr depending on relative position in the prograding wedge. These cores serve as a warning regarding the use of isolated cores to inform reef growth rates because apparent aggradation at any given location on a reef varies depending on its location relative to a prograding margin. Only transects of closely spaced cores can document reef behaviour adequately so as to inform reef growth models and sea‐level curves. The cores also emphasize potential problems in U‐series dates for corals within a shallow (ca 1·5 m) zone beneath the reef flat. Apparent age inversions restricted to that active diagenetic zone may reflect remobilization and concentration of Th in irregularly distributed microbialites or biofilms that were missed during sample vetting. Importantly, the Th‐containing contaminant causes ages to appear too old, rather than too young, as would be expected from younger cement.  相似文献   

14.
The Belize barrier and atoll reefs represent one of the largest reef structures in the Atlantic Ocean. The southern shelf of Belize is a classic location of a modern mixed carbonate–siliciclastic system. Whereas knowledge of the Holocene deposits in the area is extensive, data on the Pleistocene system are fragmentary. Open questions include: (i) the nature of the reef foundations (carbonate versus siliciclastics); (ii) the ages of the deposits including the initiation of the barrier reef; and (iii) the response of the mixed system to sea‐level fluctuations. The results of a study of borings on the southern Belize shelf are presented here. Six, up to 105 m long borings were made to better understand the history of this important mixed system. Uranium‐series dating in the Pleistocene was not possible because of diagenetic alteration; however, lithostratigraphy, strontium isotopes and calcareous nannofossil biostratigraphy were used to constrain stratigraphic ages. Results support the contention that the Quaternary development in Belize was quite similar to that of other major barrier reefs such as the Florida Reef Tract and, further afield, the Great Barrier and the New Caledonian Barrier Reefs. All of these barrier reefs are mixed carbonate–siliciclastic systems and significant reef growth only began after the onset of high‐amplitude, eccentricity‐controlled sea‐level changes and as late as during the exceptionally long and warm marine isotope stage 11, some 400 ka. In Belize, Early Pleistocene sections at bases of borings include mollusc‐rich wackestones, rare coral packstones and marls, which were deposited under low to moderate energy conditions in a ramp setting before ca 900 ka, during the high sea‐levels of marine isotope stage 25 and possibly earlier (marine isotope stage 31 or 37). The Belize shelf was subaerially exposed for most of the mid‐Pleistocene and was dominated by siliciclastic sedimentation, possibly during marine isotope stages 24 to 12 when highstands were comparatively low. Continuous reefs at the shelf margin were developing during highstands. In the Late Pleistocene, beginning with the long and high highstand of marine isotope stage 11 (some 400 ka), the southern shelf was flooded entirely and carbonates started to dominate once more. Reefs developed on top of siliciclastic deposits on the shelf. A continuous barrier reef came into existence and largely developed on top of carbonates at the shelf margin. During Late Pleistocene lowstands, siliciclastics presumably no longer reached the shelf margin because of the topographic high of the barrier reef platform. The Quaternary Belize example may serve as a model for reconstructing ancient mixed systems in icehouse worlds, however, any extrapolations are limited by the fact that fast‐growing Scleractinian reef‐builders had not yet evolved in the Palaeozoic.  相似文献   

15.
The universally known subsidence theory of Darwin, based on Bora Bora as a model, was developed without information from the subsurface. To evaluate the influence of environmental factors on reef development, two traverses with three cores, each on the barrier and the fringing reefs of Bora Bora, were drilled and 34 uranium‐series dates obtained and subsequently analysed. Sea‐level rise and, to a lesser degree, subsidence were crucial for Holocene reef development in that they have created accommodation space and controlled reef architecture. Antecedent topography played a role as well, because the Holocene barrier reef is located on a Pleistocene barrier reef forming a topographic high. The pedestal of the fringing reef was Pleistocene soil and basalt. Barrier and fringing reefs developed contemporaneously during the Holocene. The occurrence of five coralgal assemblages indicates an upcore increase in wave energy. Age–depth plots suggest that barrier and fringing reefs have prograded during the Holocene. The Holocene fringing reef is up to 20 m thick and comprises coralgal and microbial reef sections and abundant unconsolidated sediment. Fringing reef growth started 8780 ± 50 yr bp ; accretion rates average 5·65 m kyr?1. The barrier reef consists of >30 m thick Holocene coralgal and microbial successions. Holocene barrier‐reef growth began 10 030 ± 50 yr bp and accretion rates average 6·15 m kyr?1. The underlying Pleistocene reef formed 116 900 ± 1100 yr bp , i.e. during marine isotope stage 5e. Based on Pleistocene age, depth and coralgal palaeobathymetry, the subsidence rate of Bora Bora was estimated to be 0·05 to 0·14 m kyr?1. In addition to subsidence, reef development on shorter timescales like in the late Pleistocene and Holocene has been driven by glacioeustatic sea‐level changes causing alternations of periods of flooding and subaerial exposure. Comparisons with other oceanic barrier‐reef systems in Tahiti and Mayotte exhibit more differences than similarities.  相似文献   

16.
通过黄龙场4口上二叠统长兴组钻井岩心剖面和其他井相关资料的详细研究,证实黄龙1井、4井有生物礁, 黄龙3井、5井无生物礁;生物礁由海绵障积岩组成,属于台地边缘礁。针对礁与非礁地层物性差异小,非均质性强, 多解性问题突出的特点,运用地质、测井和地震相结合的预测方法,确定了黄龙1井区的生物礁气藏发育边界,并发现了黄龙5井西侧生物礁气藏,为川东生物礁预测提供了一种实用的方法。  相似文献   

17.
The Great Barrier Reef (GBR) shelf contains a range of coral reefs on the highly turbid shallow inner shelf, where interaction occurs with terrigenous sediments. The modern hydrodynamic and sedimentation regimes at Paluma Shoals, a shore‐attached ‘turbid‐zone’ coral reef, and at Phillips Reef, a fringing reef located 20 km offshore, have been studied to document the mechanisms controlling turbidity. At each reef, waves, currents and near‐bed turbidity were measured for a period of ≈1 month. Bed sediments were sampled at 135 sites. On the inner shelf, muddy sands are widespread, with admixed terrigenous and carbonate gravel components close to the reefs and islands, except on their relatively sheltered SW side, where sandy silty clays occur. At Paluma Shoals, the coral assemblage is characteristic of inner‐shelf or sheltered habitats on the GBR shelf (dominated by Galaxea fascicularis, up to >50% coral cover) and is broadly similar to that at Phillips Reef, further offshore and in deeper water. The sediments of the Paluma Shoals reef flats consist of mixed terrigenous and calcareous gravels and sands, with intermixed silts and clays, whereas the reef slope is dominated by gravelly quartz sands. The main turbidity‐generating process is wave‐driven resuspension, and turbidity ranges up to 175 nephelometric turbidity units (NTU). In contrast, at Phillips Reef, turbidity is <15 NTU and varies little. At Paluma Shoals, turbidity of >40 NTU probably occurs for a total of >40 days each year, and relatively little time is spent at intermediate turbidities (15–50 NTU). The extended time spent at either low or high turbidities is consistent with the biological response of some species of corals to adopt two alternative mechanisms of functioning (autotrophy and heterotrophy) in response to different levels of turbidity. Sedimentation rates over periods of hours may reach the equivalent of 10 000 times the mean global background terrigenous flux (BTF) of sediment to the sea floor, i.e. 10 000 BTF, over three orders of magnitude greater than the Holocene average for Halifax Bay of <3 BTF. As elsewhere along the nearshore zone of the central GBR, dry‐season hydrodynamic conditions form a primary control upon turbidity and the distribution of bed sediments. The location of modern nearshore coral reefs is controlled by the presence of suitable substrates, which in Halifax Bay are Pleistocene and early Holocene coarse‐grained (and relatively stable) alluvial deposits.  相似文献   

18.
The Upper Ludlow Douro Formation contains the first reported Silurian sponge reefs. These relatively small (5–35 m diameter), mound-shaped structures contain, on average, 35% lithistid demosponges. Reefs are surrounded by irregular haloes of crinoid debris; abundance and diversity of all fossil groups decreases away from the reefs. Each reef is underlain by a lens of crinoid wackestone to grainstone rich in crinoid holdfasts; trepostomate bryozoans, solenoporacean algae and rhynchonellid brachiopods are locally common. The bulk of each reef consists of lime mudstone with abundant lithistid sponges. This is capped by a thin layer of wackestone with abundant tabulate and rugose corals and fewer lithistid sponges, calcareous algae, trepostomate bryozoans and stromatoporoids. This zonation, in which a sponge colonization community was replaced by a coral diversification community, is similar to that reported from some Middle Ordovician, Upper Jurassic and Holocene sponge reefs. The Douro sponge reefs were relatively low structures, with about 3 m maximum topographic relief. They grew on a broad carbonate platform, probably in warm, tranquil, turbid waters of normal or near-normal marine salinity. Periodic influxes of terrigenous mud adversely affected reef size, and caused biotic changes. Some of the reef lime mud was derived from non-reef sources, but significant quantities were also produced on the reefs. Reefs underwent synsedimentary lithification, bioerosion and minor storm erosion. Fabrics and compositions of sparry calcite in cavities record three generations of meteoric cementation. Originally siliceous spicules of the lithistid sponges were dissolved and the moulds later filled with sparry calcite. Early dissolution of siliceous spicules is common in reef environments, and may have caused fossil sponges to be under-represented in ancient reefs.  相似文献   

19.
Comparative sedimentology and palaeoecology of Oxfordian (Upper Jurassic) coral-dominated reefs of England, France, Italy and Switzerland has been used to: (1) identify and characterize different types of Late Jurassic coral reefs with regard to their litho- and biofacies; and (2) develop a depositional model for these reefs relating different reef types to each other within a palaeoenvironmental framework. Eight generic reef types and one associated reef facies are recognized. These are: (I) biostromal units dominated by platy microsolenids developed within clean limestone facies; (II) biostromal units dominated by platy microsolenids developed within marly facies; (III) reefal thickets dominated by tall dense phaceloid colonies developed within pure carbonate muds; (IV) microbial-coral reefs dominated by massive, branching ramose and phaceloid colonies; (V) large high diversity reefal units associated with large volumes of bioclastic material; (VI) small species-poor reefs developed within mixed carbonate/siliciclastic facies; (VII) microbial-coral reefs dominated by massive colonies; (VIII) reefal thickets dominated by branching ramose colonies with widely spaced branches developed amongst sand shoals and coral debris channels; and (IX) conglomerates rich in rounded coral fragments (the reef associated facies). The development of these different constructional and compositional reef types is interpreted as being primarily a function of light intensity, hydrodynamic energy levels and sediment balance. A conceptual depositional model based on these parameters can be used to predict the spatial and temporal distribution of different reefal carbonates and highlight sedimentological and palaeoecological trends in reef development.  相似文献   

20.
Drill cores through modern coral reefs commonly show a time lag in reef initiation followed by a phase of rapid accretion to sea level from submerged foundations – the so-called ‘catch-up response’. But because of the difficulty of drilling in these environments, core distribution is usually restricted to accessible areas that may not fully represent reef history, especially if the reef initiated in patches or developed with a prograde or retrograde geometry. As a consequence, core data have the potential to give a misleading impression of reef development, particularly with respect to the timing of initiation and response to sea-level rise. Here, we use computer models to simulate keep-up reef development and, from them, quantify variations in the timing of reef initiation and accretion rate using mock cores taken through the completed simulations. The results demonstrate that cores consistently underestimate the timing of reef initiation and overestimate the reef accretion rate so that, statistically, a core through a keep-up reef will most likely produce a catch-up pattern – an initiation lag followed by a phase of rapid accretion to sea level. This implies that catch-up signatures may be an artefact of coring and that keep-up reefs are significantly more common than previous core studies claim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号