首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
苏鲁造山带北侧构造演化的几何学运动学特征   总被引:3,自引:1,他引:2  
横穿诸城凹陷的南北向反射地震剖面揭示,苏鲁造山带北侧边界的中上地壳中存在着三层结构,即上部的胶莱盆地沉积盖层、中部的苏鲁楔状地体和下部代表华北板块的胶北地体;诸城凹陷边缘和内部断裂均显示同沉积正断层性质,苏鲁楔状地体中发育一组向北仰起的叠瓦状逆冲断层,而胶北地体显示了向南俯冲的态势.由此而论,可能存在着华北板块与扬子板块相向俯冲于苏鲁地体之下的陆陆碰撞机制,苏鲁地体可能具有与大别地体相似的花状造山带结构.  相似文献   

2.
采用SHRIMP测年技术对玲珑金矿区成矿后花岗斑岩脉的锆石进行了U Pb年龄测定,获得岩脉岩浆锆石的206Pb/238U平均年龄为119.4 Ma,同时获得大量的继承锆石年龄,范围从3 114~127 Ma。继承锆石年龄显示,胶北地体前寒武纪经历了中太古代的陆核生成阶段;新太古代花岗岩绿岩地体增生阶段;古元古代孔兹岩系的沉积阶段;新元古代蓬莱群盖层形成阶段。整个古生代,地体处于稳定的隆升受剥蚀状态,没有明显的岩浆活动。三叠纪,华南与华北克拉通碰撞,郯庐断裂带形成。晚三叠世—中侏罗世,后碰撞的巨大挤压作用导致华北克拉通南缘地壳增厚,玲珑和蚌埠荆山等花岗岩生成。中晚侏罗世,郯庐断裂带发生了巨大的左行平移,胶北地体从蚌埠—五河的东部推移到现在的位置。早白垩世,郯庐断裂由左旋压扭向右行拉张转化,导致胶北地体上郭家岭岩体生成。中晚白垩世,郯庐断裂发生了大规模的拉张,导致沂沭裂谷、胶莱盆地、青山组火山岩、金矿床形成和隆起区大量脉岩侵入。  相似文献   

3.
山东半岛的地体构造及金矿成矿的区域地质背景   总被引:5,自引:0,他引:5  
卢冰  胡受奚 《地质论评》1995,41(1):7-14
本文以不整合面的发现及同位素年龄为依据,重新厘定了本区早前寒武纪的地层,从而搞清了本区的大地构造格架,认为它类似于加拿大地盾的“洋葱构造”。本文将山东半岛划分为4个地体:胶北地体,鲁西地体,胶南地体,胶东南-苏东北-黄海地体。认为胶北地体成矿的大地构造背景与南克拉通成矿背景十分相似。胶南地体,黄海地体对胶北地体的俯冲作用为胶北地体提供了成岩成矿物质。根据胶北群和齐山群的地质及及地球化学特征,认为胶  相似文献   

4.
新疆库米什变质地体研究   总被引:1,自引:0,他引:1  
新疆库米什地区的变质杂岩,过去曾被认为是泥盆系地层和海西期花岗岩体。本文研究表明,该杂岩体的诸方面特征与其周围古生代岩块存在明显差异,而与塔里木克拉通北缘库鲁克塔格地区的托格拉克布拉克群可以对比。实际上,库米什变质杂岩并非泥盆系地层和海西期花岗岩体。而是天山造山带中的前寒武纪变质地体,是因弧后扩张从塔里木克拉通北缘裂解出来的大陆碎块。  相似文献   

5.
《Precambrian Research》2007,152(1-2):48-82
Tectonic affinity of tectono-lithological units close to ultrahigh-pressure metamorphic belt is a key issue for understanding the geodynamics of continental collision. This is particularly so for the Jiaobei terrane northeast of the Dabie-Sulu orogenic belt in China. New data from LA-ICPMS zircon U–Pb dating, whole-rock elements and Nd–Sr isotopes, and mineral O isotopes are presented for metamorphic rocks from this terrane. The results place geochronological and geochemical constraints on their protolith nature and metamorphic timing and thus on its tectonic affinity to one of the two Triassic collided continents, the North and the South China Blocks. Protolith ages for TTG gneiss, amphibolite and mafic granulite are ∼2.7, ∼2.5 and ∼2.4 Ga, respectively; regional metamorphism took place extensively at ∼1.76 Ga. Protolith of the TTG gneiss was generated by partial melting of mantle-derived rocks at the root of a thickened crust. Protolith of the amphibolite was probably a product of arc-like magmatism; protolith of the mafic granulite was derived from a depleted mantle source. Both of them were locally contaminated by supracrustal materials. Protoliths of paragneiss and schist in the Fenzishan Group were mostly derived from supracrustal sources, but protolith of amphibolite in the Fenzishan Group is of mantle-derived signature. Unlike the UHP metaigneous rocks in the Dabie-Sulu orogenic belt that show unusual 18O-depletion, the Jiaobei metamorphic rocks have basically preserved their original mantle-like O isotope compositions. In general, the nature and timing of geological events recorded in the metamorphic rocks from the Jiaobei terrane are comparable with those from the North China Block rather than the South China Block. Thus, the Jiaobei terrane is concluded to have tectonic affinity to the former, but behave like a micro-continent during the Triassic continental collision. The ∼1.76 Ga regional metamorphism in the Jiaobei terrane is likely related to reworking of the arc-continent collisional orogen in the periphery of the North China Block rather than the ∼1.85 Ga collision event between the eastern and western North China Blocks. The present study lends support to the common assumption that the suture boundary between the North and South China Blocks in the Sulu orogen is located along the Wulian-Yantai fault. Tectonic mingling along the Wulian-Yantai fault is probably related to subduction erosion during the continental collision.  相似文献   

6.
胶北地块斜长角闪岩的岩石学与年代学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
胶北地块位于华北克拉通东部陆块,胶-辽-吉活动带的南端.胶北地区荆山杂岩中存在一组与高压基性麻粒岩密切共生的斜长角闪岩,是构成前寒武纪变质基底的重要组成部分.岩石学矿物学研究表明,斜长角闪岩记录了3个阶段的变质作用:峰期变质矿物组合(M1)为角闪石1+斜长石+榍石,根据NCKFMASHTO体系的成分视剖面图和角闪石压力计估算出温度条件T=660~715 ℃,压力条件P=0.65~0.71 GPa;其后经历了退变质作用(M2),矿物组合为角闪石2+绿帘石+斜长石+绿泥石+钠长石,估算温压条件为537~630 ℃/0.41~0.58 GPa;晚期发生前绿片岩相退变质作用(M3),其矿物组合为钠长石+葡萄石+绿泥石+方解石,其温压条件 < 400 ℃/0.35 GPa.斜长角闪石的CL图像显示其具有较弱的阴极发光效应和弱震荡环带,Th/U比值相对较小(0.06~0.43),锆石形态和内部结构指示锆石形成于深熔作用过程,21个锆石的LA-ICP-MS定年研究的结果表明,斜长角闪岩记录的最老206Pb/238U年龄为2 075±25 Ma,上交点年龄为1 845±23 Ma(MSWD=0.35),该组年龄记录了斜长角闪岩峰期变质作用时代的上限.斜长角闪岩在原岩形成以后,可能曾经历麻粒岩相变质作用,并记录了在胶-辽-吉带~1.85 Ga碰撞闭合过程中的深熔事件,此后经历了角闪岩相变质作用,及其二次退变质作用,终结于前绿片岩相的变质温压条件.   相似文献   

7.
The Cheyenne belt of southeastern Wyoming is a major shear zone which separates Archean rocks of the Wyoming province to the north from 1800-1600 Ma old eugeoclinal gneisses to the south. Miogeoclinal rocks (2500-2000 Ma old) unconformably overlie Archean basement immediately north of the shear zone and were deposited under transgressive conditions along a rift-formed continental margin. Intrusive tholeiitic sills and dikes are interpreted as rift-related intrusions and a date of 2000 Ma on a felsic differentiate of these intrusions gives the approximate age of rifting. There are no known post-2000 Ma felsic intrusions north of the Cheyenne belt.Volcanogenic gneisses and abundant syntectonic calc-alkaline plutons of the southern terrane are interpreted as island are volcanic and plutonic rocks. The volcanics are a bimodal basalt-rhyolite assemblage. Plutons include large gabbroic complexes and quartz diorite (1780 Ma), syntectonic granitoids (1730-1630 Ma) and post-tectonic anorthosite and granite (1400 Ma). There is no evidence for Archean crust south of the Cheyenne belt.Structural data (thrusts in the miogeoclinal rocks, vertical stretching lineations, and the same fold geometries north and south of the shear zone) suggest that juxtaposition of the two terranes took place by thrusting of the southern terrane (island arc) over the northern terrane (craton and miogeocline), probably as a continuation of the south-dipping subduction which generated calc-alkaline plutons of the southern terrane. A metamorphic discontinuity across the shear zone, with greenschist facies rocks to the north and upper amphibolite facies rocks and migmatites to the south, also suggests thrusting of the southern terrane (deeper crustal levels) over the northern terrane (shallower levels).The Cheyenne belt may be a deeply-eroded master decollement, perhaps analogous to a ramp in the master decollement in the southern Appalachians. This interpretation of the Cheyenne belt as a Proterozoic suture zone provides an explanation for the geologic, geochronologic, geophysical, metallogenic, and metamorphic discontinuities across the shear zone.  相似文献   

8.
《International Geology Review》2012,54(11):1058-1066
The plate-tectonic evolution of the Tarim basin and nearby western Tianshan region during Paleozoic time is reconstructed in an effort to further constrain the tectonic evolution of Central Asia, providing insights into the formation and distribution of oil and gas resources. The Tarim plate developed from continental rifting that progressed during early Paleozoic time into a passive continental margin. The Yili terrane (central Tianshan) broke away from the present eastern part of Tarim and became a microcontinent located somewhere between the Junggar ocean and the southern Tianshan ocean. The southern Tianshan ocean, between the Tarim craton and the Yili terrane, was subducting beneath the Yili terrane from Silurian to Devonian time. During the Late Devonian-Early Carboniferous, the Tarim plate collided with the Yili terrane by sinistral accretional docking that resulted in a late Paleozoic deformational episode. Intracontinental shortening (A-type subduction) continued through the Permian with the creation of a magmatic belt.  相似文献   

9.
本文采用LA-ICP-MS技术,对胶北地体TTG片麻岩和花岗质片麻岩中锆石进行系统原位U-Pb定年和稀土、微量元素的分析,发现研究区早前寒武变质结晶基底存在多期岩浆-变质热事件。4件TTG片麻岩和2件花岗质片麻岩锆石样品记录了2909±13Ma、2738±23Ma、2544±15~2564±12Ma和2095±12Ma 4组岩浆事件年龄,以及2504±16~2513±32Ma和1863±41Ma 2组变质事件年龄。结合以往TTG片麻岩和花岗质片麻岩的地球化学及Nd同位素研究发现,约2738Ma的TTG岩浆事件可能代表胶北地体地壳最主要的生长事件,而2544~2564Ma的岩浆事件则可能代表古老地壳重熔的最强烈岩浆事件,约2095Ma岩浆事件则反映了胶-辽-吉构造带内部在该时期与地壳拉张作用有关的岩浆活动。2504~2513Ma是研究区以及华北克拉通早前寒武基底最主要的一期变质热事件,可能与地幔柱(热点)岩浆的底侵作用有关,而TTG片麻岩记录的约1863Ma的变质年龄与研究区基性和泥质高压麻粒岩相岩石记录的麻粒岩相变质时代一致,暗示TTG片麻岩可能也经历了古元古代高压麻粒岩相变质作用,上述研究进一步表明胶北地体在古元古代的确存在一期陆-陆碰撞的重要造山事件。该项研究成果对于进一步深入探讨胶北乃至华北克拉通早前寒武纪变质基底的形成演化、岩浆-变质热事件序列及其构造背景具有重要的科学意义。  相似文献   

10.
The Neoproterozoic to Early Cambrian amalgamation of SW Gondwana through the Brasiliano/Pan-African orogeny is reviewed with emphasis on the role of the Río de la Plata craton of South America in the light of new evidence from a borehole at the eastern end of the Tandilia belt (38°S). U–Pb, Hf and O isotope data on zircon indicate that this un-reworked Palaeoproterozoic craton abuts against a distinct continental terrane to the east (Mar del Plata terrane). The craton is bounded everywhere by transcurrent faults and there is no evidence to relate it to the Neoproterozoic mobile belts now seen on either side. The Punta Mogotes Formation at the bottom of the borehole contains 740–840 Ma detrital zircons that are assigned to a widespread Neoproterozoic rifting event. The data suggest that the Mar del Plata terrane rifted away from the southwestern corner of the Angola block at c. 780 Ma. Negative εHft values and δ18O > 6.5‰ suggest derivation by melting of old crust during a protracted extensional episode. Other continental terranes may have formed in a similar way in Uruguay (Nico Pérez) and southeastern Brazil, where the Schist Belt of the Dom Feliciano orogenic belt is probably a correlative of the Punta Mogotes sequence, implying that the Dom Feliciano belt must extend at least as far as 38°S. A new geodynamic scenario for West Gondwana assembly includes at least two major oblique collisional orogenies: Kaoko–Dom Feliciano (580–680 Ma) and Gariep–Saldania (480–580 Ma), the latter resulting from oblique impingement of the Rio de la Plata craton against the Kalahari craton. Assembly of this part of South-West Gondwana was accomplished before the Ordovician (to Silurian?) siliciclastic platform sediments of the Balcarce Formation in the Tandilia Belt covered the southern sector of Río de la Plata craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号