首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Results of monitoring of H2O maser in the infrared source IRAS 20126+4104, which is associated with a cool molecular cloud, are presented. The observations were carried out on the 22-meter radio telescope of the Pushchino Radio Astronomy Observatory (Russia) between June 1991 and January 2006. The spectrum of the H2O maser emission extends from ? 16.7 to 4.8 km/s and splits into separate groups of emission features. Cyclic variations of the integrated maser flux with a period from 3.4 to 5.5 years were detected, together with strong flares of up to 220 Jy in individual emission features. It is shown that large linewidths in periods of high maser activity are due to small-scale turbulent motions of the material. An expanding envelope around a young star is accepted as a model for the source. The protostar has a small peculiar velocity with respect to the molecular cloud (~2 km/s). Individual emission features form organized structures, including multi-link chains.  相似文献   

2.
We present the results of monitoring the H2O masers in the IR sources IRAS 18265-1517 and IRAS 18277-1516 associated with the cool molecular cloud L 379, which contains high-velocity bipolar molecular jets. The sources were observed in the 1.35 cm H2O line using the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) during 1991–2004. We detected H2O maser emission from IRAS 18265-1517 at radial velocities of 17.8 and 18.4 km/s, virtually coincident with the velocity of the molecular cloud derived from CO-line observations (18.4 km/s). The maser emission towards the other source, IRAS 18277-1516, was at higher velocities than the central velocity of the CO molecular cloud. The H2O maser spots are most likely associated with a redshifted region of CO emission. Cyclic variability of the integrated H2O maser emission that may be related to cyclic activity of the central star was detected for IRAS 18277-1516. The strongest and most long-lived component (VLSR ≈ 20.6 km/s) displays a radial-velocity drift, which could be due to deceleration of a dense clump of matter (maser condensation) in the circumstellar medium during the descending branch of a strong flare. We found numerous emission features for both IRAS 18265-1517 and IRAS 18277-1516, providing evidence for fragmentation of the medium surrounding their central objects.  相似文献   

3.
A new OH maser was detected in January 2008 toward the infrared source IRAS 05338-0624 in the dark cloud L1641N. The observations were carried out on the Nan cay Radio Telescope (France) in the 1667 and 1665 MHz OH lines. In the spectra of both lines, thermal OH emission from the surrounding molecular cloud is present at radial velocities V LSR = 6–9 km/s. In addition, a narrow maser feature is present in both lines at V LSR = 2 km/s in the profiles obtained on January 7, 2008; the peak flux densities at 1667 and 1665 MHz are 1.5 and 0.4 Jy, respectively. No OH maser emission was detected in February–July 2008. Then, a maser feature was again observed in the 1665 MHz line on August 20, 2008, at the same velocity as in January, V LSR = 2 km/s, with a peak flux density of 0.4 Jy. No 1667 MHz counterpart was observed with an upper limit of ~0.1 Jy. Emission in both OH lines was again absent on September 18. The source was also observed in the H2O line at λ = 1.35 cm on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) on February 7 and 13, 2008. In both cases, a maser feature was detected at V LSR = 9 km/s, with peak flux densities of 35 and 15 Jy, respectively. After the its apparent absence in April, H2O maser emission reappeared on May 14, 2008, at V LSR = 7 km/s with a flux density of about 15 Jy. The history of previous observations of the object in the OH and H2O lines is traced. The maser displays strong and rapid flux variability in the lines of both molecules, as is typical of young low-luminosity stellar objects at early stages of their evolution.  相似文献   

4.
Results of observations of the H2O maser in S269 carried out from October 1980 to February 2001 on the 22-m telescope (RT-22) of the Pushchino Radio Astronomy Observatory are presented. During the monitoring of S269, variability of the integrated flux of the maser emission with a cyclic character and an average period of 5.7 years was observed. This may be connected with cyclic activity of the central star during its formation. Emission at radial velocities of 4–7 km/s was detected. Thus, the H2O maser emission in S269 extends from 4 to 22 km/s, and is concentrated in three radial-velocity intervals: 4–7, 11–14, and 14–22 km/s. In some time intervals, the main group of emission features (14–22 km/s) had a triplet structure. The central velocity of the total spectrum is close to the velocity of the CO molecular cloud and HII region, differing from it by an amount that is within the probable dispersion of the turbulent gas velocities in the core of the CO molecular cloud. A radial-velocity drift of the component at V LSR≈20 km/s with a period of ≈26 years has been detected. This drift is likely due to turbulent (vortical) motions of material.  相似文献   

5.
The water-vapor maser emission in the source G10.6-0.4 associated with an active starforming region (OB star cluster) is analyzed. The maser was monitored from 1981–2004 using the 22-meter radio telescope of the Pushchino Radio Astronomy Observatory. Statistical processing of the results revealed the presence of structural formations on various scales. The individual H2O maser features may form ordered structures with velocity (V LSR) gradients, localized in separate clusters of maser features. The statistical variations of the V LSR values for the maser components may be due to the accretion of material onto the OB star cluster in G10.6-0.4 together with the rotation of the molecular cloud core. A model with a rotating, nonuniform condensation of accreted material in the vicinity of the stellar cluster is proposed to explain the variations of the velocity centroid of the H2O spectra. The integrated flux variations are explained well by a model in which the central source is an OB star cluster, possibly containing five to six stars. An important role in the evolution of the maser emission, as well as of the source as a whole, may be played by turbulent motions of the gas.  相似文献   

6.
The paper reports the results of observations of the H2O maser in S255 carried out in 1982–1985 and 1990–2000 on the 22-meter telescope of the Pushchino Radio Astronomy Observatory. The H2O maser emission extends from ?2 to 14 km/s and is mainly concentrated in three radial-velocity intervals. The velocity of the central group of emission features coincides with that of the molecular cloud, while the two lateral groups (blueshifted and redshifted) are positioned in the spectrum more or less symmetrically relative to the central feature. During the monitoring of S255, two phenomena were observed. First, the integrated flux of the H2O maser emission varied in a cyclic manner with a period of two to four years; this may be connected with activity of the protostar. Second, the fluxes of emission features (or groups of features) were anticorrelated. The emission of the three groups of features noted above dominated in succession. In some time intervals, a triplet spectral structure with anticorrelation between the fluxes of the lateral components and of the central and lateral components was observed. The flux anticorrelation between groups of features and individual features could be due to competition between spatial emission pumping modes in a nonuniform Keplerian disk.  相似文献   

7.
The fine structure of the region of formation of a protostar in the dense molecular cloud OMC-1 of the Orion Nebula was studied during a period of enhanced activity in 1998–1999, with an angular resolution of 50 μas and a velocity resolution of Δv = 0.053 km/s. Inclusions of ice granules in the bipolar outflow were detected and identified. The velocity of the outflow reaches ∼50 km/s, while that of the granules is <5 km/s. The outflow sublimates and accelerates H2O molecules, thereby exciting the maser emission. As a result, their relative velocity and, accordingly, pumping level decrease. The maser emission of the outflow is observed at distances out to ρ < 3 mas, or <1.5 AU. However, in the distant part (ρ > 5 mas), bullets corresponding to maser emission excited by the outflow in the surrounding medium are observed. The emission is amplified by the external medium at a velocity of v LSR = 7.65 km/s in the bandwidth Δ v ≈ 0.5 km/s. The sources of pumping are clusters of infrared sources. The bipolar outflow is inclined at a small angle to the plane of the sky. The acceleration of the maser inclusions also increases the longitudinal component of the velocity, reducing amplification of the emission. The brightness temperature of the components decreases: T b ρ −0.8±0.1. The activity terminates with the exponential decline of the maser emission, F ∼ exp(−0.5t 2); in the saturated mode this is determined by a decrease in the optical depth, τt 2. The material of the surrounding space, including the ice granules, is drawn into the disk, moves along spirals toward the nozzle, and is ejected as a highly collimated bipolar flow. The density of material in the outflow exceeds the surrounding density by three to four orders of magnitude. The accretion of the surrounding material and ejection of the bipolar outflow are a unified process accompanying the initial phase of formation of protostars. The counter motion of material at the center stimulates the formation of a central massive object, whose gravitational field accelerates the process and stabilizes the system. The ratio of the durations of periods of high and low activity is determined by the rates of ejection and disk replenishment, and is ∼1:10. The rotating bipolar flow is self-focused.  相似文献   

8.
The results of observations of the S128 H2O maser carried out from February 1995 to March 2001 on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory are presented. Two activity cycles of the H2O maser with a period of about 10 years were observed during the total monitoring interval (1981–2001). This may be connected either with cyclic activity of the central star in S128 during its formation or with the influence on the H2O masering region of shocks arising near an ionization front at the interface of two colliding CO clouds. The emission at radial velocities from ?73 to ?70 km/s consists of four emission features. The emission feature at ?71.8 km/s exhibits a flux dependence on linewidth that is typical of an unsaturated maser.  相似文献   

9.
The results of observations of the H2O and OH maser sources toward the region of W33C (G12.8-0.2) are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory in the 1.35-cm water-vapor line and on the Large Radio Telescope at Nan?ay (France), in the main (1665 and 1667 MHz) and satellite (1612 and 1720 MHz) OH lines. Multiple, strongly variable, short-lived H2O emission features were detected in a broad interval of radial velocities, from ?7 to 55 km/s. OH maser emission in the 1667-MHz line was detected at velocities of 35?C41 km/s. The Stokes parameters of the maser emission in the main OH lines 1665 and 1667 MHz were measured. Zeeman splitting was detected in the 1665-MHz line at 33.4 and 39.4 km/s, and in the 1667 MHz line only at 39.4 km/s. The magnetic-field intensity was estimated. Appreciable variability of the Zeeman splitting components was observed at 39 and 39.8 km/s in both main lines. The extended spectrum and fast variability of the H2O maser emission, together with the variability of the Zeeman-splitting components in the main OH lines, may indicate a composite clumpy structure of the molecular cloud and the presence of large-scale rotation, bipolar outflows, and turbulent motions of material in this cloud.  相似文献   

10.
The results of monitoring the H2O maser observed toward the region GH2O 092.67+03.07 (IRAS 21078+5211) located in the Giant Molecular Cloud Cygnus OB7 are presented. The observations were carried out with the 22-m radio telescope of the Pushchino Radio Astronomy Observatory in 2006–2017. Strong flares of the H2O maser emission with flux densities up to 19 800 Jy were detected. The flares exhibited both global (over the source) and local characters. All the flares were accompanied by strong variations in the H2O spectra within the corresponding radial-velocity ranges. Individual H2O components form both compact clusters and chains 1–2-AU long. Analysis of the variations of the fluxes, radial velocities, and line shapes of features during the flares showed that the medium may be strongly fragmented, with small-scale turbulent motions taking place in the H2Omaser region.  相似文献   

11.
The results of a study of the H2O and OH maser emission from the cool IR source IRAS 16293?2422 are presented. The observations analyzed were obtained in H2O lines with the 22-m telescope of the Pushchino Radio Astronomy Observatory during 1999–2015 and in OH lines with the Nanc¸ ay radio telescope (France). A large number of very strong flares of the H2O maser were detected, reaching fluxes of tens of thousands of Jansky. Individual features can form organized structures resembling chains ~2 AU in length with a radial-velocity gradient along them. The observed drift of the H2O emission (2003–2004) in space and velocity (from 4.3 to 5.3 km/s) is not due solely to proper motion of the features. The other origin of the drift is a drift of the emission maximum during a flare as the shock consecutively excites spatially separated features in the structure in the form of a chain. The OH-line observations at 18 cm show that the emission remains unpolarized and thermal, with a line width of 0.7 km/s, which corresponds to a cloud temperature of ~30 K.  相似文献   

12.
We present the results of a variability study of some H2O maser-emission components of Sgr B2, which is located in an active star-forming region. Our monitoring was conducted in 1982–2004 with the 22-m radio telescope of the Pushchino Radio Astronomy Observatory. We analyze brightness variations for the strongest groups of emission features in the H2O spectra, mainly during periods of maser flaring activity. Each of these groups contains many components, whose radial velocities and fluxes we determined. Most of the components displayed radial-velocity drifts. We detected a correlation between the flux and radial-velocity variations for some of the components. Variability of the emission can be explained in a model in which the maser spots form elongated chains and filaments with radial-velocity gradients. During H2O flares, the flux increases of some maser spots were accompanied by acceleration, while flux decreases were accompanied by deceleration of their motion in the dense circumstellar matter. Spectral groups of emission features are probably spatially compact structures.  相似文献   

13.
We present the results of studies of the superfine structure of H2O maser sources in the Orion Nebula. Powerful, low-velocity, compact maser sources are distributed in eight active zones. Highly organized structures in the form of chains of compact components were revealed in two of these, in the molecular cloud OMC-1. The component sizes are ~0.1 AU and their brightness temperatures are T b =1012?1016 K. The structures correspond to tangential sections of concentric rings viewed edge-on. The ring emission is concentrated in the azimuthal plane, decreasing the probability of their discovery. The formation of protostars is accompanied by the development of accretion disks and bipolar flows, with associated H2O maser emission. The accretion disks are in the stage of fragmentation into protoplanetary rings. In a Keplerian approximation, the protostars have low masses, possibly evidence for instability of the systems. Supermaser emission of the rings is probably triggered by precession of the accretion disk. The molecular cloud’s radial velocity is V LSR=7.74 km/s and its optical depth is τ≈5. The emission from components with velocities within the maser window is additionally amplified. The components’ emission is linearly polarized via anisotropic pumping.  相似文献   

14.
The results of a study of the maser source IRAS 18316?0602 in the H2O line at λ = 1.35 cm are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) from June 2002 until March 2017. Three superflares were detected, in 2002, 2010, and 2016, with peak flux densities of >3400, 19 000, and 46 000 Jy, respectively. An analysis of these superflares is presented. The flares took place during periods of high maser activity in a narrow interval of radial velocities (40.5–42.5 km/s), and could be associated with the passage of a strong shock. The emission of three groups of features at radial velocities of about 41, 42, and 43 km/s dominated during themonitoring. The flare in 2016 was accompanied by a considerable increase in the flux densities of several features with velocities of 35–56 km/s.  相似文献   

15.
Results of a study of a strong flare of H2O maser emission in the star-forming region Sgr B2(M) in 2004 are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory. The main emission, with its flux density reaching 3800 Jy, was concentrated in a narrow radial-velocity interval (about 3 km/s) and was most likely associated with the compact group r, while the emission at VLSR > 64 km/s came from group q. After 1994, the variations of the H2O maser emission in Sgr B2(M) became cyclic with a mean period of 3 years.  相似文献   

16.
The results of a study of the maser source G 10.623-0.383 in the λ = 1.35 cm H2O line using the 22-mradio telescope of the Pushchino Radio AstronomyObservatory (Russia) and in the main hydroxyl lines (λ = 18 cm) using the Nanзay Radio Telescope (France) are presented. Uncorrelated long-term variations of the integrated intensities and the velocity centroids with characteristic times of 11 yrs (mean value) and 32 yrs, respectively, are studied. The drift of the velocity centroid may be associated with maser condensations whose material is collapsing onto the OB cluster. It is shown that the H2O maser source contains maser condensation configurations on various scales over a long time, which evolve with time. OH maser emission was only detected in the main lines at 1665 and 1667 MHz. The flux densities of the strongest emission components were variable, but their radial velocities did not change. A Zeeman pair was found at 1667 MHz with a splitting of about 1.44 km/s, corresponding to a line-of-sight magnetic field of 4.1 mG, which was preserved over at least 25 years. The characteristics of the H2O andOHmaser variability suggests that the masers are located in different parts of G 10.623–0.383.  相似文献   

17.
The results of a study of H2O and OH maser emission in the complex region of active star formation W75 N are presented. Observations were obtained using the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) and the Nan3ay radio telescope (France). Flaring H2O maser features may be identified with maser spots associated with the sources VLA 1 and VLA 2. Themain H2O flares occurred in VLA 1. The flare emission was associated with either maser clusters having closely spaced radial velocities and sizes up to ~2 AU or individual features. The maser emission is generated in a medium where turbulence on various scales is present. Analysis of the line shapes during flare maxima does not indicate the presence of the simplest structures—homogeneous maser condensations. Strong variability of the OH maser emission was observed. Zeeman splitting of the 1665-MHz line was detected for several features of the same cluster at a radial velocity of +5.5 km/s. The mean line-of-sight magnetic field in this cluster is ~0.5 mG, directed away from the observer. Flares of the OH masers may be due to gas compression at a shock or MHD wave front.  相似文献   

18.
A model of the source associated with VLA 1 in W75N is constructed based on monitoring of the H2O maser carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory and NRAO VLA maps of the source at epochs 1992, 1996, 1998, and 1999. The source has a complex hierarchical structure. Individual maser spots form compact clusters in the form of filaments or chains, as well as more extended arc-like clusters. There are radial-velocity gradients in the chains and filaments. All these structures are arranged in a very elongated disk. This complex configuration could arise due to various-scale turbulent motions of the emitting material, from microturbulence to large-scale turbulence. The strong elongation could be due to an outflow of material from the star. No radial motions of individual clusters of spots with respect to the central source in VLA 1 have been found. The presence of these spots at various epochs could be due to the passage of MHD waves, which excite the maser emission in corresponding zones of the maser source. This process could have a cyclic character, and be associated with the flare activity of the central star.  相似文献   

19.
The fine structure of the active region in the Orion KL gas-dust complex has been measured in polarized H2O maser emission (epoch December 12, 1998) with an angular resolution of 0.15 mas, or 0.07 AU, and a velocity resolution of 0.05 km/s. The maser emission is concentrated in a line with ΔV = 0.45 km/s, V LSR = 7.65 km/s, and a flux density of F = 2.1 MJy. The structure consists of a compact source (ejector), highly collimated bipolar outflow, and a toroidal component. The brightness temperature of the ejector is T b = 2 × 1016 K, and its degree of linear polarization reaches m ≈ 20%. The variation of the polarization angle across the profile is dX/dV = ?23°/(km/s), which considerably exceeds the Faraday rotation in the HII region foreground to the molecular cloud. The observed “rotation” is explained as an effect of different orientations for the polarization of the ejected outflows. The brightness temperature of the bipolar outflow is T b ≈ 1014 K, while that of individual components is T b ≈ 1015 K. The degree of polarization in the components exceeds that of the ejector and reaches m ≈ 50%. The position angle of the polarization is X ≈ 45° relative to the outflow. The torus, which is observed edge-on, has a diameter of 0.38 AU and a thickness of 0.08 AU. The brightness temperature of the tangential directions in the torus is T b ≈ 5 × 1015 K, and the rotational velocity is V rot ≈ 0.02 km/s. The degree of polarization is m ≈ 40%, and its position angle relative to the azimuthal plane is X ≈ 43°. The relative deviations of the polarization plane in the bipolar outflow and torus relative to the pumping direction are nearly the same and are determined by Faraday rotation within the HII region.  相似文献   

20.
We report the results of monitoring the H2O maser in NGC 7538, which is associated with a star-forming region. The observations were carried out on the 22-meter telescope of the Pushchino Radio Astronomy Observatory. Two intervals of long-term variability of the integrated flux that reflect the cyclic activity of the maser have been distinguished (1981–1992 and 1993–2003); the data for the earlier activity cycle, 1981–1992, have been analyzed. The period of the long-time-scale variations is about 13–14 years. Flares of individual spectral features and of two groups of features with mean radial velocities of ?60 and ?46.6 km/s have been observed. The flares lasted from 0.3 to 1 year. The emission features observed during the 1984–1985 flare at radial velocities between ?62 and ?58 km/s probably form a spatially compact group of spots (<1015 cm) in NGC 7538 IRS 1. The triplet structure of the spectra can be traced. The observed anticorrelations and correlations of the fluxes of the triplet components suggest that the maser spots may be located either in a protoplanetary disk or in a high-velocity gaseous outflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号