首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Based on the analysis of published data on exposure ages of iron meteorites determined with the 40K/K method (T K) and ages calculated using short-lived cosmogenic radionuclides (with the half-life T 1/2 < 1 Myr) in combination with stable cosmogenic isotopes of noble gases (TRS), the following results have been obtained. (1) The distribution of T RS ages (106 values) has an exponential shape, similar to that for ordinary chondrites, but different from the distribution of T K ages (80 values). The difference is most likely due to small amounts of data for meteorites with low T K ages (less than ~200–300 Myr). The latter can be ascribed to the difficulty of measurement of small concentrations of cosmogenic potassium isotopes. This circumstance makes the selection of meteorites with 40K/K ages nonrepresentative and casts doubt on the correctness of conclusions about the variations of the intensity of galactic cosmic rays (GCR) based on the analysis of distribution of these ages. (2) The magnitude of the known effect (systematic overestimation of T K ages in comparison with T RS ages) has been refined. The value k = T K/T RS = 1.51 ± 0.03 is acquired for the whole population of data. We have shown the inefficiency of the explanation of this effect on account of an exponential change in the GCR intensity (I T ) with time (T) according to the relation I T = I 0exp(–γT) over the whole range of ages of iron meteorites. (3) In order to explain the overestimation of T K ages in comparison with T RS ages, a model has been proposed, according to which the GCR intensity has exponentially increased in the interval of 0–1500 Myr governed by the relation: I T = I T = 1500 (1 + αexp(–βT)). For one of the variants of this model, the GCR intensity has exponentially increased by a factor of two only over the recent ~300 Myr, remaining approximately constant for the rest of the time. The data acquired with the use of this model indicate that the measured T K ages are close to the actual time that the meteorites existed in space; the data are in agreement with the observed exponential distribution of T RS ages.  相似文献   

2.
We present the results of our hydrodynamic calculations of radial pulsations in helium stars with masses 1 MM ≤ 10 M, luminosity-to-mass ratios 1 × 103L/ML/M ≤ 2 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for mass fractions of helium Y=0.98 and heavy elements Z=0.02. We show that the lower boundary of the pulsation-instability region corresponds to L/M ~ 103L/M and that the instability region for L/M ? 5 × 103L/M is bounded by effective temperatures Teff ? 3 × 104 K. As the luminosity rises, the instability boundary moves into the left part of the Hertzsprung-Russell diagram and radial pulsations can arise in stars with effective temperatures Teff ? 105 K at L/M ? 7 × 103L/M. The velocity amplitude for the outer boundary of the hydrodynamic model increases with L/M and lies within the range 200 ? ΔU ? 700 km s?1 for the models under consideration. The periodic shock waves that accompany radial pulsations cause a significant change of the gas-density distribution in the stellar atmosphere, which is described by a dynamic scale height comparable to the stellar radius. The dynamic instability boundary that corresponds to the separation of the outer stellar atmospheric layers at a superparabolic velocity is roughly determined by a luminosity-to-mass ratio L/M ~ 3 × 104L/M.  相似文献   

3.
An attempt is made to construct a trial Qμ(l) distribution in the silicate mantle of Mars. With the allowance for the fact that on the PT plane the Earth’s geotherm is close to the distribution of areotherms, it was concluded that Qμ(l) should be distributed in the Martian interior topologically close to the Qμ(l) distribution in the Earth. The initial distribution was specified by the four-layer piecewise-constant distribution from the QML9 model. An important step was to select the power index in the frequency dependence of Qμ. Based on the laboratory data and on the experience of studying this problem for the Earth, n was specified in the interval 0.1–0.3. It was found that with the conversion of the initial distribution to the orbital period of Phobos around Mars, which is the only constraint for the problem derived from the observations, this distribution agrees reasonably well with the observational data at n = 0.1.  相似文献   

4.
We present the technique we used to compile a catalog of about 61 000 local stars brighter than K s = 8.2 m which were identified as most likely red clump candidates on the basis of their reduced proper motions in the K s band. The catalog was compiled from the combined Tycho-2 and 2MASS data for the stars with color indices J-K s ranging from 0.5 m to 0.8 m . It includes the equatorial coordinates, the proper motions, the magnitudes B T , V T , J, H, and K s , and the probabilities for the stars to be red clump giants.  相似文献   

5.
We used high-resolution echelle spectra with high signal-to-noise ratio to determine with a high degree of accuracy some atmospheric parameters (T eff, log g and [Fe/H]) for 68 non-variable supergiants of types F, G, and K and 26 classical Cepheids in 302 pulsation phases. Very accurate effective temperatures, with errors of only 10–30 K, were determined by the line-depth ratio method. We found that the observed intrinsic color indices (B ? V)0 can be related to these parameters: (B ? V)0 = 57.984? 10.3587(log T eff)2 + 1.67572(log T eff)3 ? 3.356 log g+ 0.321 V t + 0.2615[Fe/H] + 0.8833log g(log T eff). With this empirical relation, the intrinsic colors of individual supergiants and classical Cepheids of spectral types F0-K0 and of luminosity classes I and II can be estimated with an accuracy as high as 0.05 m , which is comparable to the accuracy of the most elaborate photometric procedures. In view of large distances to supergiants, the method we propose here allows a large-scale mapping of interstellar extinction with an accuracy of 0.1–0.2 m in a quite large region of the Galaxy.  相似文献   

6.
We investigate the combined effect of neutron and proton superfluidities on the cooling of neutron stars whose cores consist of nucleons and electrons. We consider the singlet state paring of protons and the triplet pairing of neutrons in the cores of neutron stars. The critical superfluid temperatures T c are assumed to depend on the matter density. We study two types of neutron pairing with different components of the total angular momentum of a Cooper pair along the quantization axis (|m J |=0 or 2). Our calculations are compared with the observations of thermal emission from isolated neutron stars. We show that the observations can be interpreted by using two classes of superfluidity models: (1) strong proton superfluidity with a maximum critical temperature in the stellar core T c max ?4×109 K and weak neutron superfluidity of any type (T c max ?2×108 K); (2) strong neutron superfluidity (pairing with m J =0) and weak proton superfluidity. The two types of models reflect an approximate symmetry with respect to an interchange of the critical neutron and proton pairing temperatures.  相似文献   

7.
We have performed hydrodynamic calculations of the radial pulsations of helium stars with masses 10MM ≤ 50M, luminosity-to-mass ratios 5 × 103L/ML/M ≤ 2.5 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for helium and heavy-element mass fractions of Y=0.98 and Z=0.02, respectively. We show that the high-temperature boundary of the instability region for radial pulsations at L/M ? 104L/M extends to Teff≈105 K. The amplitude of the velocity variations for outer layers is several hundred km s?1, while the brightness variations in the B band of the UBV photometric system are within the range from several hundredths to half a magnitude. At constant luminosity-to-mass ratio, the radial pulsation period is determined only by the effective temperature of the star. In the ranges of luminosity-to-mass ratios 104L/ML/M ≤ 2 × 104L/M and effective temperatures 5 × 104 K ≤ Teff ≤ 9 × 104 K, the periods of the radial modes are within 6 min ?Π?103 min.  相似文献   

8.
The Tycho-2 proper motions and five-band Tycho-2 and 2MASS photometry for approximately 2.5 million common stars have been used to select OB stars and to determine the extinction and photometric distance for each of them. We have selected 37 485 stars and calculated their reddenings based on their positions in the two-color V T -H, J-Ks diagrams relative to the zero-age main sequence and the theoretical reddening line for B5 stars. Tests confirm that the selected stars belong to the spectral types O-B with a small admixture of later types. We calculate the extinction coefficient R and its variations with Galactic longitude based on the positions of the selected stars in the two-color B T -V T , V T -Ks diagram. The interstellar extinction for each star is calculated as the product of the reddening found and the coefficient R. The extinction and its variations with Galactic longitude agree well with the extinction based on the model by Arenou et al. (1992). Calibration of the relation between the absolute magnitude and reduced proper motion V T − + 5 + 5 log μ for Hipparcos stars has allowed us to calculate the absolute magnitudes and photometric distances for the selected stars. The distances found agree with those derived from the Hipparcos parallaxes within 500 pc. The distribution of the stars and the extinction variations with distance found show that the selected stars form an almost complete sample of stars with spectral types earlier than B5 within about 750 pc of the Sun. The sample includes many noticeably reddened stars in the first and second Galactic quadrants that are absent from the Hipparcos and Tycho Spectral Types Catalogues. This slightly changes the pattern of the distribution of OB stars compared to the classical pattern based on Hipparcos. Original Russian Text ? G.A. Goncharov, 2008, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2008, Vol. 34, No. 1, pp. 10–20.  相似文献   

9.
The evolution of a Population-I star with an initial mass M ZAMS = 60 M has been calculated. At the stage when a red giant turns into an early-type helium star, the vast bulk of the stellar mass is concentrated in a compact core surrounded by an extended envelope that is unstable with respect to radial oscillations. The range of effective temperatures within which the instability arises extends to T eff ? 105 K. For the models corresponding to the Wolf-Rayet evolutionary stage (5 × 104 K ≤ T eff ≤ 1.05 × 105 K), hydrodynamic calculations of self-exciting radial stellar pulsations have been performed. The pulsational instability develops in a time interval comparable to the dynamic timescale. Once the amplitude has ceased to grow, the pulsational motions are nonlinear traveling waves propagating from the core boundary to the stellar surface. The velocity amplitude of the outer layers is 500 km s?1 < ΔU < 103 km s?1, depending on the effective temperature. During the evolution of a helium star, the mean ratio of the maximum expansion velocity of the outer layers to the local escape velocity decreases and lies within the range 0.25 < U max/v esc < 0.6 for the models considered. The nonlinearity of the stellar pulsations is responsible for the increase in the mean radius \(\bar r\) of the Lagrangian layers compared to the equilibrium radius r eq. The effect of the increase in mean radius decreases with rising effective temperature from\(\bar r\)/r ~ 10 at T eff = 7 × 104 K to \(\bar r\)/r ≈ 2 at T eff = 105 K. The radial pulsation periods for the models considered lie within the range 0.1 day ≤ Π ≤ 1.6 day and the amplitude of the bolometric magnitude variations does not exceed 0 . m 2.  相似文献   

10.
The eclipse observations were performed at the Laboratory of Radio Astronomy of the CrAO in Katsiveli with stationary instrumentation of the Solar Patrol at wavelengths of 10.5 and 12.0 cm. The data obtained were used to determine the brightness temperature of the undisturbed Sun at solar activity minimum between 11-year cycles 23 and 24: T d10.5 = (43.7 ± 0.5) × 103 K at 10.5 cm and T d12.0 = (51.8 ± 0.5) × 103 K at 12.0 cm. The radio brightness distribution above the limb group of sunspots NOAA 0866 was calculated. It shows that at both wavelengths the source consisted of a compact bright nucleus about 50 × 103 km in size with temperatures T b10.5 = 0.94 × 106 K and T b12.0 = 2.15 × 106 K located, respectively, at heights h 10.5 = 33.5 × 103 km and h 12.0 = 43.3 × 103 km above the sunspot and an extended halo with a temperature T b = (230–300) × 103 K stretching to a height of 157 × 103 km above the photosphere. The revealed spatial structure of the local source is consistent with the universally accepted assumption that the radiation from the bright part of the source is generated by electrons in the sunspot magnetic fields at the second-third cyclotron frequency harmonics and that the halo is the bremsstrahlung of thermal electrons in the coronal condensation forming an active region. According to the eclipse results, the electron density near the upper boundary of the condensation was N e ≈ 2.3 × 108 cm?3, while the optical depth was τ ≈ 0.1 at an electron temperature T e ≈ 106 K. Thus, the observations of the March 29, 2006 eclipse have allowed the height of the coronal condensation at solar activity minimum to be experimentally determined and the physical parameters of the plasma near its upper boundary to be estimated.  相似文献   

11.
We present the results of magnetic field measurements of four chemically peculiar (CP) stars with helium abundance anomalies which are the members of the Orion stellar association OB1. The stars under study were classified as magnetic by other authors earlier. The present paper contains the results of the extensive study of the stars. Magnetic field measurements allowed us to conclude that HD36540 has a weak field and the longitudinal component B e does not exceed 500 G. The longitudinal field of HD36668 varies with the period P = 2. d 11884 and the amplitude from ?2 to +2 kG. The magnetic field of HD36916 has mainly negative polarity and varies within the range from 0 to ?1 kG with the period P = 1.d 565238. HD37058 is a magnetic star, the longitudinal field of which varies from ?1.2 to +0.8 kG with the period P = 14. d 659. The B e field variability pattern for the stars HD36916 and HD37058 is of a simple harmonic type. The longitudinal field of HD36668 is best described with two combined harmonic functions (“a doublewave”). The variability period of HD36540 is still undetermined. For all the stars from this paper, we measured radial velocities V r, axial rotation rates v e sin i, and determined basic parameters of atmospheres (effective temperatures T eff and gravity acceleration log g). We also estimated masses M, luminosities L, and radii R of the stars.  相似文献   

12.
Using a reliablymeasured intrinsic (i.e., corrected for absorption effects) present-day luminosity function of high-mass X-ray binaries (HMXBs) in the 0.25–2 keV energy band per unit star formation rate, we estimate the preheating of the early Universe by soft X-rays from such systems. We find that X-ray irradiation, mainly executed by ultraluminous and supersoft ultraluminous X-ray sources with luminosity L X > 1039 erg s?1, could significantly heat (T >T CMB, where T CMB is the temperature of the cosmic microwave background) the intergalactic medium by z ~ 10 if the specific X-ray emissivity of the young stellar population in the early Universe was an order of magnitude higher than at the present epoch (which is possible due to the low metallicity of the first galaxies) and the soft X-ray emission from HMXBs did not suffer strong absorption within their galaxies. This makes it possible to observe the 21 cm line of neutral hydrogen in emission from redshifts z < 10.  相似文献   

13.
Using the method of searching for arbitrary shaped voids in the distribution of volume-limited samples of galaxies from the DR5 SDSS survey, we have identified voids and investigated their characteristics and the change in these characteristics with decreasing M lim (from ?19.7 to ?21.2, H 0 = 100 km s?1 Mpc?1)—the upper limit on the absolute magnitude of the galaxies involved in the construction of voids. The total volume of the 50 largest voids increases with decreasing M lim with a break near M* = ?20.44—the characteristic value of the luminosity function for SDSS galaxies. The mean overdensity in voids increases with decreasing M lim also with a weak break near M*. The exponent of the dependence of the volume of a void on its rank increases significantly with decreasing M lim starting from M lim ~ ?20.4 in the characteristic range of volumes, which reflects the tendency for greater clustering of brighter galaxies. The averaged profile of the galaxy overdensity in voids has a similar pattern almost at all M lim. The galaxies mostly tend to gravitate toward the void boundaries and to avoid the central void regions; the overdensity profile is flat in the intermediate range of distances from the void boundaries. The axial ratios of the ellipsoids equivalent to the voids are, on average, retained with changing M lim and correspond to elongated and nonoblate void shapes, but some of the voids can change their shape significantly. The directions of the greatest void elongations change chaotically and are distributed randomly at a given M lim. The void centers show correlations reflecting the correlations of the galaxy distribution on scales (35–70)h ?1 Mpc. The galaxy distribution in the identified voids is nonrandom—groups and filaments can be identified. We have compared the properties of the galaxies in voids (in our case, the voids are determined by the galaxies with absolute magnitudes M abs < M lim = ?20.44, except for the isolated galaxies) and galaxies in structures identified using the minimum spanning tree. A bimodal color distribution of the galaxies in voids has been obtained. A noticeable difference is observed in the mean color indices and star formation rates per unit stellar mass of the galaxies in dense regions (structures)—as expected, the galaxies in voids are, on average, bluer and have higher log (SFR/M star). These tendencies become stronger toward the central void regions.  相似文献   

14.
The physical and geometrical parameters of the individual components of the binary system Hip11253 (HD14874) are estimated. We used the method described in previous papers, which consists in getting the best fit between the entire observational spectral energy distribution of the system and the synthetic ones, created from model atmospheres. The parameters of the individual components of the system are derived as: T eff a = 6030 ± 100 K, T eff b = 4470 ± 130 K, log g a = 4.27 ± 0.13, log g b = 4.04 ± 0.13, R a = 1.22 ± 0.09R, R b = 1.32 ± 0.20R, with the G0 and K4.5 spectral types for the primary and secondary components, respectively. The synthetic magnitudes of both components were calculated using the Johnson-Cousins, Strömgren, and Tycho photometrical systems. Finally the formation and evolution of the system was discussed.  相似文献   

15.
Evolutionary tracks from the zero age main sequence to the asymptotic giant branch were computed for stars with initial masses 2 M M ZAMS ≤ 5 M and metallicity Z = 0.02. Some models of evolutionary sequences were used as initial conditions for equations of radiation hydrodynamics and turbulent convection describing radial stellar pulsations. The early asymptotic giant branch stars are shown to pulsate in the fundamental mode with periods 30 day ? Π ? 400day. The rate of period change gradually increases as the star evolves but is too small to be detected (Π?/Π < 10?5 yr?1). Pulsation properties of thermally pulsing AGB stars are investigated on time intervals comprising 17 thermal pulses for evolutionary sequences with initial masses M ZAMS = 2 M and 3 M and 6 thermal pulses for M ZAMS = 4 M and 5 M . Stars with initial masses M ZAMS ≤ 3 M pulsate either in the fundamental mode or in the first overtone, whereas more massive red giants (M ZAMS ≥ 4 M ) pulsate in the fundamental mode with periods Π ? 103 day. Most rapid pulsation period change with rate ?0.02 yr?1 ? Π?/Π ? ?0.01 yr?1 occurs during decrease of the surface luminosity after the maximum of the luminosity in the helium shell source. The rate of subsequent increase of the period is Π?/Π ? 5 × 10?3 yr?1.  相似文献   

16.
Parallaxes with an accuracy better than 10% and proper motions from the Gaia DR1 TGAS catalogue, radial velocities from the Pulkovo Compilation of Radial Velocities (PCRV), accurate Tycho-2 photometry, theoretical PARSEC, MIST, YaPSI, BaSTI isochrones, and the most accurate reddening and interstellar extinction estimates have been used to analyze the kinematics of 9543 thin-disk B-F stars as a function of their dereddened color. The stars under consideration are located on the Hertzsprung–Russell diagram relative to the isochrones with an accuracy of a few hundredths of a magnitude, i.e., at the level of uncertainty in the parallax, photometry, reddening, extinction, and the isochrones themselves. This has allowed us to choose the most plausible reddening and extinction estimates and to conclude that the reddening and extinction were significantly underestimated in some kinematic studies of other authors. Owing to the higher accuracy of TGAS parallaxes than that of Hipparcos ones, the median accuracy of the velocity components U, V, W in this study has improved to 1.7 km s?1, although outside the range ?0.1 m < (B T ? V T )0 < 0.5 m the kinematic characteristics are noticeably biased due to the incompleteness of the sample. We have confirmed the variations in the mean velocity of stars relative to the Sun and the stellar velocity dispersion as a function of their dereddened color known from the Hipparcos data. Given the age estimates for the stars under consideration from the TRILEGAL model and the Geneva–Copenhagen survey, these variations may be considered as variations as a function of the stellar age. A comparison of our results with the results of other studies of the stellar kinematics near the Sun has shown that selection and reddening underestimation explain almost completely the discrepancies between the results. The dispersions and mean velocities from the results of reliable studies fit into a ±2 km s?1 corridor, while the ratios σ V /σ U and σ W /σ U fit into ±0.05. Based on all reliable studies in the range ?0.1 m < (B T ? V T )0 < 0.5m, i.e., for an age from 0.23 to 2.4 Gyr, we have found: W = 7.15 km s?1, \({\sigma _U} = 16.0{e^{1.29({B_T} - {V_T})o}}\), \({\sigma _V} = 10.9{e^{1.11({B_T} - {V_T})o}}\), \({\sigma _W} = 6.8{e^{1.46({B_T} - {V_T})o}}\), the stellar velocity dispersions in km s?1 are proportional to the age in Gyr raised to the power β U = 0.33, β V = 0.285, and β W = 0.37.  相似文献   

17.
The superfine structure of the quasar 3C 273 has been investigated at wavelengths λ = 2 and 6 cm with angular resolutions up to φ = 20 μas for epochs 2005–2014. We have identified a nozzle and a bipolar outflow: a jet and a counterjet consisting of coaxial high- and low-velocity components. The separation between the nozzles in the plane of the sky is Δρ = 0.84 ± 0.16 pc; the flow ejection velocity is v ≤ 0.1c. The nozzle brightness temperature reaches T b ≈ 45 × 1012 K, φ = 20 μas, λ = 2 cm. The ejected electrons radiatively cool at a distance up to ≤4 pc. However, the jet afterglow is observed at a 8% level at a distance up to ρ ≈ 16 pc; the acceleration compensates for the radiative losses. The reduction in the emission level of the central flow at large distances determines the jet bifurcation. The counterjet shape is a mirror reflection of the initial part of the jet, suggesting a symmetry and identity of the ejected flows. The counterjet and jet nozzles are in the near and remote parts of the active region, respectively. The emission from the nozzles is absorbed by a factor of 2 and 15, respectively. The absorption decreases with increasing distance and the brightness of the jet fragments rises to its maximum at 0.5 pc from the nozzle. Arclike structures, arm fragments, are observed in the region of the nozzles. The relativistic plasma comes to the nozzles and is ejected. The brightness temperature of the arclike structures reaches 10% of the peak value, which is determined by the a smaller optical depth, the visibility in the transverse direction. The central high-velocity flow is surrounded by low-velocity components, hollow tubes being ejected as an excess angular momentum is accumulated. The remainder of the material flows along the arms toward the disk center until the next accumulation of an excess angular momentum and the process is repeated. The diameter of the outer nozzle is Ø = 25 pc and, further out, decreases exponentially; Ø n ≈ 80 exp(?1.15n) pc. The flow kinematics, collimation, and acceleration have a vortical nature. Ring currents producing magnetic fields, which accelerate and stabilize the processes, are generated in the rotating flows (tubes). The tangential directions of the currents are observed as parallel chains of components.  相似文献   

18.
We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the event of May 8, 1998, we determined the particle density n≈3.7×1010 cm?3, the temperature T≈4×107 K, and the magnetic field strength B≈220 G in the region of flare energy release. A wavelet analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations with periods P1≈7, 14 s and P2≈2.4 s, which we attribute to the ballooning and radial oscillations of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact (T≈5.3×107 K, n≈4.8≈1010 cm?3, B≈280 G) and extended (T≈2.1≈107 K, n≈1.2≈1010 cm?3, B≈160 G) loops. The results of the soft X-ray observations are consistent with the adopted model.  相似文献   

19.
We present photoelectric and spectral observations of a hot candidate proto-planetary nebula—early B-type supergiant with emission lines in spectrum—IRAS 19336-0400. The light and color curves display fast irregular brightness variations with maximum amplitudes \(\Delta V = 0_ \cdot ^m 30\), \(\Delta B = 0_ \cdot ^m 35\), \(\Delta U = 0_ \cdot ^m 40\) and color-brightness correlations. By the variability characteristics IRAS 19336-0400 appears similar to other hot proto-planetary nebulae. Based on low-resolution spectra in the range λ4000–7500 Å we have derived absolute intensities of the emission lines Hα, Hβ, Hγ, [S II], [N II], physical conditions in gaseous nebula: n e = 104 cm?3, T e = 7000 ± 1000 K. The emission line Hα, Hβ equivalent widths are found to be considerably variable and related to light changes. By UBV-photometry and spectroscopy the color excess has been estimated: E B-V = 0.50–0.54. Joint photometric and spectral data analysis allows us to assume that the star variability is caused by stellar wind variations.  相似文献   

20.
We have obtained new estimates of the Sun’s distance from the symmetry plane Z and the vertical disk scale height h using currently available data on stellar OB associations, Wolf–Rayet stars, HII regions, and Cepheids. Based on individual determinations, we have calculated the mean Z = ?16 ± 2 pc. Based on the model of a self-gravitating isothermal disk for the density distribution, we have found the following vertical disk scale heights: h = 40.2 ± 2.1 pc from OB associations, h = 47.8 ± 3.9 pc from Wolf–Rayet stars, h = 48.4 ± 2.5 pc from HII regions, and h = 66.2 ± 1.6 pc from Cepheids. We have estimated the surface, Σ = 6 kpc?2, and volume, D(Z ) = 50.6 kpc?3, densities from a sample of OB associations. We have found that there could be ~5000 OB associations in the Galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号