首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In order to explain Galactic structures, a self-gravitating system composed of massive fermions in spherical symmetry is considered. The finite mass distribution of such a component is obtained after solving the Einstein equation for a thermal and semi-degenerate fermionic gas, described by a perfect fluid in hydrostatic equilibrium and exposed to cutoff effects (e.g. evaporation). Within this more general approach a family of density profiles arises, which explains dark matter halo constraints of the Galaxy and provides at the same time an alternative to the central black hole scenario in Sgr A*. This analysis narrows the allowed particle mass to mc2 = 48?345 keV.  相似文献   

2.
The spins of supermassive black holes in FR I and FR II radio galaxies are estimated using two models for the generation of the relativisitic jets, based on the Blandford–Znajek and Blandford–Payne mechanisms: the hybrid model of Meier and a flux-trapping model. The magnetic field at the event horizon is estimated assuming equipartition between the energy densities of the magnetic field and the accreting material. The magnetic field near the inner edge of the accretion disk is estimated assuming equipartition between the magnetic pressure and the radiation pressure, and also assuming proportionality between the magnetic field and the spin. In the case of FR I objects, both mechanisms for the generation of the jets (the hybrid model of Meier and a flux-trapping model) are efficient. For the FR II objects, equipartition between the energy densities of the magnetic field and the accretion flow facilitates stronger retrograde rotation of the supermassive black hole. Plots of spin versus mass suggest a predominantly chaotic character for the accretion in both types of radio galaxies.  相似文献   

3.
Using literature data on approximately 400 compact radio sources detected with the Very Large Array and located in the direction of the Galactic center within 2° of the compact source Sgr A*, 69 sources whose angular sizes are determined by scattering on electron density inhomogeneities were distinguished. Fifty-five of these are extragalactic, two are supercompact HII regions, ten are sources of maser emission, and two are variable Galactic sources. The excess of the apparent angular sizes of maser sources within 2° of the Galactic center above the mean size of objects of this class in other parts of the Galaxy found in many studies cannot be explained purely by the effect of scattering of their radio emission on interstellar plasma inhomogeneities. The angular sizes of these objects are increased due to scattering only within Galactic longitudes of about 0.4° and Galactic latitudes less than 0.1°. The turbulent medium responsible for scattering of radio emission of compact sources in the immediate vicinity of the Galactic center is strongly concentrated toward the compact source Sgr A* at the Galactic center. No extragalactic sources are observed within 0.4° in longitude and 0.2° in latitude of the Galactic center, because of their low brightness due to the superstrong scattering in this region. Data on scatter broadening can be used to study the distribution of turbulent plasma near the Galactic center.  相似文献   

4.
A catalog of λ=1.35 cm water-vapor maser spectra in Sgr B2 obtained in 1992–2003 is presented; this supplements our results for earlier observations in 1982–1992. Sgr B2 was monitored using the 22 m radio telescope of the Pushchino Radio Astronomy Observatory. The whole monitoring dataset for 1982–2003 has been analyzed. The emission received is a superposition of radiation from various parts of the entire Sgr B2 region, but the main contribution is made by two sources: Sgr B2(M) and Sgr B2(N). The monitoring did not reveal any long-term component of the integrated maser flux variations with a period shorter than 20 years. The flare component of the flux variability and a short-period component with a mean period of two years have been found. The latter are correlated with variations of the velocity centroid, supporting the reality of the short-period variations. It is likely that all the various types of variations are inherent to both Sgr B2(M) and Sgr B2(N), and represent a superposition of the variations occurring in each of these sources. There is an alternation of maxima of the emission from Sgr B2(M) and Sgr B2(N).  相似文献   

5.
Radio and optical data are used to analyze the development of the flare in the blazar 3C 454.3 observed in 2004–2007. A detailed correspondance between the optical and radio flares is established, with a time delay that depends on the observing frequency. The variation of the delay of the radio flare relative to the optical flare is opposite to the dispersion delay expected for the propagation of radiation in the interstellar medium, testifying to an intrinsic origin for the observed outburst. Small-scale flux variations on time intervals of 5–10 days in the millimeter and optical are also correlated, with a time delay of about ten months. This may provide evidence for a single source generating the radiation at all wavelengths. Rapid flux fluctuations in the radio and optical that are correlated with the indicated time delays could be associated with inhomogeneities in the accretion disk. Detailed studies of the flux variations of Active Galactic Nuclei (AGN) can be used to analyze the structure of the accretion disk. A model for the energy release in AGN that is not associated purely with accretion onto supermassive black holes is proposed. As is the case for other active members of the AGN family, estimates of the lifetime of the binary black-hole system in 3C 454.3 suggest that this object is in a stage of its evolution that is fairly close to the coalescence of its black holes. The energy that is released as the companion of the central black hole loses orbital angular momentum is sufficient to explain the observed AGN phenomena. The source of primary energy release could be heating of the gas behind shock fronts that arise due to the friction between the companion black hole and the ambient gaseous medium. The orbit of the companion could be located at the periphery of the accretion disk of the central body at its apocenter and plunge more deeply into the accretion disk at its pericenter, inducing flares at all wavelengths. Energy-release parameters such as the temperature and density of the heated gas are estimated for 3C 454.3. The model considered assumes omnidirectional radiation of the medium in the presence of a magnetic field. The radiation corresponding to the minimum flux level (base level) could represent omnidirectional radiation due to the orbit of the moving companion. The fraction of the energy that is transferred to directed jets is small, comprising 1–2% of the total energy released due to the loss of orbital angular momentum by the companion.  相似文献   

6.
We have calculated the degree and position angle of the polarization of radiation scattered in a magnetized, optically thin or optically thick envelope around a central source, taking into account Faraday rotation of the plane of polarization during the propagation of the scattered radiation and the finite size of the radiation source. The wavelength dependence of the degree of polarization can be used to estimate the magnetic field of the source (a star, the region around a neutron star, or a black hole), and we have used our calculations to estimate the magnetic fields in a number of individual objects: several hot O and Wolf-Rayet stars, compact objects in X-ray close binaries with black holes (SS 433, Cyg X-1), and supernovae. The spectrum of the linear polarization can be used to determine the magnetic field in the vicinity of a central supermassive black hole, where the polarized optical radiation is generated. In a real physical model, this value can be extrapolated to the region of the last stable orbit. In the future, the proposed technique will make it possible to directly estimate the magnetic field in the region of the last stable orbit of a supermassive black hole using X-ray polarimetry.  相似文献   

7.
If the linear polarization of the optical emission of active galactic nuclei (AGNs) arises in magnetized accretion disk (the Milne problem), the degree of polarization should depend strongly on the spin of the central black hole. For the same black hole luminosities and masses, the polarization is substantially higher for rotating Kerr than for non-rotating Schwarzschild black holes. Statistically, this means that the majority of AGNs displaying appreciable linear polarization should have Kerr black holes. The spin dependence of the polarization is due to the fact that the radius of the innermost stable circular orbit r isco depends on the spin—this radius is three gravitational radii for a Schwarzschild black hole, and a factor of six smaller for a rapidly rotating black hole. This means that the magnetic field in the region of emergence of the optical emission, which decreases with distance from r isco , is higher for a non-rotating than for a rapidly rotating black hole. This higher magnetic field gives rise to strong Faraday depolarization, explaining the effect considered here.  相似文献   

8.
The magnetic-field structure in regions of stationary, planar accretion disks around active galactic nuclei where general-relativistic effects can be neglected (from 10 to 200 gravitational radii) is considered. It is assumed that the magnetic field in the outer edges of the disk, which forms in the magnetosphere of the central black hole during the creation of the relativisitic jets, corresponds to the field of a magnetic dipole perpendicular to the plane of the disk. In this case, the azimuthal field component Bφ in the disk arises due to the presence of the radial field Bρ and the azimuthal velocity component Uφ. The value of the magnetic field at the inner radius of the disk is taken to correspond to the solution of the induction equation in a diffusion approximation. Numerical solutions of the induction equation are given for a number of cases.  相似文献   

9.
Strong constraints are obtained for the spins of supermassive black holes in a number of Active Galactic Nuclei. These estimates are based on spectropolarimetric data, obtained mainly on the 6-m telescope of the Special Astrophysical Observatory, as well as data on the kinetic power of relativistic jets. The magnetic fields at the innermost stable Keplerian orbit in the accretion disk and at the event horizon of the supermassive black hole are estimated. These data are used to place strong constraints on the spins of supermassive black holes in Active Galactic Nuclei.  相似文献   

10.
中国帕米尔地区黄土上部色度变化特征及古气候意义   总被引:4,自引:1,他引:3  
陈杰  杨太保  曾彪  何毅  冀琴 《沉积学报》2018,36(2):333-342
以中国境内帕米尔黄土-古土壤序列为研究对象,对剖面上部进行土壤色度指标与其他常用气候替代指标(如磁化率、碳酸盐和有机碳)对比研究后发现:在帕米尔黄土沉积期间,亮度L*很大程度上受控于颜色分量a*和b*,进而可能与影响a*、b*的物质相对含量有关。红度a*在整个黄土-古土壤剖面中变化特征明显,与磁化率呈明显的负相关关系,可能与土壤中铁氧化物的种类和含量关系密切。由于a*和b*具有较高的相关性,认为它们具有较为一致的致色物质,可能受控于相似的气候因子。色度a*、b*和亮度L*的变化表明其可以作为帕米尔地区良好的气候代用指标,结合磁化率共同反映该地区的古气候变化过程。  相似文献   

11.
We present an analysis of data from multi-frequency monitoring of the blazar 3C 454.3 in 2010–2012, when the source experienced an unusually prolonged flare with a duration of about two years. This corresponds to the orbital period of the companion in a scenario in which two supermassive black holes are present in the nucleus of 3C 454.3. The flare’s shape, duration, and amplitude can be explained as a result of precession, if the plane of the accretion disk and the orbital plane of the binary are coincident. We detected small-scale structure of the flare, on time scales of no more than a month. These features probably correspond to inhomogeneities in the accretion disk and surrounding regions, with sizes of the order of 1015 cm. We estimated the size of the accretion disk based on the dynamical and geometrical parameters of this binary system: its diameter is comparable to the size of the orbit of the supermassive binary black hole, and its thickness does not exceed the gravitational radius of the central black hole. The presence of characteristic small-scale features during the flare makes it possible to estimate the relative time delays of variations in different spectral ranges: from gamma-ray to millimeter wavelengths.  相似文献   

12.
黄河上游玛曲草原湍流统计特征分析   总被引:1,自引:0,他引:1  
湍流运动是大气最基本的运动特征,是大气能量物质交换的主要方式。利用玛曲气候与环境综合观测研究站2006年12月至2007年1月的湍流观测资料,分析了湍流方差特征、湍流动能及湍流强度等湍流统计特征,结果表明:无量纲化的风速脉动σu/u*,σv/u*,σw/u*与稳定度z/L符合1/3次方规律;大气处于中性层结时,在近中性条件下,无量纲化风速方差σu/u*,σv/u*,σw/u*分别趋于常数A=3.42,B=3.34,C=1.02;无因次化温度脉动方差σT/|T*|和湿度脉动方差σq/|q*|与稳定度z/L的变化都比较离散,基本上不能拟合出-1/3次方规律。湍流动能随风速增大而增大,白天比夜间明显,相比之下,夜间湍流动能较小,且随风速的增大比较缓慢;湍流动能随稳定的变化是非常明显的,在稳定度近中性时湍流动能取得最大值。湍流强度Iu,Iv,Iw随风速的增大而减小,当风速在0 m/s5 m/s时,湍流强度变化很小。  相似文献   

13.
静止环境中平面负浮力排放近区特性的数值研究   总被引:2,自引:0,他引:2       下载免费PDF全文
运用k-ε湍流模型,建立静止环境中平面负浮力倾斜射流的二维数学模型,采用D.M.Shahrabani和J.D.Ditmars的试验资料进行检验,并且对这类流动进行了数值预报。在此基础上,提出了将射流影响区域划分成为三个区的概念,即:射流区、回流区和水平扩展区,也给出了射流区和水平扩展区及射流区内部分区的界限。给出了收缩断面的位置及该断面物理量的分布,为远区特性计算给出了定解条件。  相似文献   

14.
The dependence of the emission measure on the dispersion measure due to the Galactic background has been derived for 120 directions in the Galaxy. This analysis has yielded the mean electron density, effective thickness of the electron layer, and the volume filling factor of the clouds of ionized gas along the line of sight. The pulsar J1745?2900, which lies in a direction close to the direction toward the center of the Galaxy, is located at least 100 pc closer to the observer than the source Sgr A* along the line of sight. The scatter-broadened angular size of J1745?2900 is determined by the turbulent medium in the Sagittarius Arm.  相似文献   

15.
We have studied the structural evolution of the dust envelope of V4334 Sgr, starting with the onset of its condensation in 1997. A model with complete cloud cover, with the optical depth growing until the end of 1999, gives the best fit to the photometric data in the optical and IR. The inner radius of the dust layer remained virtually constant, whereas its thickness increased due to expansion. The deep minimum in the visual light curve of V4334 Sgr in October 1998 is attributed to the arrival at the dust-grain condensation zone of a density discontinuity in the circumstellar envelope. The discontinuity was probably formed early in 1997 due to an increase in the mass-loss rate by a factor of about four, possibly associated with an increase in the luminosity of V4334 Sgr during its transformation into a carbon star. After this luminosity increase, the mass-loss rate was $\dot M \approx 2 \times 10^{ - 6} M_ \odot /yr$ . In the summer of 1999, the mass of the dust envelope was $M_{dust} \approx 2 \times 10^{ - 7} M_ \odot (M_{gas} \approx 4 \times 10^{ - 6} M_ \odot)$ . In the complete-cloud-cover model, the envelope consists of graphite grains with a gr=0.05 µm, to ~85% per cent in terms of the number of grains. The remaining ~15 per cent of the grains have sizes a gr=0.1 and 0.25 µm. To reproduce the small hump in the spectral energy distribution of V4334 Sgr near 11 µm, some silicon carbide grains must be added to the graphite mixture. Their contribution to the V optical depth is ≤4%. The first deep minimum in the visual light curve could also be reproduced using a model in which the dust cloud has condensed along the line of sight, but a detailed analysis of the resulting characteristics of the cloud and envelope indicates that this model is improbable.  相似文献   

16.
通过研究矩阵与其伴随矩阵A^*,^*A之间的关系,得到了A^*,^*A较为完整的一系列性质,并给出了A^*,^*A的一些应用。  相似文献   

17.
We list and analyze the main currently known mechanisms for accelerating the space motions of stars. A high space velocity of a star can be a consequence of its formation in the early stages of the evolution of a massive galaxy, when it was spheroidal and non-stationary, so that stars were born with velocities close to the escape velocity for the galaxy. Another possibility is that the star arrived from another galaxy with a velocity that is high for our Galaxy. The decay of unstable close multiple stars or supernova explosions in close binaries can also provide velocities of up to several hundreds of km/s to main-sequence stars and velocities of up to ∼1000 km/s to degenerate stars, neutron stars, and stellar-mass black holes. The merger of components of a binary system containing two neutron stars or a neutron star and a black hole due to gravitational-wave radiation can accelerate the nascent black hole to a velocity∼1000 km/s. Hypervelocity relativistic stars can be born due to asymmetric neutrino ejection during a supernova explosion. Stars can be efficiently accelerated by single and binary supermassive black holes (with masses from several millions to several billions of solar masses) in the nuclei of galaxies. Thanks to their gravitational field and fast orbital motion (in the case of binary objects), supermassive black holes are able to accelerate even main-sequence stars to relativistic velocities.  相似文献   

18.
We analyze the observed parameters of massive extremely close binaries containing Wolf-Rayet stars and black holes, and identify those systems whose supernova outbursts lead to the formation of rapidly rotating Kerr black holes. It is proposed that the formation of such a black hole is accompanied by a strong gamma-ray burst. Several types of observed systems satisfy the conditions necessary for the formation of a Kerr black hole: BH+WR, BH+OB, WR+O, and BH+K,M.  相似文献   

19.
We present the results of our CCD photometric and moderate-dispersion spectroscopic observations of the binary system V4641 Sgr, which contains a black hole of mass ≈9.5M and a normal B9III star. The photometric light curve reveals an ellipticity effect with very high amplitudes in V and R, 0.40m and 0.37m, and the color curve shows that the surface temperature is nonuniform. All this testifies to tidal distortion of the normal star's surface due to the massive companion and to a high inclination of the orbit to the line of sight. In June and July 2002, during quiescence, we obtained data during three flares with amplitudes up to 0.26m. In particular, spectroscopic observations were acquired near the time of the black hole's inferior conjunction. One hour before conjunction, a depression by EW=0.5 Å was observed in the red wing of the Hα absorption line, interpreted as absorption by gas flowing in the direction from the observer toward the normal star. This flow is apparently associated with a rarefied gas disk around the black hole, and the conjunction grazes the stellar surface if the orbital inclination is close to 70.7°. The maximum velocity along a circular Keplerian orbit is 650 km/s at a distance of R=0.15–0.20a from the black hole (where a is the component separation). Thus, we find the mass of the black hole to be M BH =7.1–9.5M, confirming the model of Orosz et al. (2001).  相似文献   

20.
ASCA, RXTE, and Chandra observations of Seyfert galaxies indicate the presence in their spectra of broad emission lines with characteristic double-peaked pro files, which could arise in the inner regions of an accretion disk. In such regions, general relativistic effects must be taken into account, and may even dominate. In connection with this, we have constructed the radiation spectrum for an individual spectral line for a model isothermal Kerr accretion disk. This demonstrates the manifestation of general relativistic effects in pure form, unclouded by effects associated with models for the structure of the disk itself. It is assumed that matter in the disk moves in circular geodesics in the equatorial plane. The spectrum retains a characteristic two-peaked profile for wide ranges of values of the radial coordinate of the radiating region, angular momentum of the black hole, and viewing angle. The inner regions of the disk make an appreciable contribution to the red wing of the spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号