首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon stocks and carbon accumulation in the earth's drylands have gained increasing attention. The winter-cold deserts of Middle Asia, i.e. in Kazakhstan, Uzbekistan, and Turkmenistan, cover an area of 2.5 million km2. Within these deserts, the two Saxaul species White Saxaul (Haloxylon persicum Bunge ex Boiss. & Buhse) and Black Saxaul (Haloxylon aphyllum (Minkw.) Iljin) are dominant woody species with a potential distribution area of about 500,000 km2. From the 1950s until today, the Saxaul vegetation has been degraded through logging and over-grazing. In this paper, we estimate the current and potential living above ground and below ground biomass of the Saxaul vegetation and its carbon stock. The living above ground biomass ranges between 1.5 t/ha and 3 t/ha. The potential carbon stocks above ground and below ground amount to 29.4–52.1 million t and 22–81.4 million t, respectively. Today, only 11%–28% of the potential biomass and carbon stock have remained. The carbon stock of the Saxaul vegetation is low compared to other ecosystems of the earth, but restoration and conservation of Saxaul vegetation is one way to sequester carbon through vegetation for Uzbekistan and Turkmenistan, which do not have much other woody vegetation.  相似文献   

2.
A new and simple method is developed to efficiently quantify erosion and deposition rates based on stock unearthing measurements. This is applicable to spatial scales ranging from plot to hillslopes, and to time scales ranging from single hydrologic events to centennial scales. The method is applied to a plot area on vineyard hillslopes in Burgundy (Monthélie, France), with measurement of 4328 vine plants. A sediment budget established at the plot scale shows a mean soil lowering of 3.44 ± 1 cm over 20 years, involving a minimal erosion rate of 1.7 ± 0.5 mm yr− 1. Locally, erosion rates can reach up to 8.2 ± 0.5 mm yr− 1.This approach allows the sediment redistribution to be mapped and analyzed at 1-m resolution. It provides novel insights into the characterization of erosion patterns on pluri-decennial scales and into the analysis of spatial distribution of erosion processes on cultivated hillslopes.  相似文献   

3.
Quantifying the variability and allocation patterns of aboveground carbon stocks across plantation forests is central in deriving accurate and reliable knowledge and understanding of the extent to which these species contribute to the global carbon cycle and towards minimizing climate change effects. The principal objective of this study was to quantify the variability and allocation patterns of aboveground carbon stocks across Pinus and Eucalyptus plantation forests, tree-structural attributes (i.e. stems, barks, branches and leaves) and age groups, using models developed based on remotely sensed data. The results of this study demonstrate that aboveground carbon stocks significantly (α = 0.05) vary across different plantation forest species types, structural attributes and age. Pinus taeda and Eucalyptus grandis species contained aboveground carbon stocks above 110 t C ha−1, and Eucalyptus dunii had 20 t C ha−1. Across plantation forest tree structural attributes, stems contained the highest aboveground carbon stocks, when compared to barks, branches and leaves. Aboveground carbon stock estimates also varied significantly (α = 0.05) with stand age. Mature plantation forest species (i.e. between 7 and 20 years) contained the highest aboveground carbon stock estimates of approximately 120 t C ha−1, when compared to younger species (i.e. between 3 and 6 years), which had approximately 20 t C ha−1. The map of aboveground carbon stocks showed distinct spatial patterns across the entire study area. The findings of this study are important for understanding the contribution of different plantation forest species, structural attributes and age in the global carbon cycle and possible climate change moderation measures. Also, this study demonstrates that data on vital tree structural attributes, previously difficult to obtain, can now be easily derived from cheap and readily-available satellite data for inventorying carbon stocks variability.  相似文献   

4.
The sediment flux generated by postglacial channel incision has been calculated for the 2150 km2, non-glacial, Waipaoa catchment located on the tectonically active Hikurangi Margin, eastern North Island, New Zealand. Sediment production both at a sub-catchment scale and for the Waipaoa catchment as a whole was calculated by first using the tensioned spline method within ARC MAP to create an approximation of the aggradational Waipaoa-1 surface (contemporaneous with the Last Glacial Maximum), and second using grid calculator functions in the GIS to subtract the modern day surface from the Waipaoa-1 surface. The Waipaoa-1 surface was mapped using stereo aerial photography, and global positioning technology fixed the position of individual terrace remnants in the landscape. The recent discovery of Kawakawa Tephra within Waipaoa-1 aggradation gravels in this catchment demonstrates that aggradation was coincidental with or began before the deposition of this 22 600 14C-year-old tephra and, using the stratigraphic relationship of Rerewhakaaitu Tephra, the end of aggradation is dated at ca 15 000 14C years (ca 18 000 cal. years BP). The construction of the Waipaoa-1 terrace is considered to be synchronous and broadly correlated with aggradation elsewhere in the North Island and northern South Island, indicating that aggradation ended at the same time over a wide area. Subsequent downcutting, a manifestation of base-level lowering following a switch to postglacial incision at the end of glacial-age aggradation, points to a significant Southern Hemisphere climatic warming occurring soon after ca 15 000 14C years (ca 18 000 cal. years BP) during the Older Dryas interval. Elevation differences between the Waipaoa-1 (c.15 ka) terrace and the level of maximum channel incision (i.e. before aggradation since the turn of the 20th century) suggest about 50% of the topographic relief within headwater reaches of the Waipaoa catchment has been formed in postglacial times. The postglacial sediment flux generated by channel incision from Waipaoa catchment is of the order of 9.5 km3, of which ~ 6.6 km3 is stored within the confines of the Poverty Bay floodplain. Thus, although the postglacial period represented a time of high terrigenous sediment generation and delivery, only ~ 30% of the sediment generated by channel incision from Waipaoa catchment probably reached the marine shelf and slope of the Hikurangi Margin during this time. The smaller adjacent Waimata catchment probably contributed an additional 2.6 km3 to the same depocentre to give a total postglacial sediment contribution to the shelf and beyond of ~ 5.5 km3. Sediment generated by postglacial channel incision represents only ~ 25% of the total sediment yield from this landscape with ~ 75% of the estimated volume of the postglacial storage offshore probably derived from hillslope erosion processes following base-level fall at times when sediment yield from these catchments exceeded storage.  相似文献   

5.
Since the end of the Last Glacial Maximum, hydrology in Europe has been influenced by both climate changes, and since Neolithic times, an increase in human activity. Paleohydrological reconstructions, especially from lake studies, can help identify the respective impact of these two factors. The present work focuses on a lacustrine geosystem, the Sarliève paleolake in the Massif Central (France), in an unusually dry, temperate area. The lake sediment geometry (core drillings, geotechnical methods), and the geochemical and mineralogical characterization of the catchment rocks and soils, and of the lacustrine deposits, indicate major variations in paleohydrology during the last 12,000 years as dated by 14C, palynology and tephrochronology. In addition, a model quantifying detrital versus biochemical lacustrine components was developed to identify hydrological trends. The data show that the Sarliève area was characterized mainly by remarkably dry conditions, hence sharpening the climatic trends at middle latitudes in Western Europe. Three main hydrological phases are distinguished since the Late Glacial: (1) 13.7–7.5 ka cal BP, a dominant dry climate, with a peak at ca. 8 ka cal BP, leading to a lowstand in water level and unusual mineral authigenesis, zeolite then dolomite, constituting up to 60% of the lacustrine sediments; (2) 7.5 to ca. 5.3 ka cal BP, repeated short-duration hydrological alternations that could have been climate-driven: lowstands in water level with up to 60% biochemical minerals versus higher water levels with <10% biochemical minerals; (3) 5.3 ka cal BP to the Middle Ages (i.e. beginning in the 5th century AD), a hydrological trend towards perennial high water level, with mainly detrital sediments, probably linked to climate evolution, except periods of obvious human-driven drying during the last two millennia.  相似文献   

6.
The syenites of Piranshahr pluton form homogeneous mesoperthite-rich rocks which are exposed over a large area (>30 km2). With >85% modal composition of feldspar and rare ferromagnesian minerals, the syenites are petrographically suitable for feldspar exploration. The chemical composition of the Piranshahr syenites (i.e., high Al2O3 and (Na2O + K2O)) is also appropriate for potential feldspar mining. By means of an inexpensive concentration procedure that includes high-intensive magnetic separation and cation collector floatation, it is possible to achieve the needed feldspar composition (high Al2O3 (~20%), (Na2O + K2O) >12.5% and low FeOtot <0.25) for a marketable product. These data confirm economic potential of Piranshahr syenites as a huge feldspar source from the geologic and beneficiation perspectives.  相似文献   

7.
Satisfying the food demands of an ever-increasing population, preserving the natural resource base, and improving livelihoods are major challenges for South Asia. A large area of land in the Middle and Lower Gangetic Plains of South Asia remains either uncultivated or underused following the rice harvest in the kharif (wet) season. The area includes “rice-fallow,” estimated at 6.7 million ha, flood-prone riversides (“diara lands,” 2.4 million ha), waterlogged areas (4.9 million ha), and salt-affected soils (2.3 million ha). Bringing these lands under production could substantially improve the food supply and enhance livelihoods in the region. This paper describes a methodological case study that targeted resource-conserving technologies in underused lands of the Ballia District of eastern Uttar Pradesh (India) using multispectral remote-sensing images. Classification of temporal satellite data IRS-P6 in combination with Spot VGT 2 permitted the identification of all major categories of underused land during the post-rainy rabi/winter season, with an average accuracy of 89%. Based on three-year averages of field demonstrations, farmers gained an additional income of $63 ha−1 by introducing raised beds in salt-affected soils; $140 and $800 ha−1 by introducing deepwater rice varieties (monsoon) and boro rice (winter) in waterlogged areas; and $581 ha−1 by introducing zero-till lentil (winter) in rain-fed fallow lowland. Timely wheat planting through zero-tillage implies an additional income of $147 ha−1 and could increase wheat production by 35,000-65,000 tons in the district. The methodologies and technologies suggested in the study are applicable to more than 15 million ha of underutilized lands of the Indo-Gangetic Plains of South Asia. If the technologies are precisely applied, they can result in more than 3000 million US $ of additional income every year to these poverty prone areas.  相似文献   

8.
Over the last 20 years there has been a surge of interest in paleolimnology and as a result a large accumulation of lake sedimentation records. This emerging archive has allowed us to develop empirical models to describe which variables explain significant variation in sedimentation rates over the past ∼150 years across large spatial scales. We hypothesized that latitude would be a significant explanatory variable of profundal zone lake sedimentation rates across a temperate to polar gradient. We further hypothesized that along a more longitudinally-constrained dataset (i.e. east coast of North America), latitude would explain a greater proportion of the variance. To test these hypotheses, we collated data from 125 natural, average-sized lakes (with surface area <500 km2) by recording authors’ estimates of sedimentation rates (measured as mm/year) or by digitizing recent sediment profiles and calculating sedimentation rates over the past ∼150 years. We found that, at both scales, latitude was the strongest predictor of lake sedimentation rates (full dataset: r 2 = 0.28, P = 0.001, n = 125; east coast dataset: r 2 = 0.58, P < 0.001, n = 43). By conducting a multiple linear regression analysis, we found that 70% of the variance in sedimentation rates from the east coast transect was explained by latitude and elevation alone. This latter model is of sufficient strength that it is a robust predictive tool. Given that climate and land-use strongly co-vary with latitude and that both of these factors have previously been shown to influence lake sedimentation rates, it appears that latitude is a surrogate measure for climate and land-use changes. We also show support for land-use as an important variable influencing sedimentation rates by demonstrating large increases in recent versus Holocene accumulation rates. These results indicate that it is possible to make generalizations about sedimentation rates across broad spatial scales with even limited geographic data.  相似文献   

9.
At high‐latitude continental margins, large‐scale submarine sliding has been an important process for deep‐sea sediment transfer during glacial and interglacial periods. Little is, however, known about the importance of this process prior to the arrival of the ice sheet on the continental shelf. Based on new two‐dimensional seismic data from the NW Barents Sea continental margin, this study documents the presence of thick and regionally extensive submarine slides formed between 2.7 and 2.1 Ma, before shelf‐edge glaciation. The largest submarine slide, located in the northern part of the Storfjorden Trough Mouth Fan (TMF), left a scar and is characterized by an at least 870‐m‐thick interval of chaotic to reflection‐free seismic facies interpreted as debrites. The full extent of this slide debrite 1 is yet unknown but it has a mapped areal distribution of at least 10.7 × 103 km2 and it involved >4.1 × 10km3 of sediments. It remobilized a larger sediment volume than one of the largest exposed submarine slides in the world – the Storegga Slide in the Norwegian Sea. In the southern part of the Storfjorden TMF and along the Kveithola TMF, the seismic data reveal at least four large‐scale slide debrites, characterized by seismic facies similar to the slide debrite 1. Each of them is ca. 295‐m thick, covers an area of at least 7.04 × 103 km2 and involved 1.1 × 10km3 of sediments. These five submarine slide debrites represent approximately one quarter of the total volume of sediments deposited during the time 2.7–1.5 Ma along the NW Barents Sea. The preconditioning factors for submarine sliding in this area probably included deposition at high sedimentation rate, some of which may have occurred in periods of low eustatic sea‐level. Intervals of weak contouritic sediments might also have contributed to the instability of part of the slope succession as these deposits are known from other parts of the Norwegian margin and elsewhere to have the potential to act as weak layers. Triggering was probably caused by seismicity associated with the nearby and active Knipovich spreading ridge and/or the old tectonic lineaments within the Spitsbergen Shear Zone. This seismicity is inferred to be the main influence of the large‐scale sliding in this area as this and previous studies have documented that sliding have occurred independently of climatic variations, i.e. both before and during the period of ice sheets repeatedly covering the continental shelf.  相似文献   

10.
Preserving soils is a major challenge in ensuring sustainable agriculture for the future. Soil erosion by water is a critical issue in the Mediterranean regions and usually occurs when high-erosive precipitation is in temporal association with poor vegetation cover and density. Modelling soil erosion risks over large spatial scales suffers from the scarcity of accurate information on land cover, rainfall erosivity and their intra-annual dynamics. We estimated the soil erosion risk on arable land in a Mediterranean area (Grosseto Province, southern Tuscany, Italy) and investigated its potential reduction as a response to the change in intra-annual distribution of land cover due to the increase of perennial forage crops. A GIS-based (R)USLE model was employed and a scenario analysis was performed by setting criteria for raising the performance of perennial forage crops. Statistical data on agricultural crops provided an insight into current intra-annual land cover dynamics. Rainfall erosivity was computed on the basis of 22-year hourly precipitation data. The model was used to: i) quantify the potential soil losses of arable land in the study area, ii) identify those areas highly affected by erosion risks iii) explore the potential for soil conservation of perennial crops, thereby enabling appropriate preventive measures to be identified. The erosion rates, averaged over an area of about 140’000 ha, are estimated to 33.42 Mg ha−1 y−1. More than 59% of the study area was subjected to soil losses higher than 11 Mg ha−1 y−1 (from moderate to severe erosion) and the highest rates are estimated for steep inland areas. Arable land with severe soil erosion rates (higher than 33 Mg ha−1 y−1) represent about 35% of the whole study area. The risk of soil loss by water erosion in the study area is estimated to be reduced on average by 36% if perennial crops are increased in terms of 35% of the total arable land. The soil erosion data produced compared well with the published local and regional data. This study thus provides useful preliminary information for landscape planning authorities and can be used as a decision support tool in quantifying the implications of management policies.  相似文献   

11.
Asian-dust (yellow-sand) phenomena observed in Japan have been increasing in recent years, especially from 2000 to 2002. The main cause is severe dust events in arid and semi-arid regions of northeast Asia. The dust source area in northeast Asia (target area: 35°–45°N and 100°–115°E) was identified with reference to past results, and the relationship between the yellow-sand phenomena observed in Japan and dust outbreaks in the target area was examined during the springtime (March to May) from 1993 to 2002. The annual change in the number of dust phenomena observed in Japan agreed well with the Dust Storm Frequency (DSF) in the target area (R2 = 0.8796). Even though strong wind (≧7.0 m s−1) has a profound effect on dust storms (R2 = 0.515), coverage of the Normalized Differential Vegetation Index (NDVI), ranging from 0 to 0.1 (bare land with snow cover) and 0.1 to 0.2 (bare land) in April, also affected dust storms in the target area (R2 = 0.486 and 0.418).  相似文献   

12.

Gold production in South Africa is projected to continue its decline in future, and prospects for discovery of new high-grade deposits are limited. Many of the mining companies have resorted to mining and processing low-grade and complex gold ores. Such ores are technically challenging to process, which results in low recovery rates, excessive reagent consumption and high operating costs when compared to free-milling gold ores. In the Witwatersrand mines, options of blending low-grade gold ores with high-grade ores exist. Although it is well known that most of the Witwatersrand gold ores are highly amenable to gold cyanidation, not much is known on the leachability of blended ores, especially the effects of mineralogical and metallurgical variability between different gold ores. In this study, we apply a geometallurgical approach to investigate mineralogical and metallurgical factors that influence the leaching of blended ores in a set of bottle shaker and reactor column tests. Three gold-bearing conglomerate units, so-called reefs, i.e., Carbon Leader Reef, Ventersdorp Contact Reef and the Black Reef, all in the Carletonville goldfield, were sampled. The ores were prepared using a terminator jaw crusher followed by vertical spindle pulverizer (20 kg aliquot) and high-pressure grinding rolls (80 kg aliquot). Mineralogical analysis was conducted using a range of complementary tools such as optical microscopy, QEMSCAN and micro–XCT. The results show that Witwatersrand gold ores are amenable to the process of ore blending. Some of the ores, however, contain impervious inert gangue and reactive ore minerals. Leach solution can only access gold locked in impervious gangue minerals through HPGR-induced pores and/or cracks. The optimum ore blending ratio of the bottle shaker experiments (p80?=???75 μm) comprises 60% Carbon Leader Reef, 20% Ventersdorp Contact Reef and 20% Black Reef and yields 92% recovered Au over a leach period of 40 h. Blended ores with high carbonaceous material (>?1 wt% carbonaceous material, (Black Reef?=?36–60%) yield lower recoveries of 60–69% Au). Ore leaching at the mixed-bed reactor column (??75 μm and ??5.6/+?4 mm) yields about 70% over a leach period of two weeks. We therefore suggest that the feasibility of ore blending is strongly controlled by the mineralogy of the constituent ores and that a mixed-bed reactor may be a viable alternative method for leaching of the low-grade Witwatersrand gold ores. Material from certain reefs, such as the Black Reef, has synergistic/antagonistic (nonadditive) blending effects. The overall implication of this study is that ore blending ratios, effects of comminution on mineral liberation, an association of gold with other minerals, and gold adsorption behavior will greatly inform future technology choices in the area of geometallurgy.

  相似文献   

13.
The northern coastal part of Korinthia prefecture can be characterized as an agrotourism center that has grown and urbanized rapidly. The area is formed of recent unconsolidated material consisting of sands, pebbles, breccias and fine clay to silty sand deposits. These deposits host the main aquifer system of the area, which depends on groundwater as a water resource. Groundwater is the main source for irrigation in the area. A total water volume of 29.2×106–34.3×106 m3 yr−1 was estimated to recharge the aquifer system from direct infiltration of rainfall, streambed infiltration, irrigation return, artificial recharge via flood irrigation and lateral subsurface inflows. The present annual abstraction ranges between 39.2×106 and 44.6×106 m3 yr−1. Groundwater abstraction in dry years exceeds renewable freshwater resources by more than 38%. Approximately 79% of the total abstraction is consumed for agriculture supply. Water balance in the coastal aquifer system is in disequilibrium; a deficit, which ranges from 4.9×106 to 15.4×106 m3 yr−1 exists. The safe yield of the coastal aquifer system has been estimated at 37.1×106 m3 yr−1 for normal hydrological year and 32×106 m3 yr−1 for severely dry hydrological year. The total abstraction is greater than the recharge and the safe yield of the aquifer. The aquifer system has shown signs of depletion, seawater intrusion and quality contamination. The integrated water resources management, securing water in the future, should include measures that augment groundwater budget in the coastal aquifer of the study area.  相似文献   

14.
With rapid economic development in China, crops have undergone remarkable changes in both their type and spatial pattern. Timely and accurate information of crop type distribution will help government and agricultural producers quickly understand regional agricultural production conditions to better facilitate appropriate adjustments in planting patterns and policies. Another benefit of acquiring such knowledge of crops is that it should enhance regional agricultural competitiveness, optimize resource allocations, and further guarantee national food security. Towards this end, and using the Zhangye City in the Heihe River Basin as a study area, the present research elaborated upon a methodology to classify crop type distribution based on multi-temporal Thematic Mapper and Enhanced Thematic Mapper Plus (TM/ETM+) images. Using this methodology we achieved the spatial distributions of crop types in Zhangye City in 2007 and 2012, and analyzed changes in their distributions over this period. In addition, some landscape indices were calculated to clarify the landscape pattern of crops. The crop conversion potentials in 2017 were modeled using four conversion sub-models of the Multi-Layer Perceptron (MLP) neural network. Generally, the overall accuracy of crop classification in Zhangye was high, at 89.38%. From 2007 to 2012, the cultivated land area in Zhangye increased from 463.81 × 103 ha to 493.89 × 103 ha. The sowing area of corn and oilseed rape increased by 39.21 × 103 ha and 5.99 × 103 ha, respectively, while for wheat and barley the sowing area decreased by 3.61 × 103 ha and 9.14 × 103 ha, respectively. Considering other crop types as a group, their sowing area decreased by only 2.37 × 103 ha. The increase in corn sowing area mainly came from the conversion of other crops to corn, which accounted for 43.09% of its total sowing area in 2012. Furthermore, corn and oilseed rape showed a tendency of intensive sowing, whereas for wheat and barley the tendency was towards scattered sowing. For the future, corn has high conversion potential in Linze and Gaotai counties of Zhangye, while wheat, barley and oilseed rape have high conversion potentials in Minle and Shandan counties.  相似文献   

15.
Effects of sample size on the accuracy of geomorphological models   总被引:1,自引:1,他引:0  
Commonly, the most costly part of geomorphological distribution modelling studies is gathering the data. Thus, guidance for researchers concerning the quantity of field data needed would be extremely practical. This paper scrutinises the relationship between the sample size (the number of observations varied from 20 to 600) and the predictive ability of the generalized linear model (GLM), generalized additive model (GAM), generalized boosting method (GBM) and artificial neural network (ANN) in two data settings, i.e., independent and split-sample approaches. The study was performed using empirical data of periglacial processes from an area of 600 km2 in northernmost Finland at grid resolutions of 1 ha (100 × 100 m) and 25 ha (500 × 500 m). A rather sharp increase in the predictive ability of the models was observed when the number of observations increased from 20 to 100, and the level of robust predictions was reached with 200 observations. The result indicates that no more than a few hundred observations are needed in geomorphological distribution modelling at a medium scale resolution (ca. 0.01–1 km2).  相似文献   

16.
Tree uprooting plays an important role in hillslope evolution. The geomorphological impact of tree uprooting after a foehn wind occurrence, in December 2013 in the Tatra Mountains, was investigated. Geomorphological mapping was conducted in three watersheds. Additionally, in one of the watersheds, 459 windthrow pits were measured, in an area of 6.4 ha. The mean volume of a pit was 2.41 m3, and the mean surface area was 5.47 m2. 3.9% of the area was affected by windthrow pits, however locally the magnitude of changes was significantly higher, reaching up to 14.5% of the surface area. Slope inclination weakly influenced the effects of uprooting, and a decrease in the average depth of pits on steep slopes was observed. Individual windthrow pits (five cases) initiated the activity of geomorphological processes, and two cases of periodic springs were noted. Changes in the relief of small landforms caused by tree uprooting were documented. Windthrow creation facilitated the delivery of the soil material from the slopes into the channels.  相似文献   

17.
This study aimed at characterizing land cover dynamics for four decades in Eastern Mau forest and Lake Nakuru basin, Kenya. The specific objectives were to: (i) identify and map the major land cover types in 1973, 1985, 2000 and 2011; (ii) detect and determine the magnitude, rates and nature of the land cover changes that had occurred between these dates, and; (iii) establish the spatial and temporal distribution of these changes. Land cover types were discriminated through partitioning, hybrid classification and spatial reclassification of multi-temporal Landsat imagery. The land cover products were then validated and overlaid in post-classification comparison to detect the changes between 1973 and 2011. The accuracies of the land cover maps for 1973, 1985, 2000 and 2011 were 88%, 95%, 80% and 89% respectively. Six land cover classes, namely forests-shrublands, grasslands, croplands, built-up lands, bare lands and water bodies, were mapped. Forests-shrublands dominated in 1973, 1985 and 2000 covering about 1067 km2, 893 km2 and 797 km2 respectively, but were surpassed by croplands (953 km2) in 2011. Bare lands occupied the least area that varied between 2 km2 and 7 km2 during this period. Overall, forests-shrublands and grasslands decreased by 428 km2 and 258 km2 at the annual average rates of 1% each, whereas croplands and built-up lands expanded by 660 km2 and 24 km2 at the annual rates of 6% and 16% respectively. The key hotspots of these changes were distributed in all directions of the study area, but at different times. Therefore, policies that integrate restoration and conservation of natural ecosystems with enhancement of agricultural productivity are strongly recommended. This will ensure environmental sustainability and socio-economic well-being in the area. Future research needs to assess the impacts of the land cover changes on ecosystem services and to project the future patterns of land cover changes.  相似文献   

18.
Sedimentological, mineralogical and compositional analyses performed on short gravity cores and long Kullenberg cores from meromictic Montcortès Lake (Pre-Pyrenean Range, NE Spain) reveal large depositional changes during the last 6,000 cal years. The limnological characteristics of this karstic lake, including its meromictic nature, relatively high surface area/depth ratio (surface area ~0.1 km2; z max = 30 m), and steep margins, facilitated deposition and preservation of finely laminated facies, punctuated by clastic layers corresponding to turbidite events. The robust age model is based on 17 AMS 14C dates. Slope instability caused large gravitational deposits during the middle Holocene, prior to 6 ka BP, and in the late Holocene, prior to 1,600 and 1,000 cal yr BP). Relatively shallower lake conditions prevailed during the middle Holocene (6,000–3,500 cal years BP). Afterwards, deeper environments dominated, with deposition of varves containing preserved calcite laminae. Increased carbonate production and lower clastic input occurred during the Iberian-Roman Period, the Little Ice Age, and the twentieth century. Although modulated by climate variability, changes in sediment delivery to the lake reflect modifications of agricultural practices and population pressure in the watershed. Two episodes of higher clastic input to the lake have been identified: 1) 690–1460 AD, coinciding with an increase in farming activity in the area and the Medieval Climate Anomaly, and 2) 1770–1950 AD, including the last phase of the Little Ice Age and the maximum human occupation in late nineteenth and early twentieth centuries.  相似文献   

19.
Short-term changes in Eastern Mediterranean precipitation affecting flow regime were documented in Nahal Oren, a 35 km2 ephemeral stream in Mt. Carmel, a 500 m high mountain ridge located at the NW coast of Israel. The rainy winter of the Mediterranean type climate (Csa) in Mt. Carmel is characterized by average annual rainfall of 550 mm at the coastal plain to 750 mm at the highest elevation while the summer is hot and dry. Stream flow generates after accumulated rainfall of 120–150 mm while “large floods”, defined as flows with peak discharge of > 5 m3 s− 1 and/or > 150,000 m3 in volume, are generated in response to rainfall of over 100 mm. Hence, large floods in Nahal Oren stream occur not earlier than December. Precipitation and flow data were divided into two sub-periods: 1957–1969 and 1991–2003 and compared to each other. The results indicate a clear increase in the frequency of large floods, their magnitudes and volumes during the second period with no parallel change in the annual precipitation. Similarly, an increase in storm rainfall–runoff ratio from < 5% to > 15% and a decrease in the threshold rainfall for channel flow by 16–25% were documented. These short-term variations in flooding behavior are explained by the clear decrease in the length of the rainy season and by the resulting significant shortening in the duration of the dry-spells. The increase in the number of large rainfall events and the large floods in each hydrological year together with the increasing number of years with no floods indicate strengthening of their uncertainty of behavior.  相似文献   

20.
The “La Clapière” area (Tinée valley, Alpes Maritimes, France) is a typical large, complex, unstable rock slope affected by Deep Seated Gravitational Slope Deformations (DGSD) with tension cracks, scarps, and a 60 × 106 m3 rock slide at the slope foot that is currently active. The slope surface displacements since 10 ka were estimated from 10Be ages of slope gravitational features and from morpho-structural analyses. It appears that tensile cracks with a strike perpendicular to the main orientation of the slope were first triggered by the gravitational reactivation of pre-existing tectonic faults in the slope. A progressive shearing of the cracks then occurred until the failure of a large rock mass at the foot of the slope. By comparing apertures, variations and changes in direction between cracks of different ages, three phases of slope surface displacement were identified: 1) an initial slow slope deformation, spreading from the foot to the top, characterized by an average displacement rate of 4 mm yr− 1, from 10–5.6 ka BP; 2) an increase in the average displacement rate from 13 to 30 mm yr− 1 from the foot to the middle of the slope, until 3.6 ka BP; and 3) development of a large failure at the foot of the slope with fast displacement rates exceeding 80 mm yr− 1 for the last 50 years. The main finding of this study is that such a large fractured slope destabilization had a very slow displacement rate for thousands of years but was followed by a recent acceleration. The results obtained agree with several previous studies, indicating that in-situ monitoring of creep of a fractured rock slope may be useful for predicting the time and place of a rapid failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号