首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《国际泥沙研究》2016,(2):159-163
Roughened horizontal aprons are bed covering scour countermeasures constructed downstream of stilling basins and other places where scour hole may develop. In these cases scour occurs at the edge of the apron which can lead to failure of the apron. In the present study, 24 experimental tests were carried out on four different aprons with (2, 5, 10 and 14.28 mm) roughness heights and two different bed material sizes of 0.8 and 1.4 mm under different flow conditions. The results indicated that as the roughness height of apron increases, a significant reduction in the scour depth occurs.  相似文献   

2.
NUMERICAL SIMULATION OF HEAD-CUT WITH A TWO-LAYERED BED   总被引:1,自引:0,他引:1  
1INTRODUCTION The rate of gully erosion is dominated by the upstream migration of existing nick-points called headcut.Due to the shape of the headcut,the flow from the upstream channel impinges into the pool of the scour hole and forms a complex three-dimensional flow structure.The turbulent flow deepens the scour hole,transports the eroded material downstream,undercuts the headcut wall and creates gravitational slumping of the gully head material.In reality,the occurrence of a head cut i…  相似文献   

3.
Step–pool morphology characterizes many high‐gradient streams in a variety of natural settings, but formative processes and evolutionary dynamics are still poorly understood. In this paper, natural step–pool geometry is compared with steep alluvial channels where grade‐control structures such as check‐dams and bed sills make the stream profile resemble a natural stepped stream. Along these channels, local scouring due to falling jets forms plunge pools under each structure, analogous to natural steps determining the formation of pools. In order to test the hypothesis that natural pools are analogous to pools formed below grade‐control works with respect to their dimensions, shape and formative dynamics, 37 natural pools and 73 artificial pools were surveyed in 10 mountain streams of the eastern Italian Alps. Pools below grade‐control works featured a transitional zone between the scour hole and the downstream sloping bed, marked by a depositional berm. When geometric parameters such as maximum pool depth, length and step–berm distances are normalized to the jet virtual energy, no statistically significant differences were detected between natural and artificial systems. These results lend support to an upstream‐forced cascade model for step–pool formation, where the energy of falling jets controls the geometry of the pools, and is therefore regarded as the most important scaling‐independent variable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A new analytical method was evaluated for predicting scour profile downstream of a submerged sluice gate with an apron. The differential equations between bed Shear stress and Scour profile Curvature(SSC model) were utilized to predict the scour profile in both temporal and equilibrium stages. A jet momentum flux was considered as an external source of erosion on a hypothetical particle ring as the boundary between the flow and sediment bed. The scour length and sediment resistance factor were t...  相似文献   

5.
《国际泥沙研究》2020,35(3):237-248
This study presents the implementation and validation of a new sediment-scour model with a strict vertex-based,terrain conformal,moving-mesh technique within the framework of OpenFOAM.OpenFOAM lacks the ability to simulate large-amplitude motion needed for analysis of sediment-scour problems,and,thus,its application normally is restricted to small-amplitude cases to prevent computational divergence due to mesh deterioration.The proposed simple,moving-mesh technique in OpenFOAM is implemented to overcome the shortcomings of the conventional automatic mesh-motion techniques in handling large-amplitude moving geometries.The model is used to simulate a simple case of prescribed boundary motion,a previous experiment in the literature,and a new laboratory experiment for local scour due to submerged wall jets.The results are compared with both the experimental and other numerical results.The comparisons demonstrate that the proposed model has the novel advantage of allowing for more severe topographic variations,and can provide more reliable predictions for the key characteristics and evolution of the bed profiles in wall jet scour problems.Furthermore,to improve the practice of modeling wall jet scour,various turbulence modeling approaches and bedload equations also are evaluated and compared.  相似文献   

6.
Based on the developed Anderson and Moore's theory about cross-equatorial inertial jets and a nonlinear equivalence shallow water model, new universal functions are determined by the characters of the vortical large-scale air flow (atmosphere) or ocean current (ocean) related to the jet, then the potential vorticity and energy conservation equations along the streamline in the cross-equatorial in-ertial jets can be obtained. Because the governing equations are nonlinear, some limited multiple equi-libria of cross-equatorial inertial jets may exist. According to the character of large-scale air flow or ocean current outside the jets, the existent criterion for multiple eqnilibria in cross-equatorial inertial jets is discussed, and two examples for multiple equilibia of nonlinear governing equations are given.  相似文献   

7.
SCOUR HOLE CHARACTERISTICS BELOW FREE OVERFALL SPILLWAY   总被引:1,自引:0,他引:1  
1 INTRODUCTION Flow through hydraulic structures often issues in the form of jets. The jet velocities are usually high enough to produce sizable, even dangerous scour hole. The extent of the resulting scour depends on the nature of bed material and flow characteristics. The erosion process is quite complex and depends upon the interaction of hydraulic and morphological factors. Scouring may lead to: endangering the stability of the structure by structural failure or increased seepage, end…  相似文献   

8.
This paper investigates the behavior of katabatic flow induced by an idealized, thermally inhomogeneous surface; a strip of surface cooling that has a finite width in the along-slope direction and is infinitely long in the cross-slope direction. Numerical simulations using the Boussinesq equations of motion and the thermodynamic energy equation are performed for various slope angles and strip lengths. The underlying dynamical processes in the katabatic jet and the near environment are explored by considering the along-slope momentum balance after a steady state has been achieved. The inhomogeneous nature of the surface forcing also induces a response in the environment that extends very far away from the sloped surface. Nearly horizontal jets close to the vertical heights of both sides of the cold strip are observed in the environment. A horizontal vorticity analysis is performed on these horizontal jets to ascertain their dynamical structure.  相似文献   

9.
The current study deals with the depth of scour at the location of impact between a free fall jet and a riverbed. The current study is based on extensive laboratory experiments that were designed to mimic full-scale behavior. The literature review shows that relations among hydraulic parameters for predicting the depth of scour are complex; therefore, six artificial intelligence techniques are used in the current study to capture these complex relation. A total of 120 observations are used for t...  相似文献   

10.
VARIATIONSOFWATERSURFACEGRADIENTANDVELOCITYDISTRIBUTIONCAUSEDBYWATERJETSHUANGSuiliang1ABSTRACTUsingflumeexperiments,thispaper...  相似文献   

11.
The installation of free falling jet grade control structures has become a popular choice for river bed stabilization. However, the formation and development of scour downstream of the structure may lead to failure of the structure itself. The current approaches to scour depth prediction are generally based on studies conducted with the absence of upward seepage. In the present study, the effects of upward seepage on the scour depth were investigated. A total of 78 tests without and with the application of upward seepage were carried out using three different sediment sizes, three different tailwater depths, four different flow discharges, and four different upward seepage flow discharge rates. In some tests, the three-dimensional components of the flow velocity within the scour hole were measured for both the cases with and without upward seepage. The scour depth measured for the no-seepage results compared well with the most accurate relationship found in the literature. It was found that generally the upward seepage reduced the downward velocity components near the bed, which led to a decrease in the maximum scour depth. A maximum scour depth reduction of 49% was found for a minimum tailwater depth, small sediment size, and high flow discharge. A decay of the downward velocity vector within the jet impingement was found due to the upward seepage flow velocity. The well known equation of D’Agostino and Ferro was modified to account for the effect of upward seepage, which satisfactorily predicted the experimental scour depth, with a reasonable average error of 10.7%.  相似文献   

12.
This paper presents a model for local scour at submerged weirs with downstream slopes that uses a coupled moving-mesh and masked-element approach.In the developed model,the fluid-sediment interface is tracked using a moving-mesh technique,and the effects of the structure on the hydrodynamics and bed morphology are resolved using a masked-element technique.Compared to traditional sediment scour models,based on the moving-mesh technique,the present model has the advantage of allowing for a simpler setup of the computational grids and a larger-amplitude deformation.Laboratory experiments on local scour at a submerged weir with a downstream slope were conducted,which provided bed profiles at different time instants.The results obtained by the present model are compared to the experimental data.The comparisons demonstrate the performance of the model in satisfactorily predicting local scour at a submerged weir with a downstream slope.The model was further modified and employed to carry out additional computations to investigate the influence of various parameters and sub-models.  相似文献   

13.
The jet erosion test (JET) is a widely applied method for deriving the erodibility of cohesive soils and sediments. There are suggestions in the literature that further examination of the method widely used to interpret the results of these erosion tests is warranted. This paper presents an alternative approach for such interpretation based on the principle of energy conservation. This new approach recognizes that evaluation of erodibility using the jet tester should involve the mass of soil eroded, so determination of this eroded mass (or else scour volume and bulk density) is required. The theory partitions jet kinetic energy flux into that involved in eroding soil, the remainder being dissipated in a variety of mechanisms. The energy required to erode soil is defined as the product of the eroded mass and a resistance parameter which is the energy required to entrain unit mass of soil, denoted J (in J/kg), whose magnitude is sought. An effective component rate of jet energy consumption is defined which depends on depth of scour penetration by the jet, but not on soil type, or the uniformity of the soil type being investigated. Application of the theory depends on experimentally determining the spatial form of jet energy consumption displayed in erosion of a uniform body of soil, an approach of general application. The theory then allows determination of the soil resistance parameter J as a function of depth of scour penetration into any soil profile, thus evaluating such profile variation in erodibility as may exist. This parameter J has been used with the same meaning in soil and gully erosion studies for the last 25 years. Application of this approach will appear in a companion publication as part 2. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Geostrophic turbulence is a key paradigm in the current understanding of the large-scale planetary circulations. It implies that a flow is turbulent, rotating, stably stratified, and in near-geostrophic balance. When a small-scale forcing is present, geostrophic turbulence features an inverse energy cascade. When the meridional variation of the Coriolis parameter (or a β-effect) is included, the horizontal flow symmetry breaks down giving rise to the emergence of jet flows. The presence of a large-scale drag ensures that the flow attains a steady state. Dependent on the governing parameters, four steady-state flow regimes are possible, two of which are considered in this study. In one of these regimes, a flow is dominated by the drag while in the other one, the recently discovered regime of zonostrophic turbulence, a flow becomes strongly anisotropic and features slowly evolving systems of alternating zonal jets. Zonostrophic turbulence is distinguished by anisotropic inverse energy cascade and emergence of a new class of nonlinear waves known as zonons. In addition, meridional scalar diffusion is strongly modified in this regime. This paper provides an overview of various regimes of turbulence with a β-effect, elaborates main characteristics of friction-dominated and zonostrophic turbulence, elucidates the physical nature of the zonons, discusses the meridional diffusion processes in different regimes, and relates these results to oceanic observations.  相似文献   

15.
Estimating the time evolution of a local scour hole downstream of submerged weirs can help determine the maximum scour depth and length and is essential to designing submerged weir foundations.In the current study, artificial neural networks with a backpropagation learning algorithm were used to estimate the temporal variation of scour profiles downstream of submerged weirs under clear water conditions. Physical factors, such as the flow condition, weir size, and sediment characteristics, are ge...  相似文献   

16.
The effect of scour countermeasures on the mechanism of local scour around a cylinder requires clarification in order to develop design methodology for use in practice. Previous investigations on countermeasure performance, though useful, have not provided adequate measurements to support this understanding. In the present investigation, particle image velocimetry(PIV) measurements were acquired at several streamwise-vertical planes in the flow field surrounding a submerged circular cylinder wit...  相似文献   

17.
On hillslopes and agricultural fields, discrete areas of intense, localized soil erosion commonly take place in the form of migrating headcuts. These erosional features significantly increase soil loss and landscape degradation, yet the unsteady, transient, and migratory habits of headcuts complicate their phenomenological and erosional characterization. Here a unique experimental facility was constructed to examine actively migrating headcuts typical of upland concentrated flows. Essential components of the facility include a deep soil cavity with external drainage, rainfall simulator, capacity for overland flow, and a video recording technique for data collection. Results from these experiments show that: (1) after a short period of adjustment, headcut migration attained a steady-state condition, where the rate of migration, scour hole geometry, and sediment discharge remain constant with time; (2) boundary conditions of higher rates of overland flow, steeper bed slopes, and larger initial headcut heights produced systematically larger scour holes with higher rates of soil erosion; and (3) during migration, the turbulent flow structure within the scour hole remained unchanged, consisting of an overfall nappe at the brink transitioning into a reattached wall jet with two recirculation eddies within the plunge pool. The systematic behavior of headcut development and migration enabled the application of modified jet impingement theory to predict with good success the characteristics of the impinging jet, the depth of maximum scour, the rate of headcut migration, and the rate of sediment erosion. These laboratory data and the analytical formulation can be used in conjunction with soil erosion prediction technology to improve the management of agricultural areas impacted by headcut development and ephemeral gully erosion.  相似文献   

18.
I.INTRODUCTIONhiverchannelsaresubjecttocontinuouschangeingeometryduetoillteraCtionbetWeentheflowanderodibleboundaries.Ofconcerntothedesignersofoilpipelinesacrossariver,bridgesandhydraulicworksistheproblemofscourwhichcanunderminetheStructures.Scouratsiteofbridgesandhydraulicworksoccursduetoconstrictedflowandexistenceofbridgepiers.SuchatabOfscouroccursonlyinashortsection,usuallyillthesameorderofthelengthofthehydraulicworksorbridges.Therefore,thispatternofscouriscalledlocalscour.Man}rresea…  相似文献   

19.
The main purpose of this study is to understand the stabilizing effect of ground-sills on the riverbed through a series of flume model experiments. From results, although check dams have the ability to control upstream sediment transport, the mass energy produced by the free fall of the overtopping discharge still causes strong local scour downstream of the structure, and this scour leads to the instability of the check dam. Therefore, this study conducted model experiments on various types of serial ground-sills to determine the appropriate spacing to best protect the downstream bed. Based on the observations and analysis of channel geomorphology and sedimentation, this study concluded the following results: 1) Serial ground-sills reduces the sediment transport ability perfectly, especially under a mild channel gradient equipped with 2 4 times the average channel width interval. But for steep slopes, it is suggested that the proper spacing should be shortened to 1 2 times the average channel width. 2) Ground-sills can effectively protect the streambed from scouring under a suitable equipped condition and the concepts of guiding scour and riverbed inertia were used in the analysis of optimal ground-sill spacing.  相似文献   

20.
In this paper a modelling approach is presented to predict local scour under time varying flow conditions. The approach is validated using experimental data of unsteady scour at bed sills. The model is based on a number of hypotheses concerning the characteristics of the flow hydrograph, the temporal evolution of the scour and the geometry of the scour hole. A key assumption is that, at any time, the scour depth evolves at the same rate as in an equivalent steady flow. The assumption is supported by existing evidence of geometrical affinity and similarity of scour holes formed under different steady hydraulic conditions. Experimental data are presented that show the scour hole development downstream of bed sills due to flood hydrographs follow a predictable pattern. Numerical simulations are performed with the same input parameters used in the experimental tests but with no post‐simulation calibration. Comparison between the experimental and model results indicates good correspondence, especially in the rising limb of the flow hydrograph. This suggests that the underlying assumptions used in the modelling approach are appropriate. In principle, the approach is general and can be applied to a wide range of environments (e.g. bed sills, step‐pool systems) in which scouring at rapid bed elevation changes caused by time varying flows occurs, provided appropriate scaling information is available, and the scour response to steady flow conditions can be estimated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号