首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
So far, six mechanisms have been proposed to account for the Galactic disc heating. Of these, the most important appear to be a combination of scattering of stars by molecular clouds and by spiral arms. We study a further mechanism, namely the repeated disc impact of the original Galactic globular cluster population up to the present. We find that globular clusters could have contributed at most a small fraction of the current vertical energy of the disc, as they could heat the whole disc to  σ z = 5.5 km s−1  (c.f. the observed 18 and 39 km s−1 for the thick and thin discs, respectively). We find that the rate of rise of disc heat (  α= 0.22  in  σ z ∼ t α  with t being time) is close to that found for scattering by molecular clouds.  相似文献   

2.
The crossing of the Galactic disc by a globular cluster (GC) could produce star formation due to gravitational focusing or compression of disc material. We report on simulations of the effect on disc material which reveal that the crossing can sometimes cause local gravitational focusing of disc material. We also present the salient points of a little-known paper by Levy, which shows that strong compression can result from the shock wave generated by GC disc crossing. The main thrust of our paper is a search for remnants of disc crossings by GCs. Using the gravitational potential of the Galaxy to locate the position of the most recent crossings of a subset of fifty-four GCs reveals that systematic errors and uncertainties in initial conditions limit the scope for unequivocal identification. From the subset of fifty-four, six possible search sites with the best constraints are retained for further scrutiny. Three of the six potentially promising search areas in the disc are from GCs NGC 3201, 6397 and 6838, for which we cannot rule out some observed star associations observed nearby as being remnants. The other three of the six areas are too large to provide meaningful identification of remnants. Also, a possible remnant (open cluster NGC 6231) is shown not to be due to GC impact, contrary to a previous report. In a more wide-ranging screening of 155 GCs, we identify which GCs are compatible with being responsible for the formation of any of the Galaxy's five most prominent star superclusters.  相似文献   

3.
The M31 globular cluster candidate     has long been known to be an extremely red, non-stellar object. The first published spectrum of this object is used to confirm that it is a globular cluster belonging to M31, with rather typical values of     and     . Using the spectroscopic metallicity to predict the intrinsic colours, we derive a reddening value of     , in good agreement with the value obtained using reddening-free parameters. The extinction-corrected magnitude of     is     (absolute magnitude     , which makes it the most luminous globular cluster in M31. We examine van den Bergh's argument regarding the brightest and most-reddened globular cluster in M31; we find that the brightest clusters are more heavily reddened than average, but this can be explained by selection effects rather than a different R V in M31.  相似文献   

4.
This paper explores if, and to what an extent, the stellar populations of early-type galaxies can be traced through the colour distribution of their globular cluster (GC) systems. The analysis, based on a galaxy sample from the Virgo Advanced Camera for Surveys data, is an extension of a previous approach that has been successful in the cases of the giant ellipticals NGC 1399 and NGC 4486, and assumes that the two dominant GC populations form along diffuse stellar populations sharing the cluster chemical abundances and spatial distributions. The results show that (a) integrated galaxy colours can be matched to within the photometric uncertainties and are consistent with a narrow range of ages; (b) the inferred mass to luminosity ratios and stellar masses are within the range of values available in the literature; (c) most GC systems occupy a thick plane in the volume space defined by the cluster formation efficiency, total stellar mass and projected surface mass density. The formation efficiency parameter of the red clusters shows a dependency with projected stellar mass density that is absent for the blue globulars. In turn, the brightest galaxies appear clearly detached from that plane as a possible consequence of major past mergers; (d) the stellar mass–metallicity relation is relatively shallow but shows a slope change at   M *≈ 1010 M  . Galaxies with smaller stellar masses show predominantly unimodal GC colour distributions. This result may indicate that less massive galaxies are not able to retain chemically enriched interstellar matter.  相似文献   

5.
评述了球状星团系统研究中的比频、金属度和质量谱三大问题,就目前的认识和存在的问题进行了讨论。指出不同星系球状星团比频之间的差别表明了需要有各种不同的球状星团形成模型;球状星团金属度的分布表明球状星团可能有三个形成时期,分别与三类形成模型效应;尽管对数正态初始质量的数值模拟初步结果与观测结果符合得更好,然而幂函数的初始质量谱在物理上能很好地与球状星团形成联系起来。  相似文献   

6.
Recently, De Marchi, Paresce & Pulone studied a sample of 20 globular clusters and found that all clusters with high concentrations have steep stellar mass functions while clusters with low concentration have comparatively shallow mass functions. No globular clusters were found with a flat mass function and high concentration. This seems curious since more concentrated star clusters are believed to be dynamically more evolved and should have lost more low-mass stars via evaporation, which would result in a shallower mass function in the low-mass part.
We show that this effect can be explained by residual-gas expulsion from initially mass segregated star clusters, and is enhanced further through unresolved binaries. If gas expulsion is the correct mechanism to produce the observed trend in the   c –α  -plane, then observation of these parameters would allow to constrain cluster starting conditions such as star formation efficiency and the time-scale of gas expulsion.  相似文献   

7.
We present N -body simulations (including an initial mass function) of globular clusters in the Galaxy in order to study effects of the tidal field systematically on the properties of the outer parts of globular clusters. Using nbody6 , which correctly takes into account the two-body relaxation, we investigate the development of tidal tails of globular clusters in the Galactic tidal field. For simplicity, we have employed only the spherical components (bulge and halo) of the Galaxy, and ignored the effects of stellar evolution which could have been important in the very early phase of the cluster evolution. The total number of stars in our simulations is about 20 000, which is much smaller than the realistic number of stars. All simulations had been done for several orbital periods in order to understand the development of the tidal tails. In our scaled-down models, the relaxation time is sufficiently short to show the mass segregation effect, but we did not go far enough to see the core collapse, and the fraction of stars lost from the cluster at the end of the simulations is only ∼10 per cent. The radial distribution of extra-tidal stars can be described by a power law with a slope around −3 in surface density. The directions of tidal tails are determined by the orbits and locations of the clusters. We find that the length of tidal tails increases towards the apogalacticon and decreases towards the perigalacticon. This is an anti-correlation with the strength of the tidal field, caused by the fact that the time-scale for the stars to respond to the potential is similar to the orbital time-scale of the cluster. The escape of stars in the tidal tails towards the pericentre could be another reason for the decrease of the length of tidal tails. We find that the rotational angular velocity of tidally induced clusters shows quite different behaviour from that of initially rotating clusters.  相似文献   

8.
We explore the gravitational influence of pressure-supported stellar systems on the internal density distribution of a gaseous environment. We conclude that compact massive star clusters with masses  ≳106 M  act as cloud condensation nuclei and are able to accrete gas recurrently from a warm interstellar medium which may cause further star formation events and account for multiple stellar populations in the most massive globular and nuclear star clusters. The same analytical arguments can be used to decide whether an arbitrary spherical stellar system is able to keep warm or hot interstellar material or not. These mass thresholds coincide with transition masses between pressure supported galaxies of different morphological types.  相似文献   

9.
In this work we investigate the evolution of the mass function of the Galactic globular cluster system (GCMF) taking into account the effects of stellar evolution, two-body relaxation, disc shocking and dynamical friction on the evolution of individual globular clusters. We have adopted a lognormal initial GCMF and considered a wide range of initial values for the dispersion, σ, and the mean value, 〈log  M 〉. We have studied in detail the dependence on the initial conditions of the final values of σ, 〈log  M 〉, the fraction of the initial number of clusters surviving after one Hubble time and the difference between the properties of the GCMF of clusters closer to the Galactic Centre and those of clusters located in the outer regions of the Galaxy. In most of the cases considered, evolutionary processes alter significantly the initial population of globular clusters and the disruption of a significant number of globular clusters leads to a flattening in the spatial distribution of clusters in the central regions of the Galaxy. The initial lognormal shape of the GCMF is preserved in most cases and if a power-law in M is adopted for the initial GCMF, evolutionary processes tend to modify it into a lognormal GCMF. The difference between initial and final values of σ and 〈log  M 〉 as well as the difference between the final values of these parameters for inner and outer clusters can be positive or negative depending on initial conditions. A significant effect of evolutionary processes does not necessarily give rise to a strong trend of 〈log  M 〉 with the galactocentric distance. The existence of a particular initial GCMF able to keep its initial shape and parameters unaltered during the entire evolution through a subtle balance between disruption of clusters and evolution of the masses of those which survive, suggested by Vesperini, is confirmed.  相似文献   

10.
Though about 80 pulsar binaries have been detected in globular clusters so far, no pulsar has been found in a triple system in which all three objects are of comparable mass. Here, we present predictions for the abundance of such triple systems, and for the most likely characteristics of these systems. Our predictions are based on an extensive set of more than 500 direct simulations of star clusters with primordial binaries, and a number of additional runs containing primordial triples. Our simulations employ a number N tot of equal-mass stars from   N tot= 512  to  19 661  and a primordial binary fraction from 0 to 50 per cent. In addition, we validate our results against simulations with   N = 19 661  that include a mass spectrum with a turn-off mass at  0.8 M  , appropriate to describe the old stellar populations of Galactic globular clusters. Based on our simulations, we expect that typical triple abundances in the core of a dense cluster are two orders of magnitude lower than the binary abundances, which in itself already suggests that we do not have to wait too long for the first comparable-mass triple with a pulsar to be detected.  相似文献   

11.
We report on the first fully consistent conventional cluster simulation which includes terms up to the third-order post-Newtonian approximation. Numerical problems for treating extremely energetic binaries orbiting a single massive object are circumvented by employing the special 'wheel-spoke' regularization method of Zare which has not been used in large- N simulations before. Idealized models containing   N = 1 × 105  particles of mass  1 M  with a central black hole (BH) of  300 M  have been studied on GRAPE-type computers. An initial half-mass radius of   r h≃ 0.1  pc is sufficiently small to yield examples of relativistic coalescence. This is achieved by significant binary shrinkage within a density cusp environment, followed by the generation of extremely high eccentricities which are induced by Kozai cycles and/or resonant relaxation. More realistic models with white dwarfs and 10 times larger half-mass radii also show evidence of general relativity effects before disruption. An experimentation with the post-Newtonian terms suggests that reducing the time-scales for activating the different orders progressively may be justified for obtaining qualitatively correct solutions without aiming for precise predictions of the final gravitational radiation wave form. The results obtained suggest that the standard loss-cone arguments underestimate the swallowing rate in globular clusters containing a central BH.  相似文献   

12.
We study the evolution of binary stars in globular clusters using a new Monte Carlo approach combining a population synthesis code ( startrack ) and a simple treatment of dynamical interactions in the dense cluster core using a new tool for computing three- and four-body interactions ( fewbody ). We find that the combination of stellar evolution and dynamical interactions (binary–single and binary–binary) leads to a rapid depletion of the binary population in the cluster core. The maximum binary fraction today in the core of a typical dense cluster such as 47 Tuc, assuming an initial binary fraction of 100 per cent, is only ∼ 5–10 per cent. We show that this is in good agreement with recent Hubble Space Telescope observations of close binaries in the core of 47 Tuc, provided that a realistic distribution of binary periods is used to interpret the results. Our findings also have important consequences for the dynamical modelling of globular clusters, suggesting that 'realistic models' should incorporate much larger initial binary fractions than has usually been the case in the past.  相似文献   

13.
We present results from a ROSAT HRI study of 11 distant ( z  ∼ 0.2–0.3) Abell clusters. We have performed a morphological analysis to search for and quantify substructure in the clusters. About 70 per cent of the sample shows significant evidence of substructure in the form of centroid shift or obvious X-ray clumps. We examine the clusters for the presence of cooling flows, and determine the physical properties of the ICM by deprojecting the HRI data. Nine of the clusters have central cooling times less than the age of the system, in agreement with fractions determined from nearby, X-ray-bright samples. Additional PSPC results are presented for four clusters in the sample, and ASCA results for six clusters. The temperatures and metallicities for these distant clusters appear to be consistent with nearby clusters of similar richness.  相似文献   

14.
Using metallicities from the literature, combined with the Revised Bologna Catalogue of photometric data for M31 clusters and cluster candidates [the latter of which is the most comprehensive catalogue of M31 clusters currently available, including 337 confirmed globular clusters (GCs) and 688 GC candidates], we determine 443 reddening values and intrinsic colours, and 209 metallicities for individual clusters without spectroscopic observations. This, the largest sample of M31 GCs presently available, is then used to analyse the metallicity distribution of M31 GCs, which is bimodal with peaks at [Fe/H]≈−1.7 and −0.7 dex. An exploration of metallicities as a function of radius from the M31 centre shows a metallicity gradient for the metal-poor GCs, but no such gradient for the metal-rich GCs. Our results show that the metal-rich clusters appear as a centrally concentrated spatial distribution; however, the metal-poor clusters tend to be less spatially concentrated. There is no correlation between luminosity and metallicity among the M31 sample clusters, which indicates that self-enrichment is indeed unimportant for cluster formation in M31.
The reddening distribution shows that slightly more than half of the GCs are affected by a reddening of E ( B − V ) ≲ 0.2 mag; the mean reddening value is   E ( B − V ) = 0.28+0.23−0.14 mag  . The spatial distribution of the reddening values indicates that the reddening on the north-western side of the M31 disc is more significant than that on the south-eastern side, which is consistent with the conclusion that the north-western side is nearer to us.  相似文献   

15.
In the construction of multimass King–Michie models of globular clusters, an approximated central energy equipartition between stars of different mass is usually imposed by scaling the velocity parameter of each mass class inversely with the stellar mass, as if the distribution function were isothermal. In this paper, this 'isothermal approximation' has been checked and its consequences on the model parameters studied by a comparison with models including central energy equipartition correctly. It is found that, under the isothermal approximation, the 'temperatures' of a pair of components can differ to a non-negligible amount for low concentration distributions. It is also found that, in general, this approximation leads to a significantly reduced mass segregation in comparison with that given under the exact energy equipartition at the centre. As a representative example, an isotropic three-component model fitting a given projected surface brightness and line-of-sight velocity dispersion profiles is discussed. In this example, the isothermal approximation gives a cluster envelope much more concentrated (central dimensionless potential   W = 3.3  ) than under the true equipartition  ( W = 5.9 × 10−2)  , as well as a higher mass function logarithmic slope. As a consequence, the inferred total mass (and then the global mass-to-light ratio) is a factor of 1.4 times lower than the correct value and the amount of mass in heavy dark remnants is 3.3 times smaller. Under energy equipartition, the fate of stars having a mass below a certain limit is to escape from the system. This limit is derived as a function of the mass and W of the component of giant and turn-off stars.  相似文献   

16.
王龙  周洪楠 《天文学报》2003,44(2):147-155
选取前文中所列出的29个累积光谱型为F型的球状星团中的3个作为样本,深入研究了初始观测资料的不确定性和选用不同的银河系引力势模型,对样本星团轨道参数的影响。首先采用Monte Carlo方法产生3个样本球状星团的模拟初始观测数据,而后,以这些模拟数据为初始条件,在3种不同的银河系引力势模型下进行轨道计算,得到此3个样本的模拟轨道参数。模拟计算的结果表明:根据模拟初始数据生成的样本轨道参数分布形态大致可分为高斯分布、准高斯分布和非高斯分布等3类;初始观测数据的不确定性对样本轨道参数分布的影响,与样本星团的选择和轨道参数的类型有关;选用不同的银河系引力势模型,对3个样本星团的各个轨道参数的分布和形态结构也会产生不同程度的影响。该工作的结果,可供深入研究球状星团的整体运动和动力学性质等问题参考。  相似文献   

17.
Recent spectroscopic observations of galaxies in the Fornax Cluster reveal nearly unresolved 'star-like' objects with redshifts appropriate to the Fornax Cluster. These objects have intrinsic sizes of ≈100 pc and absolute B -band magnitudes in the range  −14< M B<−11.5 mag  and lower limits for the central surface brightness   μ B≳23 mag arcsec−2  , and so appear to constitute a new population of ultracompact dwarf galaxies (UCDs). Such compact dwarfs were predicted to form from the amalgamation of stellar superclusters (by Kroupa) , which are rich aggregates of young massive star clusters (YMCs) that can form in collisions between gas-rich galaxies. Here we present the evolution of superclusters in a tidal field. The YMCs merge on a few supercluster crossing times. Superclusters that are initially as concentrated and massive as knot S in the interacting Antennae galaxies evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs. Less massive superclusters resembling knot 430 in the Antennae may evolve to ω Cen-type systems. Low-concentration superclusters are disrupted by the tidal field, dispersing their surviving star clusters while the remaining merger objects rapidly evolve into the   μ B− M B  region populated by low-mass Milky Way dSph satellites.  相似文献   

18.
We present theoretical evolutionary sequences of intermediate-mass stars  ( M = 3 − 6.5 M)  with metallicity   Z = 0.004  . Our goal is to test whether the self-enrichment scenario by massive asymptotic giant branch stars may work for the high-metallicity globular clusters, after previous works by the same group showed that the theoretical yields by this class of objects can reproduce the observed trends among the abundances of some elements, namely the O–Al and O–Na anticorrelations, at intermediate metallicities, i.e.  [Fe/H]=−1.3  . We find that the increase in the metallicity favours only a modest decrease of the luminosity and the temperature at the bottom of the envelope for the same core mass, and also the efficiency of the third dredge-up is scarcely altered. On the contrary, differences are found in the yields, due to the different impact that processes with the same efficiency have on the overall abundance of envelopes with different metallicities. We expect the same qualitative patterns as in the intermediate-metallicity case, but the slopes of some of the relationships among the abundances of some elements are different. We compare the sodium–oxygen anticorrelation for clusters of intermediate metallicity ( Z ≈ 10−3) and clusters of metallicity large as in these new models. Although the observational data are still too scarce, the models are consistent with the observed trends, provided that only stars of   M ≳ 5 M  contribute to self-enrichment.  相似文献   

19.
We present the results of a deep radio observation of the globular cluster NGC 2808. We show that there are no sources detected within the core of the cluster, placing constraints on both the pulsar population of the cluster and the mass of a possible intermediate-mass black hole in NGC 2808. We compare the results for this cluster with other constraints on intermediate-mass black holes derived from accretion measures. With the exception of G1 in M 31 which has previously shown radio emission, even with considerably more conservative assumptions, only the clusters with the poorest of observational constraints are consistent with falling on the   M BH–σ  relation. This result is interpreted in terms of the fundamental differences between galaxies and globular clusters.  相似文献   

20.
We investigate the conditions by which neutron star retention in globular clusters is favoured. We find that neutron stars formed in massive binaries are far more likely to be retained. Such binaries are likely to then evolve into contact before encountering other stars, possibly producing a single neutron star after a common envelope phase. A large fraction of the single neutron stars in globular clusters are then likely to exchange into binaries containing moderate-mass main-sequence stars, replacing the lower-mass components of the original systems. These binaries will become intermediate-mass X-ray binaries (IMXBs), once the moderate-mass star evolves off the main sequence, as mass is transferred on to the neutron star, possibly spinning it up in the process. Such systems may be responsible for the population of millisecond pulsars (MSPs) that has been observed in globular clusters. Additionally, the period of mass-transfer (and thus X-ray visibility) in the vast majority of such systems will have occurred 5–10 Gyr ago, thus explaining the observed relative paucity of X-ray binaries today, given the MSP population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号