首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 140 毫秒
1.
西安地铁正交地裂缝隧道的模型试验研究   总被引:2,自引:1,他引:1  
以西安地铁二号线穿越地裂缝的区间隧道为对象,通过几何相似比尺50:1的物理模型试验,开展了地裂缝活动条件下地铁隧道骑缝(变形缝与地裂缝一致)正交穿越地裂缝时衬砌结构与围岩相互作用机制的试验研究。结果表明,在地裂缝发生各级错动位移条件下,不同围岩应力场的围岩土压力、衬砌结构应力及其不均匀沉降位移变化规律相似;上下盘内的衬砌结构之间具有明显的错断位移,下盘内衬砌结构的沉降量越小,上盘内衬砌结构的沉降量越大,均呈渐变趋势;上盘内衬砌结构应力、围岩土压力随地裂缝错动位移的增加而减小,下盘衬砌结构应力和围岩土压力随地裂缝错动位移的增加而增大,围岩土压力和衬砌结构应力的增量峰值均发生在地裂缝附近。模型试验研究研究结果对于分析地裂缝活动区间地铁隧道工程的运营及维护具有重要的理论与实际意义。  相似文献   

2.
以西安地铁工程为背景,设计了穿越地裂缝隧道——地层动力响应试验模型,开展了地铁振动作用下穿越地裂缝隧道——地层相互作用的动力模型试验,揭示了地裂缝活动及地铁列车振动时对位于地裂缝处地层的动力响应规律。试验结果表明:在地裂缝未活动时,隧道拱顶位置的加速度响应与拱底相比,其值相对较小,表明地铁列车振动引发拱底部的振动加速度,通过衬砌传递至上覆岩土体时,加速度发生了显著的衰减;当地裂缝上盘下降时,隧道拱底及拱顶测点产生的振动响应比地裂缝未活动时明显更为强烈。表明地裂缝的活动对隧道结构振动特性具有显著影响;受地铁列车运行位置变化和地裂缝上盘下降的双重影响,地裂缝两侧土体振动加速度幅值有明显的差异,这会对隧道结构的振动特性造成不利影响,在设计中应采取适当措施,防止造成隧道衬砌的局部损伤或破坏。  相似文献   

3.
地裂缝是西安市最典型的地质灾害之一,地裂缝地段地铁隧道施工引起地层及地表沉降是较为突出的工程地质和岩土工程问题。文章以西安地铁六号线浅埋暗挖隧道穿过f8地裂缝为工程背景,基于有限元数值模拟,对地裂缝地段交叉中隔墙法(CRD工法)暗挖施工引起的地表沉降和隧道变形进行了分析。结果表明:暗挖施工引起的地表沉降随开挖进尺呈反S型曲线变化特征,地裂缝带上盘的开挖进尺影响范围大于下盘;隧道中心线地表沉降在地裂缝带出现错台且靠近上盘5 m处出现集中沉降区;地裂缝地段隧道暗挖施工对地表的影响区范围约为80 m即上盘约45 m、下盘约35 m,在此范围应考虑暗挖施工对附近地表建(构)筑物的影响;开挖过程中地裂缝带上盘沉降过程变长且大于下盘;地表横向变形曲线符合高斯分布,上盘沉降大于下盘,在上盘靠近地裂缝位置处地表沉降槽宽度、沉降量明显增大;距地裂缝带5 m处上盘拱顶出现最大沉降,其值为25 mm,而在地裂缝位置处拱底出现27 mm的隆起变形,拱顶和拱底变形在地裂缝带附近出现错台;地裂缝带隧道暗挖施工对拱顶、拱底影响区范围分别为50 m和55 m,靠近上盘地裂缝位置附近隧道暗挖施工衬砌应及时支护,防止土体塌落与隧道变形。研究结果可为西安地铁隧道穿越地裂缝带暗挖施工提供科学依据和技术指导。  相似文献   

4.
通过进行地裂缝与斜交地铁隧道的物理模型试验,研究地铁列车荷载作用下地裂缝与斜交马蹄形地铁隧道的动力相互作用特性。试验结果表明:地铁行驶产生的振动在土层中各个方向传播时会有不同程度的衰减,地裂缝对地铁振动具有阻隔作用;地裂缝附近隧道下方土层的振动要比上部土层强烈;地铁隧道的拱底部位相比拱腰和拱顶部位振动响应更强烈。地裂缝未活动时,隧道底部与土体的接触附加压力较大;地裂缝上盘下降时,位于地裂缝附近的下盘隧道底部和上盘隧道顶部与土体的接触附加压力较大。地裂缝未活动时,激振作用产生的隧道顶部和底部的附加应变均较小;地裂缝上盘下降后,位于上盘的隧道顶部和位于下盘的隧道底部产生负的附加应变,位于下盘的隧道顶部和位于上盘的隧道底部产生正的附加应变,且随上盘下降量的增大,附加应变逐渐变大。  相似文献   

5.
目前西安地铁建设中过地裂缝带隧道均采取分段设缝的结构措施,而隧道结构分段长度的优化问题是地铁隧道穿越地裂缝带设防的关键。本文以西安地铁斜交穿越地裂缝带为工程背景,通过分段设缝的地铁隧道斜交跨地裂缝带的有限元数值模拟,研究了斜交跨地裂缝带地铁隧道分段设缝的合理模式及分段隧道的合理长度。计算结果表明:对缝设置模式下分段设缝隧道结构塑性区范围较小,集中在隧道拱底、拱脚;而悬臂设置模式下塑性区分布范围大且较为复杂,不利于进行衬砌加强。地铁隧道穿越地裂缝带衬砌结构宜采取分段设缝的对缝设置模式,跨地裂缝带的分段隧道合理长度为15 m,位于地裂缝主变形区内的分段隧道长度可按10~15 m考虑,而穿越地裂缝主变形区之外的地铁隧道分段长度可根据轨道调坡及隧道防水等其他要求适当增加。研究成果可为地裂缝发育的城市地铁隧道结构设计及其他地下空间开发提供重要的理论依据和技术参考。  相似文献   

6.
以西安地铁隧道穿越骊山山前断裂为研究原型,分析了该断裂的活动特征,并基于近场区地震危险性分析结果,对断裂黏滑活动可能产生的地表最大垂直位错量进行了预测;运用数值模拟方法,研究了断裂错动造成地层与隧道的变形响应特征,并对分段隧道结构受损的临界位错量值进行了分析验证;计算了断裂活动的影响范围,确定了地铁隧道穿越断裂带的主要设防区域。研究结果表明,随着断裂位错量的增大,上盘地层的沉降响应表现较明显,上下盘地层的差异沉降区域集中在断裂带附近,并呈"倒三角"形状逐渐向两侧扩展;当断裂位错量大于20cm时,上下盘远离断裂带的地铁隧道差异沉降尤为严重;当上盘沉降量达到50cm时,相邻分段隧道产生拉张、位错破坏;基于隧道拱顶处地层的竖向位移变化特征,得到地铁隧道穿越该断裂带的最小纵向设防长度为上盘40m、下盘15m,经对比验证,数值模拟计算结果与现场勘察结论一致;最后提出了相应的设防建议措施。  相似文献   

7.
地裂缝场地地铁隧道地震动力响应的振动台试验研究   总被引:1,自引:1,他引:0  
以西安轨道交通3号线地铁隧道近距离通过地裂缝场地为工程背景,采用几何比1:30的大型振动台模型试验,研究不同地震波作用下通过地裂缝带上盘场地地铁隧道的地震动力响应。试验结果表明:地裂缝场地上盘加速度响应表现出明显的放大效应;浅埋地铁隧道对地震波在土层中的传播具有一定阻碍作用,而隧道两侧拱腰位置围岩土层加速度放大效应最强;隧道特征部位PGA放大系数拱腰最大,拱底次之,拱顶最小,其中靠近地裂缝侧拱腰的PGA放大系数大于远离一侧;地裂缝附近动土压力增量明显增加,而靠近隧道附近,动土压力增量明显降低;地震作用下隧道通过地裂缝场地上下盘出现差异沉降,地表出现多条与地裂缝近似平行和正交的裂缝;隧道环向受剪切作用在靠近地裂缝一侧的拱肩部位环向应变最大,而隧道轴向受挤压作用在左右拱腰处应变出现最大值。研究结果可为地裂缝场地地铁隧道结构抗震设计与防灾减灾提供重要科学参考与借鉴。   相似文献   

8.
黄强兵  彭建兵  邓亚虹  范文 《岩土力学》2010,31(9):2882-2888
基于西安地裂缝成因、基本特征和未来活动趋势分析,通过几何缩比为1:5的地裂缝活动模型试验和地裂缝活动对盾构隧道影响的数值模拟计算,研究了西安地铁2号线隧道正交穿越地裂缝带的设防参数。通过分析地裂缝年平均活动速率和历史最大活动量,确定了与地铁2号线相交的各条地裂缝的最大垂直位移量的预测值和设计建议值。模型试验和数值模拟结果表明,正交条件下地铁隧道在地裂缝活动地段的设防宽度为60 m,即上盘为35 m,下盘为25 m;沿隧道纵向地裂缝两侧地层变形规律呈现台阶状突变变形,隧道纵向设计可将上盘视为整体下降来考虑;地铁隧道穿越地裂缝带必须分段设缝以适应地裂缝的变形,其分段长度在地裂缝主影响区按10 m进行设防,在一般影响区可按10~15 m进行分段设防。研究结果可为地铁隧道穿越地裂缝带的结构设计提供参考。  相似文献   

9.
孙飞  张志强  易志伟 《岩土力学》2019,(8):3037-3044,3053
以乌鲁木齐市轨道交通1号线地铁区间隧道穿越九家湾断层为工程依托,开展地铁隧道分段式衬砌结构穿越倾角60°正断层的大型剪切错动模型试验,对断层错动模拟过程中的隧道结构变形、应变分布特征、围岩压力、开裂形态等关键力学特征进行监测分析,获得了正断层黏滑错动下的隧道结构响应规律。研究结果表明:(1)正断层黏滑错动影响下,断层面处的隧道拱脚处于压剪状态,断层面附近的上盘仰拱及下盘拱顶处于纵断面内的受拉状态,断层面两侧较大范围内的隧道仰拱内侧及墙脚外侧处于横断面内的大偏心受力状态;(2)断层错动后,隧道开裂破坏形态主要包括斜裂缝、纵向裂缝及环向裂缝;(3)正断层黏滑错动达到7.0cm(相当于实际错动量1.75m)后,上盘隧道结构的破坏范围为4.2D(D为隧道跨度),下盘破坏范围为2.4D,上盘破坏范围明显大于下盘。  相似文献   

10.
为研究地铁列车振动荷载对地裂缝附近土压力动响应的影响机理,开展了地裂缝与斜交马蹄形地铁隧道的物理模型试验,分别制作地铁隧道模型和土层模型,采用激振器模拟地铁列车振动,通过压力盒测试土压力分布规律。试验结果表明:地裂缝未活动时,激振点所在的地裂缝一侧的附加土压力大于另一侧的附加土压力,离激振点越远附加土压力越小。垂直隧道方向的附加土压力分布具有隧道轴线处最大、隧道两侧逐渐减小的规律。地裂缝活动后,位于隧道上部的土体附加压力呈现上盘大、下盘小的分布规律,其余部位的附加土压力呈现下盘大、上盘小的规律。地裂缝未活动时,土体附加压力的分布主要受地裂缝的存在及与激振点距离的影响;地裂缝活动后土体附加压力的分布主要受隧道与土体接触状态的影响。  相似文献   

11.
以西安市昆明路地下综合管廊穿越f3地裂缝为研究对象,基于有限元数值模拟分析了地裂缝错动作用下分段地下综合管廊的变形与受力特征。结果表明:地裂缝错动作用下地下管廊顶板竖向沉降变形整体上呈现反“S”形特征,其变形量随地裂缝错动量的增大而增大;管廊结构纵向变形大致可划分3个变形段即下盘翘曲变形段、不均匀沉降段和上盘整体沉降段;在管廊设计使用寿期100 a内地裂缝错动量为50 cm时,管廊接头部位顶板的水平位移在地裂缝带处达到峰值,为4.1 cm,而底板水平位移为3.2 cm,管廊接头部位易发生张开、错位破坏现象,应予以加固;在地裂缝带附近,上盘管廊底板的接触压力减低至0,存在底板脱空现象,应预留注浆孔便于必要时进行注浆加固处理,而下盘管廊底板的接触压力则有明显增大的趋势;当地裂缝错动量超过20 cm时管廊结构顶、底板的拉应变超过了混凝土的极限拉应变,管廊变形破坏模式主要为拉张破坏。研究结果可以为西安市及其他地裂缝发育区地下综合管廊穿越地裂缝带的结构设计提供科学依据。  相似文献   

12.
地裂缝活动对土体应力与变形影响的试验研究   总被引:4,自引:1,他引:3  
通过进行西安典型地层环境下地裂缝活动的大型模型试验,研究了隐伏地裂缝活动引起附近土体应力与变形的规律。试验表明,地裂缝活动在上盘土体中产生负的附加应力,引起土体应力降低,而在下盘土体中产生正的附加应力,引起土体应力增强,且距离地裂缝越远由地裂缝活动引起的附加应力越小。地裂缝活动导致其两侧土体发生台阶状位移突变现象,随着地层由深至浅,土体变形范围明显增大,且影响区范围上盘大于下盘。地裂缝活动引起附近土体应力的分布在空间上大致分为4个区域即下盘原始应力区、应力增强区、应力降低区和上盘原始应力区,其中应力降低区范围约为应力增强区的1.5~2倍。同时,地裂缝附近土体沉降变形也可分为3个带,即下盘稳定带、差异沉降过渡带和上盘稳定带,其中上盘差异沉降带范围约为下盘沉降差异带的2倍。  相似文献   

13.
地裂缝活动作用下地层应力和位移传递规律研究   总被引:3,自引:3,他引:0       下载免费PDF全文
以西安地裂缝典型地段为研究对象,建立基于实际地裂缝活动方式的地质力学模型,通过FLAC3D数值模拟,研究地裂缝活动作用下地层应力和位移传递规律。结果表明:地裂缝活动作用下,地表竖向沉降变形曲线近似呈反“S”形,表现出“牵引挠曲”现象,水平位移曲线出现明显波峰现象;随着地裂缝位错量的增大,地表竖向和水平位移均逐渐增大;基于地裂缝活动引起的地表变形平均倾斜值,确定了地裂缝带影响区范围为上盘21 m和下盘13 m。地裂缝活动引起两侧地层断距由深部到浅表部逐渐减小,具有明显的变形传递衰减特征,且地层断距随埋深的变化曲线可近似概化为一个四次多项式方程。地裂缝活动导致上盘地层出现应力降低区,下盘地层出现应力增强区,上盘应力降低区范围大于下盘应力增强区,且上、下盘应力变化范围随着位错量的增大均逐渐增大。地裂缝活动作用下地裂缝两侧地层应力影响区随地层埋深的增大而增大,其与埋深之间关系近似满足三次多项式方程。研究结果可为盆地断裂控制型地裂缝发育区的工程防灾减灾提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号