首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change will affect agricultural production by subsistence farms in crop centers of origin, where landraces are conserved in situ. Various strategies for adaptation to climate change have been proposed. In this paper we examine the prospects of what we call the ‘transgenic adaptation strategy’, i.e. the appeal to use transgenic seeds to adapt to climate change, through the lens of smallholder maize farming in Mexico. Landraces are the bedrock of maize production in Mexico. We consider how maize farmers may respond to climate change and the effects of those responses on crop diversity. In this paper, we argue that the promotion of the transgenic adaptation strategy is problematic for biological and social reasons. Smallholder livelihoods in southern Mexico could suffer a disproportionate negative impact if transgenic technology is privileged as a response to climate change. Agroecological and evolutionary approaches to addressing the effects of climate change on smallholder agriculture provides an alternative adaptive strategy.  相似文献   

2.
Climate change is expected to disproportionately affect agriculture in Bangladesh; however, there is limited information on smallholder farmers’ overall vulnerability and adaptation needs. This article estimates the impact of climatic shocks on the household agricultural income and, subsequently, on farmers’ adaptation strategies. Relying on data from a survey conducted in several communities in Bangladesh in 2011 and based on an IV probit approach, the results show that a 1 percentage point (pp) climate-induced decline in agricultural income pushes Bangladeshi households to adapt by almost 3 pp. Moreover, Bangladeshi farmers undertake a variety of adaptation options. However, several barriers to adaptation were identified, noticeably access to electricity and wealth. In this respect, policies can be implemented in order to assist the Bangladeshi farming community to adapt to climate change.

Policy relevance

This study contributes to the literature of adaptation to climate change by providing evidence of existing risk-coping strategies and by showing how a household’s ability to adapt to weather-related risk can be limited. This study helps to inform the design of policy in the context of increasing climatic stress on the smallholder farmers in Bangladesh.  相似文献   


3.
Scientific and technical information can increase the ability of policy makers to make strategic decisions. However, climate change policy is often formulated without significant input from science. We examine whether the availability and accessibility of information related to climate change is a major barrier for policy action on climate change adaptation for smallholder farmers. We also investigate whether scientific information related to climate change is available and used in policy making in Central America and Mexico. Our online survey of 105 decision makers indicated that a lack of scientific and technical information hinders policy makers from developing policies to help smallholder farmers adapt to climate change. Specific needs include information on the impacts of climate change on water availability for agriculture and the areas that are or will be prone to flooding, droughts or landslides. Information about the location of the farmers who are most vulnerable to climate change, the projected temperature and precipitation in agricultural areas and the expected impacts of climate change on crop yields or animal productivity, is also needed. Despite high interest in having scientific information guide policy making, many respondents indicated that policy makers rarely use this information in adaptation planning. In addition to ensuring that relevant information is available to inform policy making, technical and scientific information must be published in venues that are readily accessible for policy makers, easy to understand, and written in a format that is policy-relevant. It is also critical that scientific articles provide specific recommendations for achieving desired policy outcomes.  相似文献   

4.
The International Workshop on Reducing Vulnerability of Agriculture and Forestry to Climate Variability and Climate Change held in Ljubljana, Solvenia, from 7 to 9 October 2002 addressed a range of important issues relating to climate variability, climate change, agriculture, and forestry including the state of agriculture and forestry and agrometeological information, and potential adaptation strategies for agriculture and forestry to changing climate conditions and other pressures. There is evidence that global warming over the last millennium has already resulted in increased global average annual temperature and changes in rainfall, with the 1990s being likely the warmest decade in the Northern Hemisphere at least. During the past century, changes in temperature patterns have, for example, had a direct impact on the number of frost days and the length of growing seasons with significant implications for agriculture and forestry. Land cover changes, changes in global ocean circulation and sea surface temperature patterns, and changes in the composition of the global atmosphere are leading to changes in rainfall. These changes may be more pronounced in the tropics. For example, crop varieties grown in the Sahel may not be able to withstand the projected warming trends and will certainly be at risk due to projected lower amounts of rainfall as well. Seasonal to interannual climate forecasts will definitely improve in the future with a better understanding of dynamic relationships. However, the main issue at present is how to make better use of the existing information and dispersion of knowledge to the farm level. Direct participation by the farming communities in pilot projects on agrometeorological services will be essential to determine the actual value of forecasts and to better identify the specific user needs. Old (visits, extension radio) and new (internet) communication techniques, when adapted to local applications, may assist in the dissemination of useful information to the farmers and decision makers. Some farming systems with an inherent resilience may adapt more readily to climate pressures, making long-term adjustments to varying and changing conditions. Other systems will need interventions for adaptation that should be more strongly supported by agrometeorological services for agricultural producers. This applies, among others, to systems where pests and diseases play an important role. Scientists have to guide policy makers in fostering an environment in which adaptation strategies can be effected. There is a clear need for integrating preparedness for climate variability and climate change. In developed countries, a trend of higher yields, but with greater annual fluctuations and changes in cropping patterns and crop calendars can be expected with changing climate scenarios. Shifts in projected cropping patterns can be disruptive to rural societies in general. However, developed countries have the technology to adapt more readily to the projected climate changes. In many developing countries, the present conditions of agriculture and forestry are already marginal, due to degradation of natural resources, the use of inappropriate technologies and other stresses. For these reasons, the ability to adapt will be more difficult in the tropics and subtropics and in countries in transition. Food security will remain a problem in many developing countries. Nevertheless, there are many examples of traditional knowledge, indigenous technologies and local innovations that can be used effectively as a foundation for improved farming systems. Before developing adaptation strategies, it is essential to learn from the actual difficulties faced by farmers to cope with risk management at the farm level. Agrometeorologists must play an important role in assisting farmers with the development of feasible strategies to adapt to climate variability and climate change. Agrometeorologists should also advise national policy makers on the urgent need to cope with the vulnerabilities of agriculture and forestry to climate variability and climate change. The workshop recommendations were largely limited to adaptation. Adaptation to the adverse effects of climate variability and climate change is of high priority for nearly all countries, but developing countries are particularly vulnerable. Effective measures to cope with vulnerability and adaptation need to be developed at all levels. Capacity building must be integrated into adaptation measures for sustainable agricultural development strategies. Consequently, nations must develop strategies that effectively focus on specific regional issues to promote sustainable development.  相似文献   

5.
With global concern on climate change impacts, developing countries are given special attention due their susceptibility. In this paper, change and variability in climate, land use and farmers' perception, adaptation and response to change are examined in Danangou watershed in the Chinese Loess Plateau. The first focus is to look at how climate data recorded at meteorological stations recently have evolved, and how farmers perceived these changes. Further, we want to see how the farmers respond and adapt to climate variability and what the resulting impact on land use is. Finally, other factors causing change in land use are considered. Local precipitation and temperature instrumental data and interview data from farmers were used. The instrumental data shows that the climate is getting warmer and drier, the latter despite large interannual variability. The trend is seen on the local and regional level. Farmers' perception of climatic variability corresponds well with the data record. During the last 20 years, the farmers have become less dependent on agriculture by adopting a more diversified livelihood. This adaptation makes them less vulnerable to climate variability. It was found that government policies and reforms had a stronger influence on land use than climate variability. Small-scale farmers should therefore be considered as adaptive to changing situations, planned and non-consciously planned.  相似文献   

6.
7.
Adaptation in Canadian Agriculture to Climatic Variability and Change   总被引:3,自引:0,他引:3  
The effects of climatic variability and change on Canadian agriculture have become an important research field since the early 1980s. In this paper, we seek to synthesize this research, focusing on agricultural adaptation, a purposeful proactive or reactive response to changes associated with climate, and influenced by many factors. A distinctive feature of methods used in research on adaptation in Canadian agriculture is the focus on the important role of human agency. Many individual farmers perceive they are well adapted to climate, because of their extensive 'technological' tool-kit, giving them confidence in dealing with climatic change. In many regions, little concern is expressed over climatic change, except where there are particular types of climatic vulnerability. Farmers respond to biophysical factors, including climate, as they interact with a complex of human factors. Several of these, notably institutional and political ones, have tended to diminish the farm-level risks stemming from climatic variability and change, but may well increase the long term vulnerability of Canadian agriculture. Notwithstanding the technological and management adaptation measures available to producers, Canadian agriculture remains vulnerable to climatic variability and to climate change.  相似文献   

8.
Increasing frequency, intensity and duration of severe weather events are posing major challenges to global food security and livelihoods of rural people. Agriculture has evolved through adaptation to local circumstances for thousands of years. Local experience in responding to severe weather conditions, accumulated over generations and centuries, is valuable for developing adaptation options to current climate change. This study aimed to: (i) identify tree species that reduce vulnerability of cropping systems under climate variability; and (ii) develop a method for rapidly assessing vulnerability and exploring strategies of smallholder farmers in rural areas exposed to climate variability. Participatory Rural Appraisal methods in combination with Geographical Information Systems tools and statistical analysis of meteorological data were used to evaluate local vulnerability to climate change and to investigate local adaptation measures in two selected villages in Vietnam, one of the countries most vulnerable to climate change. The low predictability of severe weather events makes food crops, especially grain production, insecure. This study shows that while rice and rain-fed crops suffered over 40 % yield losses in years of extreme drought or flood, tree-based systems and cattle were less affected. 13 tree species performed well under the harsh local climate conditions in home and forest gardens to provide income, food, feed and other environmental benefits. Thus, this research suggests that maintenance and enhancement of locally evolved agroforestry systems, with high resilience and multiple benefits, can contribute to climate change adaptation.  相似文献   

9.
Adaptation to climate change in Uganda: Evidence from micro level data   总被引:1,自引:0,他引:1  
This study employed data from the 2005/06 Uganda national household survey to identify adaptation strategies and factors governing their choice in Uganda's agricultural production. Factors that mediate or hinder adaptation across different shocks and strategies include age of the household head, access to credit and extension facilities and security of land tenure. There are also differences in choice of adaptation strategies by agro-climatic zone. The appropriate policy level responses should complement the autonomous adaptation strategies by facilitating technology adoption and availing information to farmers not only with regard to climate related forecasts but available weather and pest resistant varieties.  相似文献   

10.
Agricultural risk management policies under climate uncertainty   总被引:1,自引:0,他引:1  
Climate change is forecasted to increase the variability of weather conditions and the frequency of extreme events. Due to potential adverse impacts on crop yields it will have implications for demand of agricultural risk management instruments and farmers’ adaptation strategies. Evidence on climate change impacts on crop yield variability and estimates of production risk from farm surveys in Australia, Canada and Spain, are used to analyse the policy choice between three different types of insurance (individual, area-yield and weather index) and ex post payments. The results are found to be subject to strong uncertainties and depend on the risk profile of different farmers and locations; the paper provides several insights on how to analyse these complexities. In general, area yield performs best more often across our countries and scenarios, in particular for the baseline and marginal climate change (without increases in extreme events). However, area yield can be very expensive if farmers have limited information on how climate change affects yields (misalignment in expectations), and particularly so under extreme climate change scenarios. In these more challenging cases, ex post payments perform well to increase low incomes when the risk is systemic like in Australia; Weather index performs well to reduce the welfare costs of risks when the correlation between yields and index is increased by the extreme events. The paper also analyses the robustness of different instruments in the face of limited knowledge of the probabilities of different climate change scenarios; highlighting that this added layer of uncertainty could be overcome to provide sound policy advice under uncertainties introduced by climate change. The role of providing information to farmers on impacts of climate change emerges as a crucial result of this paper as indicated by the significantly higher budgetary expenditures occurring across all instruments when farmers’ expectations are misaligned relative to actual impacts of climate change.  相似文献   

11.
India is predicted to be one of the most vulnerable agricultural regions to future climate changes. Here, we examined the sensitivity of winter cropping systems to inter-annual climate variability in a local market and subsistence-based agricultural system in central India, a data-rich validation site, in order to identify the climate parameters to which winter crops – mainly wheat and pulses in this region – might be sensitive in the future. We used satellite time-series data to quantify inter-annual variability in multiple climate parameters and in winter crop cover, agricultural census data to quantify irrigation, and field observations to identify locations for specific crop types. We developed three mixed-effect models (250 m to 1 km scale) to identify correlations between crop cover (wheat and pulses) and twenty-two climate and environmental parameters for 2001-2013. We find that winter daytime mean temperature (November–January) is the most significant factor affecting winter crops, irrespective of crop type, and is negatively associated with winter crop cover. With pronounced winter warming projected in the coming decades, effective adaptation by smallholder farmers in similar landscapes would require additional strategies, such as access to fine-scale temperature forecasts and heat-tolerant winter crop varieties.  相似文献   

12.
Several meteorological services in Africa now issue seasonal climate forecasts on an operational basis. However, the failure to develop a comprehensive profile of users has resulted in a considerable gap between the information that is likely to be useful to farmers and that provided and disseminated by these services. The present study develops a methodology to characterize smallholder production systems in order to identify farmer groups who may adopt and benefit from the climate forecast information in sub-Saharan Africa. Through an extensive literature review, data and information was derived from a national household survey of 1540 smallholders in 1995–1997 by the Kenya Agricultural Research Institute and spatial georeferenced data from leading world data centers. The data were analysed and synthesized using the GIS. Considerable opportunities exist for farming communities to improve their profitability using climate forecasts. Although the needs and demand for climate forecasts vary according to the production systems and market forces that determine credit, demand and input availability and, thus, the usability of forecasts depend on the characteristics of the farmers and their place in space. Based on production strategies and options available to farmers, three zones were identified grouping farmers with highly probable, probable and less probable potential of adopting climate forecasts to alter their production practices. Although a climate forecast may be useful to all farmers in the region considered, due to different options available to individual groups of farmers, however, the benefits derived from its use may not be equitable. Some of the options available to farmers in Kenya were considered in this study with a view to highlighting why some may benefit more than others. The methodology demonstrated here could be adopted for other parts of the world for: (1) selecting survey sites to determine the benefits of climate forecasts using farmers participatory rapid rural appraisals and simulation approach, and (2) target climate information where it would be most useful.  相似文献   

13.
Changes in the agriculture sector are essential to mitigate and adapt to climate change, meet growing food demands, and improve the livelihoods of poor smallholder producers. What agricultural strategies are needed to meet these challenges? To what extent are there synergies among these strategies? This paper examines these issues for smallholder producers in Kenya across several agroecological zones. Several practices emerge as triple wins, supporting climate adaptation, greenhouse gas mitigation, and profitability goals. In particular, integrated soil fertility management and improved livestock feeding are shown to provide multiple benefits across all agroecological zones examined. Triple wins of other agricultural practices are limited to specific agroecological zones. Irrigation and soil and water conservation, for example, are essential for adaptation, mitigation, and profitability in arid areas. The results suggest that agricultural investments targeted toward these triple-win strategies will have the greatest payoff in terms of increased resilience of farm and pastoralist households and global climate change mitigation. To reap the benefits of triple-win strategies will require that policymakers, researchers, and practitioners move away from isolated approaches focused on either adaptation or mitigation or rural income generation toward a more holistic assessment of joint strategies as well as their tradeoffs and synergies.  相似文献   

14.
Linking Adaptation and Mitigation in Climate Change Policy   总被引:1,自引:1,他引:0  
How people privately and collectively adapt to climate risk can affect the costs and benefits of public mitigation policy (e.g., Kyoto); an obvious point often neglected in actual policy making. Herein we use the economic theory of endogenous risk to address this optimal mix of mitigation and adaptation strategies, and examine how increased variability in climate change threats affects this mix. We stress that a better understanding of the cross-links between mitigation and adaptation would potentially make it possible to provide more risk reduction with less wealth. Policies that are formulated without considering the cross-links can unintentionally undermine the effectiveness of public sector policies and programs because of unaddressed conflicts between the strategies. We also discuss the cross-disciplinary lessons to be learned from this literature, and identify important research questions to spur discussion in the next round of inquiry.  相似文献   

15.
Improving the adaptive capacity of small-scale irrigation systems to the impacts of climate change is crucial for food security in Asia. This study analyzes the capacity of small-scale irrigation systems dependent on the Asian monsoon to adapt to variability in river discharge caused by climate change. Our study is motivated by the Pumpa irrigation system, a small-scale irrigation system located in Nepal that is a model for this type of system. We developed an agent-based model in which we simulated the decisions farmers make about the irrigation strategy to use according to available water flow. Given the uncertainty associated with how climate change may affect the Asian monsoon, we simulated the performance of the system under different projections of climate change in the region (increase and decrease in rainfall, reduction and expansion of the monsoon season, and changes in the timing of the onset of the monsoon). Accordingly to our simulations, farmers might need to adapt to rainfall intensification and a late onset in the monsoon season. The demands for collective action among farmers (e.g. infrastructure repair, meetings, decisions, etc.) might increase considerably due to climate change. Although our model suggests that investment in new infrastructure might increase the performance of the system under some climate change scenarios, the high inequality among farmers when water availability is reduced might hinder the efficiency of these measures due to a reduction of farmers’ willingness to cooperate. Our modeling exercise helps to hypothesize about the most sensitive climate change scenarios for smallscale irrigation farming in Nepal and helps to frame a discussion of some possible solutions and fundamental trade-offs in the process of adaptation to improve for food and water security under climate change.  相似文献   

16.
This paper assesses the vulnerability of grape growers and winery operators in the Okanagan Valley, British Columbia to climate variability and change, in the context of other sources of risk. Through interviews and focus groups, producers identified the climatic and non-climatic risks relevant to them and the strategies employed to manage these risks. The results show that the presence of multiple exposures affects the way in which producers are vulnerable to climate change. Producers are vulnerable to conditions that not only affect crop yield, but also affect their ability to compete in or sell to the market. Their sensitivity to these conditions is influenced in part by institutional factors such as trade liberalization and a “markup-free delivery” policy. Producers’ ability to adapt or cope with these risks varies depending on such factors as the availability of resources and technology, and access to government programmes. Producers will likely face challenges associated with the supply of water for irrigation due to a combination of climatic changes and changing demographics in the Okanagan Valley, which in turn affect their ability to adapt to climatic conditions. Finally, adaptations made by producers can change the nature of the operation and its vulnerability, demonstrating the dynamic nature of vulnerability.  相似文献   

17.
Weather variability poses numerous risks to agricultural communities, yet farmers may be able to reduce some of these risks by adapting their cropping practices to better suit changes in weather. However, not all farmers respond to weather variability in the same way. To better identify the causes and consequences of this heterogeneous decision-making, we develop a framework that identifies (1) which socio-economic and biophysical factors are associated with heterogeneous cropping decisions in response to weather variability and (2) which cropping strategies are the most adaptive, considering economic outcomes (e.g., yields and profits). This framework aims to understand how, why, and how effectively farmers adapt to current weather variability; these findings, in turn, may contribute to a more mechanistic and predictive understanding of individual-level adaptation to future climate variability and change. To illustrate this framework, we assessed how 779 farmers responded to delayed monsoon onset in fifteen villages in Gujarat, India during the 2011 growing season, when the monsoon onset was delayed by three weeks. We found that farmers adopted a variety of strategies to cope with delayed monsoon onset, including increasing irrigation use, switching to more drought-tolerant crops, and/or delaying sowing. We found that farmers’ access to and choice of strategies varied with their assets, irrigation access, perceptions of weather, and risk aversion. Richer farmers with more irrigation access used high levels of irrigation, and this strategy was associated with the highest yields in our survey sample. Poorer farmers with less secure access to irrigation were more likely to push back planting dates or switch crop type, and economic data suggest that these strategies were beneficial for those who did not have secure access to irrigation. Interestingly, after controlling for assets and irrigation access, we found that cognitive factors, such as beliefs that the monsoon onset date had changed over the last 20 years or risk aversion, were associated with increased adaptation. Our framework illustrates the importance of considering the complexity and heterogeneity of individual decision-making when conducting climate impact assessments or when developing policies to enhance the adaptive capacity of local communities to future climate variability and change.  相似文献   

18.
19.
Climate and crop yield variability associated with El Niño—Southern Oscillation (ENSO) are now predictable within limits. This predictability suggests a potential to tailor agricultural management to mitigate impacts of adverse conditions and to take advantage of favorable conditions. However, improved climate predictions may benefit society only with parallel advances in our ability to use this knowledge. We show that the value that will accrue to any given actor from an ENSO phase forecast should be viewed not as a known number but instead as a random draw from a distribution, even when the forecast is always correct. Forecast value depends on the highly variable contexts in which forecasts are used. Randomness in forecast value has significant implications for choices made by forecasters, forecast users and policy makers. To show randomness, we estimate potential economic values of ENSO forecasts for agricultural producers based on two realistic assumptions: the crop prices farmers receive are uncertain; and within an ENSO phase, the actual climate is variable in ways that affect profits. The use of synthetic weather and crop price series, with crop simulation models, helps show the range and likelihood of climate forecast value.  相似文献   

20.
The threat of global climate change has caused concern among scientists because crop production could be severely affected by changes in key climatic variables that could compromise food security both globally and locally. Although it is true that extreme climatic events can severely impact small farmers, available data is just a gross approximation at understanding the heterogeneity of small scale agriculture ignoring the myriad of strategies that thousands of traditional farmers have used and still use to deal with climatic variability. Scientists have now realized that many small farmers cope with and even prepare for climate change, minimizing crop failure through a series of agroecological practices. Observations of agricultural performance after extreme climatic events in the last two decades have revealed that resiliency to climate disasters is closely linked to the high level of on-farm biodiversity, a typical feature of traditional farming systems.Based on this evidence, various experts have suggested that rescuing traditional management systems combined with the use of agroecologically based management strategies may represent the only viable and robust path to increase the productivity, sustainability and resilience of peasant-based agricultural production under predicted climate scenarios. In this paper we explore a number of ways in which three key traditional agroecological strategies (biodiversification, soil management and water harvesting) can be implemented in the design and management of agroecosystems allowing farmers to adopt a strategy that both increases resilience and provides economic benefits, including mitigation of global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号