首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
A multi-tiered earthquake hazard model for Australia   总被引:1,自引:0,他引:1  
Earthquakes result from tectonic processes, and their distribution is strongly influenced by large-scale geology and the tectonic stress field. However, earthquake hazard estimates, particularly ground motion recurrence, have traditionally been computed using source models based primarily on instrumental and historical seismicity. In areas of low to moderate seismicity such as Australia, large earthquakes commonly occur in areas which have experienced little or no recent activity, making it difficult to develop source models based solely on seismicity.

The seismotectonic model developed for Australia that is presented here (AUS5) is based on geology, geophysics, tectonics and seismicity. The model was developed using a number of tiers of information, so that new information can easily be incorporated. The information used includes, but is not limited to, tectonic provinces, basins and ranges, gravity, magnetic, topography, and seismicity, all on a regional scale. On a local scale, for a site-specific earthquake hazard study, active faulting can be incorporated to provide fault source zones.

An earthquake hazard map showing peak ground acceleration with a 10% chance of exceedance in 50 years for southeastern Australia using the geologically defined seismotectonic model AUS5 is presented as an indication of how the model performs.  相似文献   


2.
The East Anatolian Fault Zone is a continental transform fault accommodating westward motion of the Anatolian fault. This study aims to investigate the source properties of two moderately large and damaging earthquakes which occurred along the transform fault in the last two decades using the teleseismic broadband P and SH body waveforms. The first earthquake, the 27 June 1998 Adana earthquake, occurred beneath the Adana basin, located close to the eastern extreme of Turkey’s Mediterranean coast. The faulting associated with the 1998 Adana earthquake is unilateral to the NE and confined to depths below 15 km with a length of 30 km along the strike (53°) and a dipping of 81° SE. The fixed-rake models fit the data less well than the variable-rake model. The main slip area centered at depth of about 27 km and to the NE of the hypocenter, covering a circular area of 10 km in diameter with a peak slip of about 60 cm. The slip model yields a seismic moment of 3.5?×?1018 N-m (Mw???6.4). The second earthquake, the 1 May 2003 Bingöl earthquake, occurred along a dextral conjugate fault of the East Anatolian Fault Zone. The preferred slip model with a seismic moment of 4.1?×?1018 N-m (Mw???6.4) suggests that the rupture was unilateral toward SE and was controlled by a failure of large asperity roughly circular in shape and centered at a depth of 5 km with peak displacement of about 55 cm. Our results suggest that the 1998 Adana earthquake did not occur on the mapped Göksun Yakap?nar Fault Zone but rather on a SE dipping unmapped fault that may be a split fault of it and buried under the thick (about 6 km) deposits of the Adana basin. For the 2003 Bingöl earthquake, the final slip model requires a rupture plane having 15° different strike than the most possible mapped fault.  相似文献   

3.
Many bends or step-overs along strike–slip faults may evolve by propagation of the strike–slip fault on one side of the structure and progressive shut-off of the strike–slip fault on the other side. In such a process, new transverse structures form, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike–slip duplex. Consequences of this type of step-over evolution include: (1) the amount of structural relief in the restraining step-over or bend region is less than expected; (2) pull-apart basin deposits are left outside of the active basin; and (3) local tectonic inversion occurs that is not linked to regional plate boundary kinematic changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California; we present evidence at different scales for the evolution of bends and step-overs along this fault system. Examples of pull-apart basin deposits related to migrating releasing (right) bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault, and the Greenville to the Concord fault (ten km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Similar 4D evolution may characterize the evolution of other regions in the world, including the Dead Sea pull-apart, the Gulf of Paria pull-apart basin of northern Venezuela, and the Hanmer and Dagg basins of New Zealand.  相似文献   

4.
A three-component broadband seismograph is in operation since January 2007 at the Indian School of Mines (ISM) campus. We have used the broadband seismograms of two local earthquakes M <3 recorded by this single station to illustrate its efficacy in understanding the source processes and tectonics in Dhanbad area. Source parameters and fault plane solutions are obtained through waveform inversion. It is observed that these two earthquakes occurred in the lower crust at a depth of 26 km by strike slip faulting. North-south compressional and east-west tensional stresses are dominant in the area, and the lower crust is the source area for the local earthquakes.  相似文献   

5.
Abstract: There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 km and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°–60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5–3.0 m along the Yingxiu-Beichuan co-seismic fault, and 1.5–1.1 m along the Doujiangyan-Hanwang fault. Movement of the co-seismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0–20 km from co-seismic fault.  相似文献   

6.
The Fish Springs fault is a primary strand in the northern end of the Owens Valley fault zone (OVFZ). The Fish Springs fault is the northwest strand in a 3-km-wide left echelon step of the OVFZ which bounds the Poverty Hills bedrock high. The Fish Springs fault strikes approximately north-south, dips steeply to the east, and is marked by a prominent east-facing scarp. No other faults in the OVFZ have prominent east-facing scarps at the latitude of Fish Springs, which indicates that the Fish Springs fault has accommodated virtually all of the local late Quaternary vertical displacement on the OVFZ.

The Fish Springs fault exhibits normal dip slip with no measurable lateral slip. Vertical displacements of a Late Pleistocene (0.314 ± 0.036 Ma, 2σ) cinder cone and of an overlying Tahoe-age (0.065–0.195 m.y.) alluvial fan are 76±8 m and 31±3 m, respectively. The maximum vertical 3.3. m. Two nearly equal vertical displacements of the active stream channel in the Tioga-age fan total 2.2. m. Vertical displacement of a stream terrace incised into the cinder cone is 1.2 ± 0.3 m. The minute amount of incision into that terrace indicates that uplift of the terrace probably occurred during the 1872 Owens Valley earthquake.

Three displacements of 1.1 ± 0.2 m each apparently have occurred at the Tioga-age fan since the midpoint of the Tioga interval, allowing an average recurrence interval of 3500 to 9000 years. Based on the age and displacement of the cinder cone, the average late Quaternary vertical displacement rate is 0.24 ± 0.04 mm/yr (2σ). At this rate, and assuming an average vertical displacement of 1.1 ± 0.2 m per event, the average recurrence interval would be 4600 ± 1100 years (2σ). The recurrence interval for the Fish Springs fault is similar to that for a strand in the southern part of the OVFZ which also ruptured in 1872.

Right-lateral, normal oblique slip characterizes the OVFZ. The location of the Poverty Hills bedrock high at a left step in the north-northwest-striking fault zone is consistent with the style of slip of the zone. The pure normal slip on the north-striking Fish Springs fault and the alignment of local cinder cones along north-striking normal faults indicate that the late Quaternary maximum horizontal compression has been oriented north-south at the north end of the OVFZ. Data from southern Owens Valley indicate a similar stress regime there. Late Quaternary slip on the OVFZ is consistent with north-south maximum horizontal compression.  相似文献   


7.
There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts.and the other in the front of Longmen Mts.The length of which is more than 270 km and about 80 km respectively.The co-seismic fault shows a reverse flexure belt with strike of N45°-60°E in the ground,which caused uplift at its northwest side and subsidence at the southeast.The fault face dips to the northwest with a dip angle ranging from 50°to 60°.The...  相似文献   

8.
During late May and early June of 1993, we conducted two shallow, high-resolution seismic reflection surveys (Mini-Sosie method) across the southern escarpment of the Benton Hills segment of Crowleys Ridge. The reflection profiles imaged numerous post-late Cretaceous faults and folds. We believe these faults may represent a significant earthquake source zone.

The stratigraphy of the Benton Hills consists of a thin, less than about 130 m, sequence of mostly unconsolidated Cretaceous, Tertiary and Quaternary sediments which uncomfortably overlie a much thicker section of Paleozoic carbonate rocks. The survey did not resolve reflectors within the upper 75–100 ms of two-way travel time (about 60–100 m), which would include all of the Tertiary and Quaternary and most of the Cretaceous. However, the Paleozoic-Cretaceous unconformity (Pz) produced an excellent reflection, and locally a shallower reflector within the Cretaceous (K) was resolved. No coherent reflections below about 200 ms of two-way travel time were identified.

Numerous faults and folds, which clearly offset the Paleozoic-Cretaceous unconformity reflector, were imaged on both seismic reflection profiles. Many structures imaged by the reflection data are coincident with the surface mapped locations of faults within the Cretaceous and Tertiary succession. Two locations show important structures that are clearly complex fault zones. The English Hill fault zone, striking N30°–35°E, is present along Line 1 and is important because earlier workers indicated it has Pleistocene Loess faulted against Eocene sands. The Commerce fault zone striking N50°E, overlies a major regional basement geophysical lineament, and is present on both seismic lines at the southern margin of the escarpment.

The fault zones imaged by these surveys are 30 km from the area of intense microseismicity in the New Madrid seismic zone (NMSZ). If these are northeast and north-northeast oriented fault zones like those at Thebes Gap they are favorably oriented in the modern stress field to be reactivated as right-lateral strike slip faults. Currently, earthquake hazards assessments are most dependent upon historical seismicity, and there are little geological data available to evaluate the earthquake potential of fault zones outside of the NMSZ. We anticipate that future studies will provide evidence that seismicity has migrated between fault zones well beyond the middle Mississippi Valley. The potential earthquake hazards represented by faults outside the NMSZ may be significant.  相似文献   


9.
Finite-element modelling of pull-apart basin formation   总被引:1,自引:0,他引:1  
We present the results of a finite-element modelling study of pull-apart basin formation related to left-stepping left lateral strike-slip faults. The modelling quantifies the relationship between fault geometry (i.e., fault overlap and separation) and pull-apart basin formation. Two depocentres (subbasins) separated by a broad zone of relative uplift in between may develop if the strike-slip domain is characterized by fault underlap. For overlapping faults migration of the subbasins is predicted by the models. Deep subbasins in a large area of subsidence which spans the entire inner fault zone may form if fault overlap is about three times the fault separation.

The models suggest that a topographic asymmetry within the fault zone may arise due to a different displacement ratio of the strike-slip faults. The modelling results show that this asymmetry in topography becomes more pronounced towards the more active fault. Thus, basin deepening occurs progressively towards the fault characterized by the largest amount of lateral displacement. Moreover, the results indicate that the smaller the fault separation (less than basin length) the less pronounced the topographic asymmetry.

The models provide quantitative estimates for the effects of changes in elastic material properties, the magnitude of the compressive far-field stress and the coefficient of friction of the faults on the resulting topography.

Comparison of the modelling results with field observations from the Cerro Blanco-El Barranquete (CBB) subbasin located in the Internal Zone of the Betic Cordillera, southeastern Spain support an interpretation in which the interplay of major faults has formed the CBB subbasin.  相似文献   


10.
青藏铁路风火山段晚第四纪断裂活动分析   总被引:2,自引:2,他引:0  
地表地质调查发现,第四纪期间在风火山逆冲-褶皱构造带以发生近东西向的伸展变形为特征。在该构造带中形成切割早期近东西向挤压变形构造带、指示近东西向伸展变形、整体沿北60°东向展布的二道沟断陷盆地。断裂活动的地质、地貌证据表明,控制该盆地晚第四纪断陷的主边界断裂位于其北缘,是一条断续延伸达24 km左右、可能兼具左旋走滑性质的正断层。根据该区晚第四纪沉积物的分布和时代,并对断裂所错动的晚第四纪地质-地貌体进行初步的年代学分析,可以初步断定该断裂的晚第四纪垂直活动速率应该介于0.2~0.4 mm/a之间。  相似文献   

11.
the Kalpin nappe is an important multiple thrust system. It is important to study the Cenozoic tectonic of the Tianshan Mountain. Holocene active characteristics and paleoearthquake of the Kalpin nappe can be used to evaluate the neotectonic of this area. In this paper, we accurately measured the fault scarp in the front of three thrust-fold faults and analyzed paleoearthquake events in the trenches of the Kalpin nappe. Using the 10Be exposure age, we obtained those geomorphic surface ages and paleoearthquake times. The result showed that the slip rates of the west Kalpintag fault, aozitag fault and the tuoketag fault were 1.45(+1.68/-0.44) mm/a, 0.81(+0.35/-0.19) mm/a and (0.3±0.05) mm/a, respectively since the Holocene. The slip rate indicated that the increased activity transferred from back-row fault to front-row fault and accorded with the piggy-back propagation model in the Tianshan Mountain. Displacements and recurrence intervals of paleoearthquakes was similar to the slip rate characteristics. It also showed paleoearthquakes in the front row fault were stronger than paleoearthquakes of the back row fault. The strong paleoearthquake which caused the highest surface rupture happened in the Kalpintag fault. The interval of paleoearthquakes was about 4 ka and the displacement of every paleoearthquake was about 3 m in the west Kalpintag fault; the interval of paleoearthquakes was about 2 ka and the displacement of every paleoearthquake was about 1m in the aozitag fault; the tuoketag fault ruptured only one paleoearthquake since 7 ka. The Piqiang tear fault was the tectonic result of different shortening rate between the west Kalpin system and the east Kalpin system. The shortening rate of west Kalpin system was obviously stronger than the east Kalpin system. The huge separation distance was near 20 km between the east and the west back-row fault. Because the slip rate of system transferred to the front-row fault in the piggy-back propagation model, the separation distance (~4 km) between the east and the west front-row fault was increasing.  相似文献   

12.
Five seismic events occurred between August 1979 and May 1980 in the Belchatow trench area in central Poland, where large brown-coal deposits have been surface-mined since 1976. The three largest shocks had a local magnitudeML = 3.5 , seismic momentMo = 1.5 · 1014 N-m and source radiusr = 350m , approximately. The tremors had maximum intensity between 5 and 6, and from the magnitude—intensity—depth relation, the focal depth was estimated to be between 1 and 5 km.

The Belchatow tremors are the manifestation of an unusual type of induced seismicity, i.e., seismicity connected with surface mining. The removal of overburden and extensive ground-water withdrawal by the mining operations seem to be direct factors responsible for stress concentration, although preexisting tectonic stress might be the most important indirect factor responsible for the origin of these events.  相似文献   


13.
N. Pulido  T. Kubo   《Tectonophysics》2004,390(1-4):177-192
The October 6/2000 Tottori earthquake that occurred in central Japan was an intermediate size strike-slip event that produced a very large number of near field strong motion recordings. The large amount of recorded data provides a unique opportunity for investigating a source asperity model of the Tottori earthquake that, combined with a hybrid strong motion simulation technique, is able to reproduce the observed broadband frequency near-fault ground motion.

We investigated the optimum source asperity parameters of the Tottori earthquake, by applying a Genetic Algorithm (GA) inversion scheme to optimise the fitting between simulated and observed response spectra and Peak Ground Acceleration (PGA) values. We constrained the initial model of our inversion by using the heterogeneous slip distribution obtained from a kinematic inversion of the source of previous studies. We used all the observed near-fault ground motions (−100 m) from the borehole strong motion network of Japan (KiK-Net), which are little affected by surficial geology (site effects).

The calculation of broadband frequency strong ground motion (0.1–10 Hz) is achieved by applying a hybrid technique that combines a deterministic simulation of the wave propagation for the low frequencies and a semi-stochastic modelling approach for the high frequencies. For the simulation of the high frequencies, we introduce a frequency-dependent radiation pattern model that efficiently removes the dependence of the pattern coefficient on the azimuth and take-off angle as the frequency increases. The good agreement between the observed and simulated broadband ground motions shows that our inversion procedure is successful in estimating the optimum asperity parameters of the Tottori earthquake and provides a good test for the strong ground motion simulation technique.

The ratio of background stress drop to average asperity stress drop from our inversion is nearly 50%, in agreement with the theoretical asperity model of Das and Kostrov [Das, S., Kostrov, B.V., 1986. Fracture of a single asperity on a finite fault: a model for weak earthquakes? Earthquake Source Mechanics, AGU, pp. 91–96.], and an empirical ratio of asperities to rupture area [Seismol. Res. Lett. 70 (1999) 59–80.].

The simulated radiation pattern is very complex for epicentral distances within half the fault length, but it approaches the radiation of a double-couple point source for larger distances.

The rupture velocity and rise time have a significant influence on the Peak Ground Velocity (PGV) distribution around the fault. An increase in rupture velocity produces a similar effect on the ground motion as a reduction in rise time.  相似文献   


14.
Active fault zones of Armenia, SE Turkey and NW Iran present a diverse set of interrelated natural hazards. Three regional case studies in this cross-border zone are examined to show how earthquakes interact with other hazards to increase the risk of natural disaster. In northern Armenia, a combination of several natural and man-made phenomena (earthquakes, landslides and unstable dams with toxic wastes) along the Pambak-Sevan-Sunik fault (PSSF) zone lowers from 0.4 to 0.2–0.3g the maximum permissible level (MPL) of seismic hazard that may induce disastrous destruction and loss of life in the adjacent Vanadzor depression.

In the Ararat depression, a large active fault-bounded pull-apart basin at the junction of borders of Armenia, Turkey, Iran and Azerbaijan, an earthquake in 1840 was accompanied by an eruption of Ararat Volcano, lahars, landslides, floods, soil subsidence and liquefaction. The case study demonstrates that natural hazards that are secondary with respect to earthquakes may considerably increase the damage and the casualties and increase the risk associated with the seismic impact.

The North Tabriz–Gailatu fault system poses a high seismic hazard to the border areas of NW Iran, eastern Turkey, Nakhichevan (Azerbaijan) and southern Armenia. Right-lateral strike–slip motions along the North Tabriz fault have given rise to strong earthquakes, which threaten the city of Tabriz with its population of 1.2 million.

The examples illustrate how the concentration of natural hazards in active fault zones increases the risk associated with strong earthquakes in Armenia, eastern Turkey and NW Iran. This generally occurs across the junctions of international borders. Hence, the transboundary character of active faults requires transboundary cooperation in the study and mitigation of the natural risk.  相似文献   


15.
N. Kraeva   《Tectonophysics》2004,383(1-2):29-44
Application of Tikhonov's technique, using input errors for the parameter of regularization estimation, enhances the accuracy and stability of the reconstruction of a source time function (STF) by the empirical Green function (EGF) method that gives us an opportunity to use simultaneously for analysis body and surface waves data, and to estimate the horizontal and vertical directivity effects. Knowledge of the last is particularly useful for the choice of an active nodal plane of earthquakes with the dip slip fault orientation that allows us to classify these earthquakes to the interplate or intraplate types and thereby to reach the better understanding of tectonic processes in the region of interest.By way of illustration, an attempt to estimate average parameters of faulting in a first approximation is made herein for two Russian Far East large events with opposite types of focal mechanism orientation, strike slip and dip slip. The former is not a matter of interest in the context of vertical directivity effect but enables us to test the method.The directivity analysis of pulse durations and inverse amplitudes of the relative source time functions (RSTFs) restored at eight globally distributed stations IRIS indicates that the destruction in the source of the Neftegorsk earthquake (05/27/1995 MW=7.1) propagated roughly horizontally in the direction 8±11° during 19.2±0.4 s along the rupture extending 35.5±4.9 km. The calculated slip distribution along the rupture coincides within the error with the results of field geological measurements on the causal surface fault that proves that the Neftegorsk earthquake source is well described by the model of the linear unilateral fault and gives a good assessment of the method applied.The average parameters of faulting in the Kamchatka earthquake (03/08/1999 MW=6.9) have been determined from data of 13 station IRIS. It was shown that the destruction in its source propagated downward at an angle of about 60° with horizon, in the direction about S156° E, during 13.4±0.2 s, along the rupture totaling 25.5±2.3 km in length. Therefore, the nodal plane, steeply dipped to the SE, was active and this event can be regarded as an intraplate type. Two asperities can be selected; the first with the maximum slip 3.3 m located at a distance of about 7 km from the onset of rupture, and the second with the maximum slip about 0.9 m centered at approximately 19 km from that.  相似文献   

16.
渤海走滑断裂对古近系源-汇体系的控制作用   总被引:1,自引:0,他引:1       下载免费PDF全文
徐长贵  加东辉  宛良伟 《地球科学》2017,42(11):1871-1882
走滑断裂在渤海海域广泛分布,深刻影响着沉积盆地的形成与演化,同时也深刻影响着源-汇体系的形成和演化.在对渤海海域大量钻井资料和地震资料分析的基础上,认为走滑断裂对渤海古近系源-汇体系的控制作用主要表现在:走滑断裂压扭作用控制了局部物源体系的形成;走滑断裂的张扭作用控制了沟谷低地的形成;走滑断裂的水平运动控制源-汇体系的横向迁移.走滑断裂带源-汇体系发育模式十分复杂,渤海古近系常见的主要有S型走滑断裂带源-汇体系模式、叠覆型走滑断裂带源-汇体系模式、帚状走滑断裂带源-汇体系模式、共轭走滑带源-汇体系模式.开展走滑断裂带源-汇体系特征及其控砂模式的探讨,对含油气盆地的储层预测具有重要的意义.   相似文献   

17.
东天山受印度?欧亚板块碰撞的远程影响,新构造活跃,同时在气候影响下地表侵蚀速率有明显的空间差异,是探讨构造活动、地表过程和气候变化相互作用的理想区域;而反映构造变形的断层滑移量和地形起伏度是理解构造和气候相互作用的重要参数.通过三维地震反射深度剖面解译构建东天山阜康断裂带西端古牧地背斜三维构造几何形态,发现阜康断裂带断...  相似文献   

18.
Active faults in the Zagros and central Iran   总被引:1,自引:0,他引:1  
Active tectonic movements in the northwestern Zagros include right lateral slip at the rate of about 10 mm/a along the Main Recent Fault, which inherits the position of the Main Thrust, now inactive, and active thrusting and accompanying folding distributed between several zones southwest of the Main Recent Fault. In the southeastern Zagros (the Fars Province), there are several right lateral faults that extend N–S obliquely to the overall trend of the Zagros fault-and-fold belt. These may be either branches of the Main Recent Fault, or faults accommodating relative broadening of the outer Zagros in its southeastern segment. The Main Thrust in the southeastern Zagros also remains inactive.

The Ipak, North Tehran, and Mosha fault zones and several minor structures in the eastern Alborz form the E–W-trending active fault system with combined reverse and left lateral slip. On the Ipak and Mosha zones, lateral movements with the late Quaternary mean rate exceeding 1 mm/a dominate over vertical fault movements. Together with right lateral faults stretching northeast of Zagros, the faults of the Alborz may accommodate east-directed motion of the Iranian microplate.  相似文献   


19.
Field-based structural analysis of an exhumed, 10-km-long strike-slip fault zone elucidates processes of growth, linkage, and termination along moderately sized strike-slip fault zones in granitic rocks. The Gemini fault zone is a 9.3-km-long, left-lateral fault system that was active at depths of 8–11 km within the transpressive Late-Cretaceous Sierran magmatic arc. The fault zone cuts four granitic plutons and is composed of three steeply dipping northeast- and southwest-striking noncoplanar segments that nucleated and grew along preexisting cooling joints. The fault core is bounded by subparallel fault planes that separate highly fractured epidote-, chlorite-, and quartz-breccias from undeformed protolith. The slip profile along the Gemini fault zone shows that the fault zone consists of three 2–3-km-long segments separated by two ‘zones’ of local slip minima. Slip is highest (131 m) on the western third of the fault zone and tapers to zero at the eastern termination. Slip vectors plunge shallowly west-southwest and show significant variability along strike and across segment boundaries. Four types of microstructures reflect compositional changes in protolith along strike and show that deformation was concentrated on narrow slip surfaces at, or below, greenschist facies conditions. Taken together, we interpret the fault zone to be a segmented, linked fault zone in which geometrical complexities of the faults and compositional variations of protolith and fault rock resulted in nonuniform slip orientations, complex fault-segment interactions, and asymmetric slip-distance profiles.  相似文献   

20.
Groundwater radon anomalies associated with earthquakes   总被引:6,自引:0,他引:6  
G. Igarashi  H. Wakita 《Tectonophysics》1990,180(2-4):237-254
Earthquake-related changes in groundwater radon have been detected at a sensitive observation site located right on a major active fault in Northeast Japan. A time-series analysis based on Bayesian statistics was successfully applied to remove background variations from the observed radon data, enabling us to examine the earthquake-related changes in detail.

We set a simple criterion of amplitude and duration for an anomaly observed in our radon data; we define an anomaly as a radon change that kept its level beyond 2σ (a standard deviation over the whole observation period) during a period longer than one day. We have observed 20 radon anomalies that satisfied this criterion from January 1984 to December 1988. Most of these anomalies have turned out to be related to large earthquakes that occurred in East Japan and its surrounding area; we have identified 12 post-seismic and 2-pre-seismic radon anomalies out of a total of 30 earthquakes with magnitude M 6.0 and hypocentral distance D 1000 km.

The typical pattern of the post-seismic anomalies is a radon decrease which started just after an earthquake, lasting for periods ranging from a few days to more than one week. The amplitude of the post-seismic anomalies depends on both magnitude and hypocentral distance, and can, in general, be expressed by a simple magnitude-distance relationships.

A possible pre-seismic anomaly was observed about one week before the largest earthquake that occurred in this region during the observation period (March 6, 1984; M = 7.9, D = 1000 km). Another possible pre-seismic anomaly was observed about three days before two nearby large earthquakes that occurred at almost the same place in a time interval of 53 min (February 6, 1987; M = 6.4 and M = 6.7, D = 130 km).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号