首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We systematically investigate the evolution of low-mass (0.35, 0.40, and 0.65M ) helium donors in semidetached binaries with white-dwarf accretors. The initial periods of the binaries are chosen in such a way that the helium abundance in the center of the models at the time of Roche lobe overflow varies between Y c = 0.98 and Y c ? 0.1. The results of our calculations can be used to analyze the formation scenarios and evolutionary status of AM CVn stars. We show that the minimum orbital periods of the semidetached binaries depend weakly on the total mass of the components and the evolutionary phase of the donor at the time of Roche lobe overflow and are 9–10 min. The differences in the mass transfer rates after P orb reaches its minimum in the range P orb ≈ 10–40 min do not exceed a factor of ~2.5. For P orb ? 20 min, the mass-losing stars are weakly degenerate homogeneous cooling objects; the He, C, N, O, and Ne abundances depend on the evolutionary phase at which Roche lobe overflow occurred. For the binaries that are currently believed to be the most probable candidates for AM CVn stars with helium donors, Y ? 0.4, X C ? 0.3, X O ? 0.25, and X N ? 0.5 × 10?2. In the binaries under consideration, once P orb ≈ 40 min has been reached, the mass loss time scale begins to exceed the thermal time scale of the donors, the latter begin to contract, their matter becomes degenerate, and the populations of AMCVn stars with white-dwarf and helium-star progenitors of their donors probably merge together.  相似文献   

2.
We present a charged analogue of Pant et al. (2010, Astrophys. Space Sci., 330, 353) solution of the general relativistic field equations in isotropic coordinates by using simple form of electric intensity E that involve charge parameter K. Our solution is well behaved in all respects for all values of X lying in the range 0 <X≤ 0.11, K lying in the range 4 <K≤ 6.2 and Schwarzschild compactness parameter u lying in the range 0 <u≤ 0.247. Since our solution is well behaved for wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X = 0.077 and K = 6.13 for which u = 0.2051 and by assuming surface density ρ b =4.6888×1014 g cm ?3 the mass and radius are found to be 1.509M , 10.906 km respectively which match with the observed values of mass 1.51M and radius 10.90 km of the quark star XTE J1739-217. The well behaved class of relativistic stellar models obtained in this work might have astrophysical significance in the study of more realistic internal structures of compact stars.  相似文献   

3.
We present the optical spectroscopic study of two classical Be stars, 59 Cyg and OT Gem obtained over a period of few months in 2009. We detected a rare triple-peak H α emission phase in 59 Cyg and a rapid decrease in the emission strength of H α in OT Gem, which are used to understand their circumstellar disks. We find that 59 Cyg is likely to be rapid rotator, rotating at a fractional critical rotation of ~0.80. The radius of the H α emission region for 59 Cyg is estimated to be R d/R ? ~ 10.0, assuming a Keplerian disk, suggesting that it has a large disk. We classify stars which have shown triple-peaks into two groups and find that the triple-peak emission in 59 Cyg is similar to ζ Tau. OT Gem is found to have a fractional critical rotation of ~0.30, suggesting that it is either a slow rotator or viewed in low inclination. In OT Gem, we observed a large reduction in the radius of the H α emission region from ~6.9 to ~1.7 in a period of three months, along with the reduction in the emission strength. Our observations suggest that the disk is lost from outside to inside during this disk loss phase in OT Gem.  相似文献   

4.
We present the results of our processing of the first observations of extragalactic radio sources obtained with the eight-element International VLBI Network, which includes the Svetloe Russian Radio Astronomy Observatory equipped with a Mark 3A recording terminal. Our observations and their processing yielded highly accurate coordinates (in meters) of the Svetloe Observatory in the ITRF 2000 system: X = 2730173.854 ± 0.002, Y = 1562442.668 ± 0.004, Z = 5529969.069 ± 0.007. We also show that including the Svetloe Observatory in the International Network led to an appreciable improvement in the accuracy of determining the Earth’s rotation parameters (microarcseconds for the coordinates of the pole and nutation angles, microseconds for Universal Time): Xp = ?154683 ± 77, Yp = 361809 ± 59, UT1-UTC = ?325162.9 ± 2.5, Δψ = ?53147 ± 114, Δε = ?2286 ± 47.  相似文献   

5.
Low-mass galaxies are known to have played the crucial role in the hydrogen reionization in the Universe. In this paper we investigate the contribution of soft x-ray radiation (E ~ 0.1–1 keV) from dwarf galaxies to hydrogen ionization during the initial reionization stages. The only possible sources of this radiation in the process of star formation in dwarf galaxies during the epochs preceding the hydrogen reionization epoch are hot intermediate-mass stars (M ~ 5–8 M) that entered the asymptotic giant branch (AGB) stage and massive x-ray binaries. We analyze the evolution of the intergalactic gas in the neighborhood of a dwarf galaxy with a total mass of 6 × 108M formed at the redshift of z ~ 15 and having constant star-formation rate of 0.01–0.1 M yr?1 over a starburst with a duration of up to 100 Myr. We show that the radiation from AGB stars heats intergalactic gas to above 100 K and ensures its ionization xe ? 0.03 within about 4–10 kpc from the galaxy in the case of a star-formation rate of star formation 0.03–0.1 M yr?1, and that after the end of the starburst this region remains quasi-stationary over the following 200–300 Myr, i.e., until z ~ 7.5. Formation of x-ray binaries form in dwarf galaxies at z ~ 15 results in a 2–3 and 5–6 times greater size of the ionized and heated region compared to the case where ionization is produced by AGB stars exclusively, if computed with the “x-ray luminosity–star-formation rate” dependence (LX ~ fXSFR) factor fX = 0.1 and fX ~ 1, respectively. For fX ? 0.03 the effect of x-ray binaries is smaller that that of AGB star population. Lyα emission, heating, and ionization of the intergalactic gas in the neighborhood of dwarf galaxies result in the excitation of the 21 cm HI line. We found that during the period of the starburst end at z ~11.5–12.5 the brightness temperature in the neighborhood of galaxies is 15–25 mK and the region where the brightness temperature remains close to its maximum has a size of about 12–30 kpc. Hence the epoch of the starburst end is most favorable for 21 cm HI line observations of dwarf galaxies, because at that time the size of the region of maximum brightness temperature is the greatest over the entire evolution of the dwarf galaxy. In the case of the sizes corresponding to almost 0.’1 for z ~ 12 regions with maximum emission can be detected with the Square Kilometre Array, which is currently under construction.  相似文献   

6.
Based on the analysis of published data on exposure ages of iron meteorites determined with the 40K/K method (T K) and ages calculated using short-lived cosmogenic radionuclides (with the half-life T 1/2 < 1 Myr) in combination with stable cosmogenic isotopes of noble gases (TRS), the following results have been obtained. (1) The distribution of T RS ages (106 values) has an exponential shape, similar to that for ordinary chondrites, but different from the distribution of T K ages (80 values). The difference is most likely due to small amounts of data for meteorites with low T K ages (less than ~200–300 Myr). The latter can be ascribed to the difficulty of measurement of small concentrations of cosmogenic potassium isotopes. This circumstance makes the selection of meteorites with 40K/K ages nonrepresentative and casts doubt on the correctness of conclusions about the variations of the intensity of galactic cosmic rays (GCR) based on the analysis of distribution of these ages. (2) The magnitude of the known effect (systematic overestimation of T K ages in comparison with T RS ages) has been refined. The value k = T K/T RS = 1.51 ± 0.03 is acquired for the whole population of data. We have shown the inefficiency of the explanation of this effect on account of an exponential change in the GCR intensity (I T ) with time (T) according to the relation I T = I 0exp(–γT) over the whole range of ages of iron meteorites. (3) In order to explain the overestimation of T K ages in comparison with T RS ages, a model has been proposed, according to which the GCR intensity has exponentially increased in the interval of 0–1500 Myr governed by the relation: I T = I T = 1500 (1 + αexp(–βT)). For one of the variants of this model, the GCR intensity has exponentially increased by a factor of two only over the recent ~300 Myr, remaining approximately constant for the rest of the time. The data acquired with the use of this model indicate that the measured T K ages are close to the actual time that the meteorites existed in space; the data are in agreement with the observed exponential distribution of T RS ages.  相似文献   

7.
Regular high-precision determinations of the Earth’s orientation parameters (EOPs) on the Quasar VLBI Network were begun in August 2006. The observations are performed within the framework of two national programs: daily sessions at three observatories of the Network to determine all five EOPs (the RU-E program) and 8-h sessions on the Zelenchukskaya-Badary and Svetloe-Badary baselines to determine the Universal Time (the RU-U program). The observations from August 2006 through May 2007 are analyzed. The rms deviations of the EOP values obtained in the RU-E program from the IERS C04 series are 1.1 mas for X p and Y p, 37 μs for UT1-UTC, and 0.7 and 0.6 mas for X c and Y c, respectively. These results closely match the prospective requirements of GLONASS. The rms deviations of the Universal Times obtained in the RU-U program from the IERS C04 series are 146 μs. We consider the immediate prospects for improving the accuracy of EOP determinations in daily sessions and for implementing the e-VLBI mode for an online determination of the Universal Time. Original Russian Text ? A.M. Finkelstein, E.A. Skurikhina, I.F. Surkis, A.V. Ipatov, I.A. Rakhimov, S.G. Smolentsev, 2008, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2008, Vol. 34, No. 1, pp. 66–76.  相似文献   

8.
Speckle interferometric observations made with the 6 m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in 2000 revealed the triple nature of the nearby (π Hip = 51.80 ± 1.74 mas) low-mass young (≈ 200 Myr) star GJ 900. The configuration of the triple system allowed it to be dynamically unstable. Differential photometry performed from 2000 through 2004 yielded I- and K-band absolute magnitudes and spectral types for the components to be I A =6.66±0.08, I B =9.15±0.11, I C =10.08±0.26, K A =4.84±0.08, K B =6.76±0.20, K C =7.39±0.31, Sp A ≈K5?K7, Sp B ≈M3?M4, Sp C ≈M5?M6. The “mass-luminosity” relation is used to estimate the individual masses of the components: M A ≈0.64M , M B ≈0.21M , M C ≈0.13M . From the observations of the components’ relative motion in the period 2000–2006, we conclude that GJ 900 is a hierarchical triple star with the possible orbital periods PA-BC≈80 yrs and PBC≈20 yrs. An analysis of the 2MASS images of the region around GJ 900 leads us to suggest that the system can include other very-low-mass components.  相似文献   

9.
We present the technique we used to compile a catalog of about 61 000 local stars brighter than K s = 8.2 m which were identified as most likely red clump candidates on the basis of their reduced proper motions in the K s band. The catalog was compiled from the combined Tycho-2 and 2MASS data for the stars with color indices J-K s ranging from 0.5 m to 0.8 m . It includes the equatorial coordinates, the proper motions, the magnitudes B T , V T , J, H, and K s , and the probabilities for the stars to be red clump giants.  相似文献   

10.
High-resolution spectra of nine yellow nonvariable supergiants (NVSs) located within the canonical Cepheid instability strip from Sandage and Tammann (1969) (α Aqr, ? Leo, μ Per, ω Gem, BD+60 2532, HD 172365, HD 187299, HD 190113, and HD 200102) were taken with the 1-m Zeiss and 6-m BTA telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences in the 1990s. These have been used to determine the atmospheric parameters, chemical composition, radial velocities, reddenings, luminosities, distances, and radii. The spectroscopic estimates of T eff and the luminosities determined from the Hipparcos parallaxes have shown eight of the nine program NVSs on the T eff?log(L/L ) diagram to be outside the canonical Cepheid instability strip. When the edges of the Cepheid instability strip from Bono et al. (2000) are used, out of the NVSs from the list on the diagram one is within the Cepheid instability strip but closer to the red edge, two are at the red edge, three are beyond the red edge, two are at the blue edge, and one is beyond the blue edge. The evolutionary masses of the objects have been estimated. The abundances of α-elements, r- and s-process elements for all program objects have turned out to be nearly solar. The СNO, Na, Mg, and Al abundance estimates have shown that eight of the nine NVSs from the list have already passed the first dredge-up. Judging by the abundances of the key elements and its position on the T eff?log(L/L ) diagram, the lithium-rich supergiant HD 172365 is at the post-main-sequence evolutionary stage of gravitational helium core contraction and moves toward the first crossing of the Cepheid instability strip. The star ? Leo should be assigned to bright supergiants, while HD 187299 and HD 190113 may have already passed the second dredge-up and move to the asymptotic branch.  相似文献   

11.
Based on data from the Two-Micrometer All-Sky Survey (2MASS), we analyzed the infrared properties of 451 Local-Volume galaxies at distances D ≤ 10 Mpc. We determined the K-band luminosity function of the galaxies in the range of absolute magnitudes from ?25m to ?11m. The local luminosity density within 8 Mpc is 6.8 × 108L Mpc?3, a factor of 1.5 ± 0.1 higher than the global mean K-band luminosity density. We determined the ratios of the virial mass to the K-band luminosity for nearby groups and clusters of galaxies. In the luminosity range from 5 × 1010 to 2 × 1013L, the dependence log(M/LK) ∝ (0.27 ± 0.03) log LK with a dispersion of ~0.1 comparable to the measurement errors of the masses and luminosities of the systems of galaxies holds for the groups and clusters of galaxies. The ensemble-averaged ratio, 〈M/LK〉 ? (20–25) M/L, was found to be much smaller than the expected global ratio, (80–90)M/L, in the standard model with Ωm = 0.27. This discrepancy can be eliminated if the bulk of the dark matter in the Universe is not associated with galaxies and their systems.  相似文献   

12.
We consider two-layer (Fe-FeS core+silicate mantle) and three-layer (Fe-FeS core+silicate mantle+crust) models of the Galilean satellite Io. Two parameters are known from observations for the equilibrium figure of the satellite, the mean density ρ0 and the Love number k2. Previously, the Radau-Darwin formula was used to determine the mean moment of inertia. Using formulas of the Figure Theory, we calculated the principal moments of inertia A, B, and C and the mean moment of inertia I for the two-and three-layer models of Io using ρ0 and k2 as the boundary conditions. We concluded that when modeling the internal structure of Io, it is better to use the observed value of k2 than the moment of inertia I derived from k2 using the Radau-Darwin formula. For the models under consideration, we calculated the Chandlerian wobble periods of Io. For the three-layer model, this period is approximately 460 days.  相似文献   

13.
We present the results of the reduction of our photometric and spectroscopic observations for the eclipsing binary SZ Cam performed with the telescopes at the Astronomical Observatory of the Ural Federal University and the Special Astrophysical Observatory of the Russian Academy of Sciences in 1996–2014. Based on an 11-year-long photometric monitoring of SZ Cam, we have obtained new elements of its photometric orbit and parameters of its components. We have detected low-amplitude periodic light variations in SZ Cam that are possibly related to the ellipsoidal shape of the components of the spectroscopic binary third body. Based on published data and our new spectroscopy, we have found new values for the mass ratio, q = 0.72 ± 0.01, and parameters of the radial velocity curves of the components, V 0 = ?3.6 ± 1.7 km s?1, K 1 = 190.2 ± 1.9 km s?1, and K 2 = 263.0 ± 2.4 km s?1. The component masses have been estimated to be M 1 = 16.1 M and M 2 = 11.6 M . We have obtained new light elements and parameters of the radial velocity curves for the third body, V 0 3b = 4.2 ± 0.6 km s?1 and K 1 3b = 26.6 ± 0.8 km s?1. We have improved the period of the relative orbit of SZ Cam and the third body, P orb = 55.6 ± 1.5 yr.  相似文献   

14.
The properties of red clump giants in the central regions of the Galactic bulge are investigated in the photometric Z and Y bands of the infrared VVV (VISTA/ESO) survey and the [3.6], [4.5], [5.8], and [8.0] μm bands of the GLIMPSE (Spitzer/IRAC) Galactic plane survey. The absolute magnitudes for objects of this class have been determined in these bands for the first time: M Z = ?0.20 ± 0.04, M Y = ?0.470 ± 0.045, M[3.6] = ?1.70 ± 0.03, M[4.5] = ?1.60 ± 0.03, M[5.8] = ?1.67 ± 0.03, and M[8.0] = ?1.70 ± 0.03. A comparison of the measured magnitudes with the predictions of theoretical models for the spectra of the objects under study has demonstrated good mutual agreement and has allowed some important constraints to be obtained for the properties of bulge red clump giants. In particular, a comparison with evolutionary tracks has shown that we are dealing predominantly with the high-metallicity subgroup of bulge red clump giants. Their metallicity is slightly higher than has been thought previously, [M/H] ? 0.40 (Z ? 0.038) with an error of [M/H] ? 0.1 dex, while the effective temperature is 4250± 150 K. Stars with an age of 9–10 Gyr are shown to dominate among the red clump giants, although some number of younger objects with an age of ~8 Gyr can also be present. In addition, the distances to several Galactic bulge regions have been measured, as D = 8200–8500 pc, and the extinction law in these directions is shown to differ noticeably from the standard one.  相似文献   

15.
In this paper we study the relations between the main characteristics of groups and clusters of galaxies using the archival data of the SDSS and 2MASX catalogs. We have developed and implemented a new method of determining the size of galaxy systems and their effective radius which contains half of the galaxies and not half the luminosity, since the luminosity of the brightest galaxy in a group can account for over 50% of the total luminosity of the group. The derived parameters (log LK, logRe, and log σ200) for 94 systems of galaxies (0.0038 < z < 0.09) determine the Fundamental Plane (FP), which, with a scatter of 0.15, is similar in form to the FP of galaxy clusters obtained by Schaeffer et al. (1993) and D’Onofrio et al. (2013) with other methods and for different bands. We show that the FP in the near-infrared region (NIR) for 94 galaxy systems has the form of LK\(R_e^{0.70 \pm {{0.13}_\sigma }1.34 \pm 0.13}\), whereas in x-rays it has the form of—LX\(R_e^{1.15 \pm {{0.39}_\sigma }2.56 \pm 0.40}\). The form of the FP for groups and clusters is consistent with the FP for early-type galaxies determined in the same way. The form of the FP for galaxy systems deviates from the shape that one would expect from virial predictions. Adding the mass-to-light ratio as a fourth independent parameter has little effect on this deviation, but decreases the scatter of the FP for a sample of rich galaxy clusters by 12%.  相似文献   

16.
ASTRONIRCAM is a cryogenic-cooled slit camera-spectrograph for the spectral range 1–2.5 μm installed at the Nasmyth focus of the 2.5-meter telescope of the Caucasian observatory of the Sternberg Astronomical Institute of Lomonosov Moscow State University. The instrument is equipped with a HAWAII-2RG 2048×2048 HgCdTe array. Grisms are used as dispersive elements. In the photometric mode ASTRONIRCAM allows for extended astronomical object imaging in a 4.′6 × 4.′6 field of view with a 0.269 arcsec/pixel scale in standard photometric bands J, H, K, and K s as well as in the narrow-band filters centered on the lines CH4, [Fe II], H2 v=1-0 S(1), Br γ , and CO. In the spectroscopic mode, ASTRONIRCAM takes spectra of extended or point-like sources with a spectral resolution of R = λλ ≤ 1200. The general design, optical system, detector electronics and readout, amplification and digitization schemes are considered. The GAIN conversion factor measurement results are described as well as its dependence on the accumulated signal (nonlinearity).The full transmission of the atmosphere-to-detector train ranges from 40 to 50% in the wide-band photometry mode. The ASTRONIRCAMsensitivity at the 2.5-m telescope is characterized by the limiting J = 20, K = 19 stellar magnitudes measured with a 10% precision and 15 minute integration for 1″ atmospheric seeing conditions. References to the first results based on ASTRONIRCAM observations are given.  相似文献   

17.
Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto–Nagai expressions. The Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen–Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ = 0.1 M pc?3 and the force K z =1.1/2πG = 77 M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G (R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M , is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G (R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M , M G (R ≤ 200 kpc) = (1.29± 0.14)× 1012 M at γ = 6.3, and the smallest value has been found in model II, M G (R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M . In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G (R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M . A comparative analysis with the models by Irrgang et al. (2013), including those using the integration of orbits for the two globular clusters NGC 104 and NGC 1851 as an example, has been performed. The third model is shown to have subjected to a significant improvement.  相似文献   

18.
We have performed hydrodynamic calculations of the radial pulsations of helium stars with masses 10MM ≤ 50M, luminosity-to-mass ratios 5 × 103L/ML/M ≤ 2.5 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for helium and heavy-element mass fractions of Y=0.98 and Z=0.02, respectively. We show that the high-temperature boundary of the instability region for radial pulsations at L/M ? 104L/M extends to Teff≈105 K. The amplitude of the velocity variations for outer layers is several hundred km s?1, while the brightness variations in the B band of the UBV photometric system are within the range from several hundredths to half a magnitude. At constant luminosity-to-mass ratio, the radial pulsation period is determined only by the effective temperature of the star. In the ranges of luminosity-to-mass ratios 104L/ML/M ≤ 2 × 104L/M and effective temperatures 5 × 104 K ≤ Teff ≤ 9 × 104 K, the periods of the radial modes are within 6 min ?Π?103 min.  相似文献   

19.
Using a reliablymeasured intrinsic (i.e., corrected for absorption effects) present-day luminosity function of high-mass X-ray binaries (HMXBs) in the 0.25–2 keV energy band per unit star formation rate, we estimate the preheating of the early Universe by soft X-rays from such systems. We find that X-ray irradiation, mainly executed by ultraluminous and supersoft ultraluminous X-ray sources with luminosity L X > 1039 erg s?1, could significantly heat (T >T CMB, where T CMB is the temperature of the cosmic microwave background) the intergalactic medium by z ~ 10 if the specific X-ray emissivity of the young stellar population in the early Universe was an order of magnitude higher than at the present epoch (which is possible due to the low metallicity of the first galaxies) and the soft X-ray emission from HMXBs did not suffer strong absorption within their galaxies. This makes it possible to observe the 21 cm line of neutral hydrogen in emission from redshifts z < 10.  相似文献   

20.
We present the results of our hydrodynamic calculations of radial pulsations in helium stars with masses 1 MM ≤ 10 M, luminosity-to-mass ratios 1 × 103L/ML/M ≤ 2 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for mass fractions of helium Y=0.98 and heavy elements Z=0.02. We show that the lower boundary of the pulsation-instability region corresponds to L/M ~ 103L/M and that the instability region for L/M ? 5 × 103L/M is bounded by effective temperatures Teff ? 3 × 104 K. As the luminosity rises, the instability boundary moves into the left part of the Hertzsprung-Russell diagram and radial pulsations can arise in stars with effective temperatures Teff ? 105 K at L/M ? 7 × 103L/M. The velocity amplitude for the outer boundary of the hydrodynamic model increases with L/M and lies within the range 200 ? ΔU ? 700 km s?1 for the models under consideration. The periodic shock waves that accompany radial pulsations cause a significant change of the gas-density distribution in the stellar atmosphere, which is described by a dynamic scale height comparable to the stellar radius. The dynamic instability boundary that corresponds to the separation of the outer stellar atmospheric layers at a superparabolic velocity is roughly determined by a luminosity-to-mass ratio L/M ~ 3 × 104L/M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号