首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
介绍了青藏高原东缘地区相对重力与绝对重力的观测情况,系统分析了该区域2010以来的区域重力场变化及其与2013年4月20日四川芦山7.0级地震发生的关系。结果表明:(1)芦山7.0级地震前青藏高原东缘重力变化剧烈,芦山地震发生在沿龙门山断裂带南段的重力变化高梯度带的转弯部位;(2)芦山地震距2008年汶川地震不到100km,芦山震中及汶川地震震中均处于重力变化四象限中心,表明汶川地震震后恢复调整变化对芦山地震具有促进作用;(3)基于流动重力异常变化在芦山7.0级地震前做过一定程度的中期预测,尤其是地点预测。  相似文献   

2.
2013年四川芦山Ms7.0地震前的重力变化   总被引:6,自引:0,他引:6       下载免费PDF全文
利用川西地区2010-2012年期间的流动重力观测资料,系统分析了区域重力场变化及其与2013年4月20日四川芦山7.0级地震发生的关系.结果主要表明:①区域重力场异常变化与北东向龙门山断裂带南段和北北西向马尔康断裂带在空间上关系密切,反映沿该两断裂带(段)在2010-2012年期间发生了引起地表重力变化效应的构造活动或变形.②芦山7.0级地震前,测区内出现了较大空间范围的区域性重力异常,而震源区附近产生了局部重力异常,沿龙门山断裂带南段形成了重力变化高梯度带,其中,宝兴、天全、康定、泸定、石棉一带重力差异变化达100×10-8m·s-2以上;这些可能反映芦山地震前,区域及震源区附近均产生与该地震孕育、发生有关的构造运动或应力增强作用.③重力场差分动态演化图像和重力场累积变化动态图像均反映芦山7.0级地震孕育过程的最后2~3年出现较显著的流动重力异常变化,可视为该地震的中期前兆信息;本文第一作者等也曾基于该流动重力异常变化在芦山7.0级地震前做过一定程度的中期预测,尤其是地点预测.本文的例子再次证明流动重力观测能较好地捕捉到强震孕育发生过程中,特别是该过程最后阶段的重力异常变化信息.因此,区域流动重力场观测对未来强震的中-长期预测,尤其是在发震地点的判定上具有优势.  相似文献   

3.
龙门山断裂带西南端地壳电性结构   总被引:2,自引:0,他引:2       下载免费PDF全文
在龙门山断裂带中段于2008年5月12日发生了汶川MS 8.0地震,5a之后于2013年4月20日在其西南侧即龙门山断裂带SW段发生了芦山MS 7.0地震。而在汶川地震前,沿龙门山断裂带主体部分存在7a间未发生4.0级以上地震的相对平静期。因此,汶川地震后人们研究了龙门山断裂带的地壳结构及其与汶川地震的成因关系,仅仅相隔5a时间,就在龙门山断裂带的SW段发生了芦山地震,其深部结构和孕震环境以及与汶川地震的关系又成为人们关注的热点科学问题。为了研究龙门山断裂带西南端附近的地壳结构,布置了一条穿越龙门山断裂带西南端附近的大地电磁探测剖面LS6,该剖面位于芦山地震破裂带的西南端。通过采用先进技术对大地电磁数据的分析和二维反演,发现LS6剖面与其东北侧的穿过芦山地震区汶川地震后完成的LMS4剖面的地壳电性结构既有相似性,但也存在明显的差别,其电性结构更复杂。研究表明,尽管2008年发生了汶川地震,但是龙门山断裂带受到的西北侧松潘-甘孜地块向SE的运动和对龙门山断裂带的推挤作用,以及东南侧四川盆地的阻挡作用仍然存在,同时龙门山断裂带西南端及其附近地区的地壳结构更复杂,而且还受到其西南侧川滇地块和鲜水河断裂等变形作用的影响,因此推测芦山地震与汶川地震既是相互独立的2次地震,但也有一定关联。  相似文献   

4.
贾晓东  翟丽娜  陈石 《地震》2021,41(1):180-190
地震重力分析通过研究时变重力场变化获取地球内部介质物性变化信息.采用贝叶斯重力网平差方法对辽宁地区2011-2014年共计四年7期的流动重力观测资料进行处理,对研究区重力观测网总体监测能力做出分析,选用欧拉反褶积对研究区的重力变化场源深度及空间分布特征进行反演和解释.通过反演计算发现,在2013年灯塔Ms5.1地震前沈...  相似文献   

5.
2013年4月20日,在青藏高原东缘的龙门山断裂带的南段发生了芦山7.0级地震.通过地壳剪切波分裂的分析,揭示了龙门山断裂带域的地壳主压应力方向及其与断裂之间的关联.芦山地震余震的定位结果显示,芦山地震的破裂与汶川地震的破裂没有贯通,在芦山与汶川之间形成了一个"破裂空段".本文建议,应关注芦山地震与汶川地震之间"破裂空段"的应力变化.采用不依赖于天然地震记录的井下人工源观测技术是一种有意义的科学尝试.  相似文献   

6.
芦山7.0级地震和康定6.3级地震是近两年来在龙门山断裂带和鲜水河断裂带上发生的最为显著的两次地震事件,都发生在巴颜喀拉地块与四川盆地的挤压构造带边缘。利用芦山科学考察项目和中国地球物理场观测——青藏高原东缘地区项目中获得的水准资料,研究芦山地震震前、震中和震后垂直形变演化和康定地震震前垂直形变特征。结果表明:芦山地震前龙门山断裂带南段的小金相对于芦山地区上升速率约为1.7 mm/a,同震垂直变形可以达到197.7 mm,变形最大区域分布在芦山灌县—安县断裂附近;芦山地震后鲜水河断裂带色拉哈段两侧垂直形变迅速增加至13 mm/a,之后发生康定地震。1982年以来,鲜水河断裂带和龙门山断裂带Y字型交汇区域保持着4.5 mm/a的快速隆升,同时在都江堰和大邑一带存在一条垂直形变高梯度带。  相似文献   

7.
陆地重力观测相较于航空和卫星重力观测,距离场源更近,观测精度相对较高,其静态异常和时变数据已广泛应用于研究多种地球动力学问题.21世纪以来,绝对重力观测技术发展迅速,陆地观测网络日益完善,高精度陆地重力观测数据产品逐渐丰富,基于这些产品的大地测量和地球物理研究不断取得新进展.本文总结了近十几年来高精度陆地重力观测数据在大地测量和地球物理领域的应用进展情况,包括基于重力异常数据构建重力场和大地水准面模型、建立地壳物性结构模型、反演Moho界面形态和估计岩石圈有效弹性厚度,以及利用时变重力数据构建时变重力场模型、探测微弱动力学信号、估计地壳构造变形速率和分析与火山、地震过程的可能关联,最后探讨分析了陆地重力测量的未来发展趋势,可为中国大陆重力观测系统建设与发展规划提供参考.  相似文献   

8.
2013 年4 月20 日芦山MS7.0地震是继2008年汶川MS8.0地震后发生在龙门山断裂带的又一强震,与汶川地震相似,该震临震前在近震源区未观测到显著的异常变化。为研究其临震前形变特征,本文根据信息熵理论对芦山MS7.0地震前近震源区的连续形变观测资料进行了年变熵率值分析,并研究其时序上的分布特征。结果表明,震前近震源区台站地倾斜形变熵均表现出减熵现象,时序的年尺度熵结果表明,汶川MS8.0地震对芦山MS7.0地震具有一定的触发作用,且震中区的EW 向和NS 向分量具有高度一致的熵变趋势。  相似文献   

9.
本文利用2013年芦山M_S7.0级地震同震GPS数据反演了芦山断层几何与断层滑动分布,结果表明:芦山地震发震断层具有南陡北缓、上陡下缓的特征,低倾角的区域位于发震断层北段且靠近映秀断层的一侧;滑动分布模型的最大滑动量为0.82m,其深度为13.67km与小震发生集中平均深度12.5km接近.我们选取1998—2014年龙门山断裂带区域地壳形变观测数据,拟合获得了龙门山断裂带走向方向上的速度分量,发现在汶川M_S8.0地震与芦山M_S7.0地震之间宽度约30km破裂空区,龙门山断裂带西南段与东北段的形变分量以破裂空区为界方向相反.断裂带东北段(汶川地震主要发震断层)的形变分量方向与断层右旋走滑运动方向一致,而在断裂带西南段(芦山地震发震断层)的形变分量方向与断层左旋走滑运动方向一致.芦山地震走滑方向与汶川地震走滑方向相反是因为该断裂带构造运动在特有几何构造下受青藏高原东南向挤压,遇龙门山中段岩石圈楔状构造的阻挡,在汶川M_S8.0地震与芦山M_S7.0地震间的地震空区,形成了构造运动向其两侧分流的结果.  相似文献   

10.
川滇地区重力场动态变化及其强震危险含义   总被引:7,自引:0,他引:7       下载免费PDF全文
基于川滇地区2011—2014年的重力复测资料,系统分析了区域重力场时-空动态变化及其与2012年云南彝良MS5.7、2013年四川芦山MS7.0、2014年云南鲁甸MS6.5和四川康定MS6.3地震发生的关系.结合GPS、水准观测成果和区域地质构造动力环境,进一步研究了区域重力场变化的时空分布特征及其机理,讨论了近期区域重力场动态变化的强震危险含义.结果表明:1重力变化与川滇地区断裂构造活动存在密切空间联系,重力变化较好地反映了伴随活动断层的物质迁移和构造变形引起的地表重力变化效应.2重力资料对测区内2012年以来发生的4次MS5.7以上强震均有较好反映,地震前震中区及其附近观测到明显的区域性重力异常及重力变化高梯度带,可能是地震孕育过程中观测到的重力前兆信息.3区域重力场动态演化大体反映了青藏高原物质东流的动态效应,龙门山断裂带地壳受挤压隆起、面压缩率和重力上升变化的特征最为显著.4重力场的空间分布及其随时间变化与地壳垂直与水平运动及地质构造活动等观测结果有一定的对应关系,强震易发生在重力变化四象限分布中心地带或正、负异常区过渡的高梯度带上,研究区的一些重力异常部位仍存在中-长期大震危险背景.  相似文献   

11.
On April 20, 2013, the Lushan Ms7.0 earthquake struck at the southern part of the Longmenshan fault in the eastern Tibetan Plateau, China. The shear-wave splitting in the crust indicates a connection between the direction of the principal crustal compressive stress and the fault orientation in the Longmenshan fault zone. Our relocation analysis of the aftershocks of the Lushan earthquake shows a gap between the location of the rupture zone of the Lushan Ms7.0 earthquake and that of the rupture zone of the Wenchuan Ms8.0 earthquake. We believe that stress levels in the crust at the rupture gap and its vicinity should be monitored in the immediate future. We suggest using controlled source borehole measurements for this purpose.  相似文献   

12.
In this paper, according to the synthetic gravity anomaly of a horizontally infinite cylindrical geologic body, gravity gradient in horizontal direction was calculated by potential field discrete cosine transformation in frequency domain. In the calculation, the minimum curvature method was used to extend edge lines. We found that the gravity gradient field from the potential field transformation was dependable by comparison with synthetic gravity gradient, except the data in the edges. Then, the accumulative horizontal gravity gradients before Lushan MS7.0 earthquake were calculated for the accumulative gravity anomaly from September 2010 to October 2012. In the north-south direction, gravity gradient in Daofu-Kangding-Shimian and Markang-Lixian-Lushan exhibited a positive high value, and the strike of the high value zone was in line with the strike of Xianshuihe Faults and Markang Faults. In the east-west direction, high value zone was not as obvious as that in the north-south direction. Gravity gradients in the direction along and vertical to the strike of Longmenshan Faults were calculated by the definition of directional derivative. In the along-strike direction, high gravity gradient values appeared in Markang-Lixian areas along Markang Faults and Daofu-Kangding-Shimian areas along Xianshuihe Faults, and extremum appeared in Kangding-Shimian and the area nearby Lixian. In the direction vertical to the strike of Longmenshan fault zone, high gravity gradient values appeared in Lixian-Lushan-Kangding-Shimian areas, and the extremum appeared in the area nearby Kangding. The results indicate that gravity gradient in the direction along and vertical to the strike of faults can better show the relative gravity change on the two sides of faults. Lushan MS7.0 earthquake is located at the transition zone between the two high value zones of gravity gradient. The total horizontal gravity gradient shows that the location and strike of the high value zone are basically consistent with regional faults, and the extremums of total horizontal gravity gradient appeared nearby Lixian, Kangding and Shimian.  相似文献   

13.
利用四川数字地震台网和流动地震台站在芦山MS7.0地震震后(2013年4月20日—6月23日)记录到的2026次区域地震事件的28188条P波到时资料,采用地震层析成像方法反演得到了芦山地震震源区及其周边区域中上地壳P波三维速度结构. 结果表明,浅部地壳的P波速度异常分布特征与地表地质构造、 地形和岩性密切相关,即成都断陷盆地表现出与第四纪沉积有关的低速异常区;犍为、 乐山一带的川中微升区和川青块体龙门山以西的邻近地带均表现为与构造抬升有关的高速异常;宝兴、 康定附近分布的基性火山岩及火山碎屑岩均呈局部高速异常分布. 芦山地震震源位于高低速异常分界线附近且偏向高速体一侧,其下方存在明显的低速异常分布,可能与流体的存在有关. 流体的作用导致中上地壳内部发震层的弱化,使孕震断层易于破裂,可能对芦山地震起到了触发作用. 芦山地震与汶川地震两次地震的余震密集区相距50 km,这50 km地震空区震源体的深度范围附近目前正处于高速异常区内,加之龙门山断裂带西南段又具有比较典型的断错地貌发育,使得该段地震空区(大邑—邛崃活动断裂破裂空段)现在所处的深浅部构造环境变得复杂,其潜在的地震危险性仍值得进一步关注.   相似文献   

14.
This paper introduces relative and absolute gravity change observations in the eastern portion of the Tibetan Plateau. We analyze and discuss a change that occurred in 2010 in the gravity along the eastern margin of the plateau and the relationship between this change and the 2013 Lushan M S7.0 earthquake. Our results show that: (1) before the Lushan M S7.0 earthquake, gravity anomalies along the eastern margin of the Tibetan Plateau changed drastically. The Lushan earthquake occurred at the bend of the high gradient zone of gravity variation along the southern edge of the Longmenshan fault zone. (2) The 2013 Lushan earthquake occurred less than 100 km away from the epicenter of the 2008 Wenchuan earthquake. Lushan and Wenchuan are located at the center of a four-quadrant section with different gravity anomalies, which may suggest that restoration after the Wenchuan earthquake may have played a role in causing the Lushan earthquake. (3) A medium-term prediction based on changes in gravity anomalies was made before the Lushan M S7.0 earthquake, in particular, a prediction of epicenter location.  相似文献   

15.
Longmenshan fault zone is a famous orogenic belt and seismic zone in the southeastern Tibetan plateau of China. The Wenchuan MS8.0 earthquake on May 12, 2008 and the Ya'an MS7.0 earthquake on April 20, 2013 occurred in the central-southern part of Longmenshan fault zone. Because of its complex geological structures, frequent earthquakes and special geographical locations, it has attracted the attention of many scholars around the world. Satellite gravity field has advantages in studying gravity field and gravity anomaly changes before and after earthquake. It covers wide range, can be updated regularly, without difficulty in terms of geographical restrictions, and is not affected by environmental factors such as weather, terrain and traffic. Therefore, the use of high-precision Earth satellite gravity field data inversion and interpretation of seismic phenomena has become a hot topic in earth science research. In order to understand satellite gravity field characteristics of the Longmenshan earthquake zone in the southeastern Tibetan plateau and its seismogenic mechanism of earthquake disasters, the satellite gravity data was used to present the terrain information of the study area. Then, by solving the regional gravity anomaly of the Moho surface, the crustal thickness of the study area was inverted, and the GPS velocity field data was used to detect the crustal deformation rate and direction of the study area. Combining the tectonic setting of the Longmenshan fault zone and the existing deep seismic sounding results of the previous researchers, the dynamic characteristics of the gravity time-varying field after the earthquake in the Longmenshan earthquake zone was analyzed and the mechanism of the earthquake was explored. The results show that the eastward flow of deep materials in the eastern Tibetan plateau is strongly blocked at the Longmenshan fault zone. The continuous collision and extrusion process result in a "deep drop zone" in the Moho surface, and the long-term stress effect is conducive to the formation of thrust-nappe and strike-slip structures. The Longmenshan earthquake zone was in the large-scale gradient zone of gravity change before the earthquake, the deep plastic fluid material transport velocity differed greatly, the fluid pressure was enhanced, and the rock mechanical strength in the seismic source region was weakened, which contributed to the intrusion of crustal fluid and the upwelling of the asthenosphere. As a result, the continuous accumulation of material and energy eventually led to continuous stress imbalance in the deep part and shear rupture of the deep weak structure, causing the occurrence of the thrust-nappe and strike-slip earthquake.  相似文献   

16.
2014年11月22日16时55分在四川省甘孜藏族自治州康定县发生的6.3级地震,结束了鲜水河断裂带近30多年以来没有较大地震发生的历史,其潜在的地震危险性再次引起国内外地学工作者的关注.为了研究鲜水河断裂带南东段深部孕震环境和探求康定MS6.3地震的成因,本文先利用四川区域数字地震台网和康定地区及周边所布设的流动地震台阵在2009年1月1日至2014年12月5日期间所记录到7397次区域地震事件的99287条P波到时资料,反演得到了鲜水河断裂带南东段上地壳范围内不同深度的三维P波速度结构特征;再对康定震区及周边的重力、航磁数据进行视密度、视磁化强度反演,得到了壳内不同深度密度的横向变化信息和视磁化强度的分布特征;在此基础上综合研究鲜水河断裂带南东段的深部孕震环境.研究结果表明,雅江—九龙一带的低速区与泸定—宝兴高速区的速度结构特征表明了鲜水河断裂带南东段两侧壳内物质存在显著的横向介质差异,康定MS6.3地震发生在该高低速异常区的分界线上;结合康定MS6.3地震的1028个余震序列的精确定位结果可以看出,重新定位后的余震沿着鲜水河断裂带南东段呈条带状分布,且震源深度优势分布层位深度为8~15km,该余震序列的空间分布特征与鲜水河断裂南东段的深部介质条件密切相关.鲜水河断裂带南东段特有的视密度和视磁化强度异常分布特征反映了康定地区东西两侧块体的基底性质存在明显差异,康定—石棉及其以东地区所表现出的磁异常高和重力高的位场特征,反映该区域由强磁性、高密度物质组成,而康定MS6.3地震就发生在康定—石棉重力梯度变化带上、雅安—泸定磁性穹窿区的西边界线上.随着川青块体向南东方向滑移,受到四川盆地西缘边界刚性基底对川青块体的强烈阻挡,加剧了康定—石棉及其以东地区基底岩层的褶皱变形并产生了强烈的应力积累,所积累的应力突然释放导致了康定MS6.3地震的发生,这正是此次鲜水河断裂带南东段康定地区强震孕育和发生的深部构造环境和介质特征.根据本文对鲜水河断裂带南东段深部孕震环境的综合研究成果可知,石棉段处于重磁异常梯级带上且其北东侧表现出的高密度、强磁性和高波速等物性特征有利于区域应力的相对集中,因此,鲜水河断裂带南东段石棉地区的地震活动趋势和地震危险性背景值得进一步关注和研究.  相似文献   

17.
On 20 April 2013, a destructive earthquake, the Lushan MS7.0 earthquake, occurred in the southern segment of the Longmenshan Fault zone, the eastern margin of the Tibetan plateau in Sichuan, China. This earthquake did not produce surface rupture zone, and its seismogenic structure is not clear. Due to the lack of Quaternary sediment in the southern segment of the Longmenshan fault zone and the fact that fault outcrops are not obvious, there is a shortage of data concerning the tectonic activity of this region. This paper takes the upper reaches of the Qingyijiang River as the research target, which runs through the Yanjing-Wulong Fault, Dachuan-Shuangshi Fault and Lushan Basin, with an attempt to improve the understanding of the tectonic activity of the southern segment of the Longmenshan fault zone and explore the seismogenic structure of Lushan earthquake. In the paper, the important morphological features and tectonic evolution of this area were reviewed. Then, field sites were selected to provide profiles of different parts of the Qingyijiang River terraces, and the longitudinal profile of the terraces of the Qingyijiang River in the south segment of the Longmenshan fault zone was reconstructed based on geological interpretation of high-resolution remote sensing images, continuous differential GPS surveying along the terrace surfaces, geomorphic field evidence, and correlation of the fluvial terraces. The deformed longitudinal profile reveals that the most active tectonics during the late Quaternary in the south segment of the Longmenshan Fault zone are the Yanjing-Wulong Fault and the Longmenshan range front anticline. The vertical thrust rate of the Yanjing-Wulong Fault is nearly 0.6~1.2mm/a in the late Quaternary. The tectonic activity of the Longmenshan range front anticline may be higher than the Yanjing-Wulong Fault. Combined with the relocations of aftershocks and other geophysical data about the Lushan earthquake, we found that the seismogenic structure of the Lushan earthquake is the range front blind thrust and the back thrust fault, and the pop-up structure between the two faults controls the surface deformation of the range front anticline.  相似文献   

18.
前人研究给出, 龙门山断裂带中南段地壳均衡异常显著, 具有发生7级以上大地震的深部动力背景。 2016年6月, 我们围绕该均衡异常显著区域开展重力/GNSS加密观测, 提高了该地区布格重力异常和地壳均衡异常场的空间分辨率。 依据上述观测结果与前期同类观测数据, 反演了汶川MW7.9地震周边地区地壳密度构造。 结果显示, 龙门山断裂带是地壳密度变化的高梯度带, 其东侧地壳较薄, 但其西部明显变厚, 上、 中、 下地壳变化趋势均呈现上述特征; 研究区东侧的莫霍面深度为35~40 km, 西侧为60~65 km。 此外, 利用重力/GNSS联合观测数据计算了汶川MW7.9地震震中区周边地区岩石圈承载的垂向构造应力场, 结果表明, 汶川MW7.9地震震中区北部、 宁强、 峨眉山周边地区蓄积了-30 MPa至-40 MPa的负向构造应力, 龙门山断裂带中南段蓄积了约40 MPa的正向构造应力, 区域最大垂向构造应力分布在龙门山断裂带中南段, 临近芦山MW6.6地震。 统计结果表明, 地震多发生在垂向构造应力高梯度带附近, 或垂向构造应力的高值区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号