首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From new observational material we made a curve of growth analysis of the penumbra of a large, stable sunspot. The analysis was done relative to the undisturbed photosphere and gave the following results (⊙ denotes photosphere, * denotes penumbra): $$\begin{gathered} (\theta ^ * - \theta ^ \odot )_{exe} = 0.051 \pm 0.007 \hfill \\ {{\xi _t ^ * } \mathord{\left/ {\vphantom {{\xi _t ^ * } {\xi _t }}} \right. \kern-\nulldelimiterspace} {\xi _t }}^ \odot = 1.3 \pm 0.1 \hfill \\ {{P_e ^ * } \mathord{\left/ {\vphantom {{P_e ^ * } {P_e ^ \odot = 0.6 \pm 0.1}}} \right. \kern-\nulldelimiterspace} {P_e ^ \odot = 0.6 \pm 0.1}} \hfill \\ {{P_g ^ * } \mathord{\left/ {\vphantom {{P_g ^ * } {P_g }}} \right. \kern-\nulldelimiterspace} {P_g }}^ \odot = 1.0 \pm 0.2 \hfill \\ \end{gathered} $$ The results of the analysis are in satisfactory agreement with the penumbral model as published by Kjeldseth Moe and Maltby (1969). Additionally we tested this model by computing the equivalent widths of 28 well selected lines and comparing them with our observations.  相似文献   

2.
It is shown that the fractional increase in binding energy of a galaxy in a fast collision with another galaxy of the same size can be well represented by the formula $$\xi _2 = 3({G \mathord{\left/ {\vphantom {G {M_2 \bar R}}} \right. \kern-\nulldelimiterspace} {M_2 \bar R}}) ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {V_p }}} \right. \kern-\nulldelimiterspace} {V_p }})^2 e^{ - p/\bar R} = \xi _1 ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {M_2 }}} \right. \kern-\nulldelimiterspace} {M_2 }})^3 ,$$ whereM 1,M 2 are the masses of the perturber and the perturbed galaxy, respectively,V p is the relative velocity of the perturber at minimum separationp, and \(\bar R\) is the dynamical radius of either galaxy.  相似文献   

3.
Stars are gravitationally stabilized fusion reactors changing their chemical composition while transforming light atomic nuclei into heavy ones. The atomic nuclei are supposed to be in thermal equilibrium with the ambient plasma. The majority of reactions among nuclei leading to a nuclear transformation are inhibited by the necessity for the charged participants to tunnel through their mutual Coulomb barrier. As theoretical knowledge and experimental verification of nuclear cross sections increases it becomes possible to refine analytic representations for nuclear reaction rates. Over the years various approaches have been made to derive closed-form representations of thermonuclear reaction rates (Critchfield, 1972; Haubold and John, 1978; Haubold, Mathai and Anderson, 1987). They show that the reaction rate contains the astrophysical cross section factor and its derivatives which has to be determined experimentally, and an integral part of the thermonuclear reaction rate independent from experimental results which can be treated by closed-form representation techniques in terms of generalized hypergeometric functions. In this paper mathematical/statistical techniques for deriving closed-form representations of thermonuclear functions, particularly the four integrals $$\begin{gathered} I_1 (z,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_2 (z,d,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_3 (z,t,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - z(y + 1)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_4 (z,\delta ,b,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - by^\delta } e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ \end{gathered} $$ will be summarized and numerical results for them will be given. The separation of thermonuclear functions from thermonuclear reaction rates is our preferred result. The purpose of the paper is also to compare numerical results for approximate and closed-form representations of thermonuclear functions. This paper completes the work of Haubold, Mathai, and Anderson (1987).  相似文献   

4.
EinsteinA-coefficients for transitions inSii, calculated with the atomic structure package CIV3, are used to derive the electron density sensitive emission line ratio
  相似文献   

5.
6.
It is suggested that gravitationally bound systems in the Universe can be characterized by a set of actions ?(s). The actions $$\hbar ^{\left( s \right)} = \left( {{\hbar \mathord{\left/ {\vphantom {\hbar {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}}}} \right. \kern-\nulldelimiterspace} {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}}}} \right)^{s/6} \left( {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}} \right)$$ ,derived from general theoretical consideration, are only determined by the fundamental physical constants (Planck's action ?, the velocity of lightC, gravitational constantG, and Hubble's constantH 0) and a scale parameters. It is shown thats=1, 2, and 3 correspond, respectively, to the scales of galaxies, stars, and larger asteroids. The spectra of the characteristic angular momenta and masses for gravitationally bound systems in the Universe are estimated byJ (s) andM (s) =(? (s) /G)1/2. Taken together, an angular momentum-mass relation is obtained,J (s)=A(M(s))2, where \(A = G/C\alpha ,{\text{ }}\alpha \simeq \tfrac{{\text{1}}}{{{\text{137}}}}\) , for the astronomical systems observed on every scale. ThisJ-M relation is consistent with Brosche's empirical relation (Brosche, 1974).  相似文献   

7.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

8.
Generalized Jacobian coordinates can be used to decompose anN-body dynamical system intoN-1 2-body systems coupled by perturbations. Hierarchical stability is defined as the property of preserving the hierarchical arrangement of these 2-body subsystems in such a way that orbit crossing is avoided. ForN=3 hierarchical stability can be ensured for an arbitrary span of time depending on the integralz=c 2 h (angular momentum squared times energy): if it is smaller than a critical value, defined by theL 2 collinear equilibrium configuration, then the three possible hierarchical arrangements correspond to three disconnected subsets of the invariant manifold in the phase space (and in the configuration space as well; see Milani and Nobili, 1983a). The same definitions can be extended, with the Jacobian formalism, to an arbitrary hierarchical arrangement ofN≥4 bodies, and the main confinement condition, the Easton inequality, can also be extended but it no longer provides separate regions of trapped motion, whatever is the value ofz for the wholeN-body system,N≥4. However, thez criterion of hierarchical stability applies to every 3-body subsystem, whosez ‘integral’ will of course vary in time because of the perturbations from the other bodies. In theN=4 case we decompose the system into two 3-body subsystems whosec 2 h ‘integrals’,z 23 andz 34, att=0 are assumed to be smaller than the corresponding critical values \(\tilde z_{23} \) and \(\tilde z_{34} \) , so that both the subsystems are initially hierarchically stable. Then the hierarchical arrangement of the 4 bodies cannot be broken until eitherz 23 orz 34 is changed by an amount \(\tilde z_{ij} - z_{ij} \left( 0 \right)\) ; that is the whole system is hierarchically stable for a time spain not shorter than the minimum between \(\Delta t_{23} = {{\left( {\tilde z_{23} - z_{23} \left( 0 \right)} \right)} \mathord{\left/ {\vphantom {{\left( {\tilde z_{23} - z_{23} \left( 0 \right)} \right)} {\dot z_{23} }}} \right. \kern-0em} {\dot z_{23} }}\) and \(\Delta t_{34} = {{\left( {\tilde z_{34} - z_{34} \left( 0 \right)} \right)} \mathord{\left/ {\vphantom {{\left( {\tilde z_{34} - z_{34} \left( 0 \right)} \right)} {\dot z_{34} }}} \right. \kern-0em} {\dot z_{34} }}\) . To estimate how long is this stability time, two main steps are required. First the perturbing potentials have to be developed in series; the relevant small parameters are some combinations of mass ratios and length ratios, the? ij of Roy and Walker. When an appropriate perturbation theory is based on the? ij , the asymptotic expansions are much more rapidly decreasing than the usual expansions in powers of the mass ratios (as in the classical Lagrange perturbation theory) and can be extended also to cases such as lunar theory or double binaries. The second step is the computation of the time derivatives \(\dot z_{ij} \) (we limit ourselves to the planar case). To assess the long term behaviour of the system, we can neglect the short-periodic perturbations and discuss only the long-periodic and the secular perturbations. By using a Poisson bracket formalism, a generalization of Lagrange theorem for semimajor axes and a generalization of the classical first order theories for eccentricities and pericenters, we prove that thez ij do not undergo any secular perturbation, because of the interaction with the other subsystem, at the first order in the? ik . After the long-periodic perturbations have been accounted for, and apart from the small divisors problems that could arise both from ordinary and secular resonances, only the second order terms have to be considered in the computation of Δt 23, Δt 34. A full second order perturbative theory is beyond the scope of this paper; however an order-of-magnitude lower estimate of the Δt ij can be obtained with the very pessimistic assumption that essentially all the second order terms affect in a secular way thez ij . The same method could be applied also toN≥5 body systems. Since almost everyN-body system existing in nature is strongly hierarchical, the product of two? ij is very small for almost all the real astronomical problems. As an example, the hierarchical stability of the 4-body system Sun, Mercury, Venus, and Jupiter is investigated; this system turns out to be stable for at least 110 million years. Although this hierarchical stability time is ~10 times less than the real age of the Solar System, taking into account that many pessimistic assumptions have been done we can conclude that the stability of the Solar System is no more a forbidden problem for Celestial Mechanics.  相似文献   

9.
We analyzed the X-ray data obtained by the Chandra telescope for the galaxy cluster CL0024+17 (z = 0.39). The mean temperature of the cluster is estimated (kT = 4.35 ?0.44 +0.51 keV) and the surface brightness profile is derived. We generated the mass and density profiles for dark matter and gas using numerical simulations and the Navarro-Frenk-White dark matter density profile (Navarro et al., 1995) for a spherically symmetric cluster in which gas is in hydrostatic equilibrium with the cluster field. The total mass of the cluster is estimated to be M 200 = 3.51 ?0.47 +0.38 × 10 Sun 14 within a radius of R 200 = 1.24 ?0.17 +0.12 Mpc of the cluster center. The contribution of dark matter to the total mass of the cluster is estimated as ${{M_{200_{DM} } } \mathord{\left/ {\vphantom {{M_{200_{DM} } } {M_{tot} }}} \right. \kern-0em} {M_{tot} }} = 0.89$ .  相似文献   

10.
This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v), \(\sqrt {F(\upsilon )} \) and \(\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-0em} {F(\upsilon )}}} \) are given, where $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2. Some interesting relations involving Legendre polynomials are also noted.  相似文献   

11.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

12.
Using γ-ray data detected by Fermi Large Area Telescope (LAT) and multi-wave band data for 35 TeV blazars sample, we have studied the possible correlations between different broad band spectral indices ( $\alpha_{\rm r.ir}$ , $\alpha_{\rm{r.o}}$ , $\alpha_{\rm r.x}$ , $\alpha_{\rm r.\gamma}$ , $\alpha_{\rm{ir.o}}$ , $\alpha_{\rm ir.x}$ , $\alpha_{\rm ir.\gamma}$ , $\alpha_{\rm o.x}$ , $\alpha_{\rm o.\gamma}$ , $\alpha_{\rm r.x}$ , $\alpha_{\rm x.\gamma}$ ) in all states (average/high/low). Our results are as follows: (1) For our TeV blazars sample, the strong positive correlations were found between $\alpha_{\rm r.ir}$ and $\alpha_{\rm{r.o}}$ , between $\alpha_{\rm r.ir}$ and $\alpha_{\rm r.x}$ , between $\alpha_{\rm r.ir}$ and $\alpha_{\rm r.\gamma}$ in all states (average/high/low); (2) For our TeV blazars sample, the strong anti-correlations were found between $\alpha_{\rm r.ir}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm ir.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm o.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\mathrm{ir.o}}$ and $\alpha_{\rm o.\gamma}$ , between $\alpha_{\rm r.x}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\rm ir.x}$ and $\alpha_{\rm x.\gamma}$ in all states (average/high/low). The results suggest that the synchrotron self-Compton radiation (SSC) is the main mechanism of high energy γ-ray emission and the inverse Compton scattering of circum-nuclear dust is likely to be a important complementary mechanism for TeV blazars. Our results also show that the possible correlations vary from state to state in the same pair of indices, Which suggest that there may exist differences in the emitting process and in the location of the emitting region for different states.  相似文献   

13.
We analyzed the luminosity-temperature-mass of gas (L X ?T?M g ) relations for a sample of 21 Chandra galaxy clusters. We used the standard approach (β?model) to evaluate these relations for our sample that differs from other catalogues since it considers galaxy clusters at higher redshifts (0.4<z<1.4). We assumed power-law relations in the form $L_{X} \sim(1 +z)^{A_{L_{X}T}} T^{\beta_{L_{X}T}}$ , $M_{g} \sim(1 + z)^{A_{M_{g}T}} T^{\beta_{M_{g}T}}$ , and $M_{g} \sim(1 + z)^{A_{M_{g}L_{X}}} L^{\beta_{M_{g}L_{X}}}$ . We obtained the following fitting parameters with 68 % confidence level: $A_{L_{X}T} = 1.50 \pm0.23$ , $\beta_{L_{X}T} = 2.55 \pm0.07$ ; $A_{M_{g}T} = -0.58 \pm0.13$ and $\beta_{M_{g}T} = 1.77 \pm0.16$ ; $A_{M_{g}L_{X}} \approx-1.86 \pm0.34$ and $\beta_{M_{g}L_{X}} = 0.73 \pm0.15$ , respectively. We found that the evolution of the M g ?T relation is small, while the M g ?L X relation is strong for the cosmological parameters Ω m =0.27 and Ω Λ =0.73. In overall, the clusters at high-z have stronger dependencies between L X ?T?M g correlations, than those for clusters at low-z. For most of galaxy clusters (first of all, from MACS and RCS surveys) these results are obtained for the first time.  相似文献   

14.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

15.
RecentR-matrix calculations of electron impact excitation rates in Ov are used to derive the emission line intensity ratios (in energy units) $$\begin{gathered} R_1 = I(2s2p^{ 3} P - 2p^{2 3} P)/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(761.1\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ R_2 = I(2s^{2 1} S_0 - 2s2p^{ 3} P_1 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(1218.4\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ \end{gathered} $$ and $$R_3 = I(2s2p^{ 1} P_1 - 2p^{2 1} S_0 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(774.5\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ )$$ as a function of electron temperature (T e) and density (N e). These results are presented as plots ofR 1 vsR 2, andR 1 vsR 3, which should allowboth N e andT e to be deduced for the Ov line emitting region of a plasma. Electron densities derived from the (R 1,R 2) and (R 1,R 3) diagrams in conjunction with observational data for several solar features obtained with the Harvard S-055 spectrometer on boardSkylab are found to be compatible, and in good agreement with values ofN e estimated from line ratios in species formed at similar electron temperatures to Ov. In addition, values ofT e determined from (R 1,R 2) and (R 1,R 3) are generally close to that expected theoretically. These results provide experimental support for the accuracy of the diagnostic calculations presented in this paper, and hence the atomic data used in their derivation.  相似文献   

16.
We describe a model of spectral energy distribution in supercritical accretion disks (SCAD) based on the conception by Shakura and Sunyaev. We apply this model to five ultra-luminous X-ray sources (ULXs). In this approach, the disk becomes thick at distances to the center less than the spherization radius, and the temperature dependence is Tr ?1/2. In this region the disk luminosity is L bolL Edd $\ln \left( {{{\dot M} \mathord{\left/ {\vphantom {{\dot M} {\dot M_{Edd} }}} \right. \kern-0em} {\dot M_{Edd} }}} \right)$ , and strong wind arises forming a wind funnel above the disk. Outside the spherization radius, the disk is thin and its total luminosity is Eddington, L Edd. The thin disk heats the wind from below. From the inner side of the funnel the wind is heated by the supercritical disk. In this paper we do not consider Comptonization in the inner hot winds which must cover the deep supercritical disk regions. Our model is technically similar to the DISKIR model of Gierlinski et al. The models differ in disk type (standard—supercritical) and irradiation (disk—wind).We propose to distinguish between these two models in the X-ray region of about 0.3–1 keV, where the SCAD model has a flat νF ν spectrum, and the DISKIR model never has a flat part, as it is based on the standard α-disk. An important difference between the models can be found in their resulting black hole masses. In application to the ULX spectra, the DISKIR model yields black hole masses of a few hundred solar masses, whereas the SCAD model produces stellar-mass (about 10M) black holes.  相似文献   

17.
Available satellite, rocket and balloon observations on cosmic X- and gamma ray background are critically examined to understand the spectral characteristics of the radiation. Appropriate corrections have been applied to the balloon observations to account for the multiple Compton scattering of X-rays in the atmosphere. It is shown that within the experimental uncertainties, all the available observations of cosmic X- and gamma ray background in the energy range 1 keV-1 MeV are consistent with a single spectrum of type $${\text{d}}N/{\text{d}}E = 30 E^{ - 2.0 \pm 0.2} {\text{photons cm}}^{{\text{ - 2}}} {\text{s}}^{{\text{ - 1}}} {\text{sr}}^{{\text{ - 1}}} {\text{keV}}^{{\text{ - 1}}} $$ .  相似文献   

18.
Published photoelectric measurements over a wide wavelength range (0.36–18 µm) are used to study the continuum spectrum of the star Θ1 Ori C. The model that assumes the following three radiation sources is consistent with observations: (1) a zero-age main-sequence O7 star (object 1) of mass M 1=20M , radius R 1=7.4R , effective temperature T 2=37 000 K, and absolute bolometric magnitude $M\mathop {bol}\limits^1 = - 7\mathop .\limits^m 7$ ; (2) object 2 with M 2=15M , R 2=16.2R , T 2=4000 K, and $M\mathop {bol}\limits^2 = - 5\mathop .\limits^m 1$ ; and (3) object 3 with R 310 700 R , T 3=190 K, and $M\mathop {bol}\limits^3 = - 0\mathop .\limits^m 6$ . The visual absorption toward the system is $A_V = 0\mathop .\limits^m 95$ and obeys a normal law. The nature of objects 2 and 3 has not been elucidated. It can only be assumed that object 2 is a companion of the primary star, its spectral type is K7, and it is in the stage of gravitational contraction. Object 3 can be a cocoon star and a member of the system, but can also be a dust envelope surrounding the system as a whole.  相似文献   

19.
We compute the ultra-high energy (UHE) neutrino fluxes from plausible accreting supermassive black holes closely linking to the 377 active galactic nuclei (AGNs). They have well-determined black hole masses collected from the literature. The neutrinos are produced via simple or modified URCA processes, even after the neutrino trapping, in superdense proto-matter medium. The resulting fluxes are ranging from: (1) (quark reactions)— $J^{q}_{\nu\varepsilon}/(\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1})\simeq8.29\times 10^{-16}$ to 3.18×10?4, with the average $\overline{J}^{q}_{\nu\varepsilon}\simeq5.53\times 10^{-10}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ , where ε d ~10?12 is the opening parameter; (2) (pionic reactions)— $J^{\pi}_{\nu\varepsilon} \simeq0.112J^{q}_{\nu\varepsilon}$ , with the average $J^{\pi}_{\nu\varepsilon} \simeq3.66\times 10^{-11}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ ; and (3) (modified URCA processes)— $J^{URCA}_{\nu\varepsilon}\simeq7.39\times10^{-11} J^{q}_{\nu\varepsilon}$ , with the average $\overline{J}^{URCA}_{\nu\varepsilon} \simeq2.41\times10^{-20} \varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ . We conclude that the AGNs are favored as promising pure neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies and collimated in smaller opening angle θε d .  相似文献   

20.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号