首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The simulation of time series is based on estimated statistical parameters of the empirical time series. The Fiering Model generating monthly sums of streamflows is used as an example for the simulation in order to account for the error of the model, theoretically and practically, caused by statistically inprecise parameter estimation. The sensitivity of this model, especially to the correlation coefficients, is analyzed by means of systematic variations of the correlation coefficients, since these are most affected by the error of estimation. No significant dependency could be found comparing the empirical and simulated parameters mean, standard deviation, and skewness. From this follows, that the importance of the correlation coefficients in the Fiering Model is generally overestimated. The results are given for monthly sums of streamflows at four stations with different hydrological characteristics.   相似文献   

2.
Daily precipitation occurrences and their monthly wet-days' sums of precipitation-measuring stations in Greece are modelled with a Markov chain. The order of the chain is taken to be seasonally varying in accordance with the precipitation station's meteorological conditions and geographical location. The modelling efficiency of the Markov chain is significantly improved when it is conjunctively used with a second-order autoregressive stochastic model fitted on the monthly wet-days' sums.  相似文献   

3.
Predicting the streamflow of rivers can have a significant economic impact, as this can help in agricultural water management and in providing protection from water shortages and possible flood damage. In this study, two statistical models have been used; Deseasonalized Autoregressive moving average model (DARMA) and Artificial Neural Network (ANN) to predict monthly streamflow which important for reservoir operation policy using different time scale, monthly and 1/3 monthly (ten-days) flow data for River Nile basin at five key stations. The streamflow series is deseasonalized at different time scale and then an appropriate nonseasonal stochastic DARMA (p, q) models are built by using the plots of Partial Auto Correlation Function (PACF) to determine the order (p) of DARMA model. Then the deseasonalized data for key stations are used as input to ANN models with lags equals to the order (p) of DARMA model. The performance of ANN and DARMA models are compared using statistical methods. The results show that the developed model (using 1/3 monthly (ten-days) and ANN) has the best performance to predict monthly streamflow at all key stations. The results also show that the relative error in the developed model result did not exceed 9% while in the traditional models reach to 68% in the flood months in the testing period. The result also indicates that ANN has considerable potential for river flow forecasting.  相似文献   

4.
Analysis of spatial and temporal variations of reference evapotranspiration (ETo) is important in arid and semi‐arid regions where water resources are limited. The main aim of this study was to analyse the spatial distribution and the annual, seasonal and monthly trends of the Penman–Monteith ETo for 21 stations in the arid and semi‐arid regions of Iran. Three statistical tests the Mann‐Kendall, Sen's slope estimator and linear regression were used for the analysis. The analysis revealed that ETo increased from January to July and deceased from July to December at almost all stations. Additionally, higher annual ETo values were found in the southeast of the study region and lower values in the northwest of the region. Although the results showed both positive and negative trends in annual ETo series, ETo generally increased, significantly so in six (~30%) of the stations. Analysis of the impacts of meteorological variables on the temporal trends of ETo indicated that the increasing trend of ETo was most likely due to a significant increase in minimum air temperature, while decreasing trend of ETo was mainly caused by a significant decrease in wind speed. At the sites where increasing ETo trends were statistically significant, the rate of increase varied from (+)8·36 mm/year at Mashhad station to (+)31·68 mm/year at Iranshahr station. On average, an increasing trend of (+)4·42 mm/year was obtained for the whole study area during the last four decades. Seasonal and monthly ETo have also tended to increase at the majority of the stations. The greatest numbers of significant trends were observed in winter on the seasonal time‐scale and in September on the monthly time‐scale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The present study explores the spatial and temporal changing patterns of the precipitation in the Haihe River basin of North China during 1957–2007 at annual, seasonal and monthly scales. The Mann–Kendall and Sen’s T tests are employed to detect the trends, and the segmented regression is applied to investigate possible change points. Meanwhile, Sen’s slope estimator is computed to represent the magnitudes of the temporal trends. The regional precipitation trends are also discussed based on the regional index series of four sub-basins in the basin. Serial correlation of the precipitation series is checked prior to the application of the statistical test to ensure the validity of trend detection. Moreover, moisture flux variations based on the NCEP/NCAR reanalysis dataset are investigated to further reveal the possible causes behind the changes in precipitation. The results show that: (1) Although the directions of annual precipitation trends at all stations are downward, only seven stations have significant trends at the 90% confidence level, and these stations are mainly located in the western and southeastern Haihe River basin. (2) Summer is the only season showing a strong downward trend. For the monthly series, significant decreasing trends are mainly found during July, August and November, while significant increasing trends are mostly observed during May and December. In comparison with the annual series, more intensive changes can be found in the monthly series, which may indicate a shift in the precipitation regime. (3) Most shifts from increasing trends to decreasing trends occurred in May–June, July, August and December series, while opposed shifts mainly occurred in November. Summer is the only season displaying strong shift trends and the change points mostly emerged during the late 1970s to early 1980s. (4) An obvious decrease in moisture flux is observed after 1980 in comparison with the observations before 1980. The results of similar changing patterns between monthly moisture budget and precipitation confirmed that large-scale atmospheric circulation may be responsible for the shift in the annual cycle of precipitation in the Haihe River basin. These findings are expected to contribute to providing more accurate results of regional changing precipitation patterns and understanding the underlying linkages between climate change and alterations of hydrological cycles in the Haihe River basin.  相似文献   

6.
This study aims to develop an improved time series model to overcome difficulties in modeling monthly short term stream flows. The periodic, serial dependent and independent components of the classical time series models are improved separately by information transfer from a surrounding long term gauging station to the considered flow section having short term records. Eventually, an improved model preserving the mathematical model structure of the classical time series model, while improving general and monthly statistics of the monthly stream flows, is derived by using the improved components instead of the short term model components in the time series modeling. The correlative relationships between the current short term and surrounding long term stations are used to improve periodic and serial dependent behaviors of monthly flows. Independent components (residuals) are improved via the parameters defining their theoretical probability distribution. The improved model approach is tested by using 50 year records of Göksu-Himmetli (1801) and Göksu-Gökdere (1805) flow monitoring stations located on the Ceyhan river basin, in south of Turkey. After 50 year records of the station 1801 are separated into five 10 year sub series, their improved and classical time series models are computed and compared with the real long-term (50 year) time series model of this station to reveal efficiencies of the improved models for each subseries (sub terms with 10 year observation). The comparisons are realized based on the model components, model estimates and general/monthly statistics of model estimates. Finally, some evaluations are made on the results compared to the regression method classically applied in the literature.  相似文献   

7.
Several statistical postprocessing methods are applied to results from a numerical weather prediction (NWP) model to test the potential for increasing the accuracy of its local precipitation forecasts. Categorical (Yes/No) forecasts for 12hr precipitation sums equalling or exceeding 0.1, 2.0 and 5.0 mm are selected for improvement. The two 12hr periods 0600-1800 UTC and 1800-0600 UTC are treated separately based on NWP model initial times 0000 UTC and 1200 UTC, respectively. Input data are taken from three successive summer seasons, April-September, 1994-96. The forecasts are prepared and verified for five synoptic stations, four located in the western Czech Republic, and one in Germany near the Czech-German border. Two approaches to statistical postprocessing are tested. The first uses Model Output Statistics (MOS) and the second modifies the MOS approach by applying a successive learning technique (SLT). For each approach several statistical models for the relationship between NWP model predictors and predictand were studied. An independent data set is used for forecast verification with the skill measured by a True Skill Score. The results of the statistical postprocessing are compared with the direct model precipitation forecasts from gridpoints nearest the stations, and they show that both postprocessing approaches provide substantially better forecasts than the direct NWP model output. The relative improvement increases with increasing precipitation amount and there is no significant difference in performance between the two 12hr periods. The skill of the SLT does not depend significantly on the size of the initial learning sample, but its results are nevertheless comparable with the results obtained from the MOS approach, which requires larger developmental samples.  相似文献   

8.
Thirty-arc-second resolution monthly temperature and precipitation climatologies for North Eastern Italy are presented and the procedure we adopted in order to superimpose the information of the secular anomaly records to these climatologies is discussed. Temperature climatologies are obtained by means of a step-wise linear regression method which aims at determining the temperature dependence on geographical and morphological variables. In the first regression (temperature versus elevation) the recorded data are considered; the further regressions concern the residuals obtained after taking into account the effect of each variable, in order of importance. Precipitation climatologies are obtained by means of a procedure which consists in considering each cell of a high-resolution grid and in using the 15 closest stations in order to perform a weighted local linear regression of precipitation versus elevation: the weights are given by the distances of the stations from the grid point and by the level of similarity between the stations cells and the considered grid cell in terms of elevation, slope steepness, slope orientation and distance from the sea. Secular records to be superimposed to the climatologies can be obtained for each grid point by means of a distance-weighted average of the anomaly temperature and precipitation records of the neighbouring stations.  相似文献   

9.
The relationship between air (Ta) and water temperature (Tw) is very important because it shows how the temperature of a water body might respond to future changes in surface Ta. Mean monthly Tw records of three gauging stations (Bezdan, Bogojevo i Veliko Gradi?te) were analysed alongside mean monthly discharge (Q) for the same stations. Additionally, Ta series from two meteorological stations (Sombor and Veliko Gradi?te) were correlated with Tw variations over the period 1950–2012. Locally weighted scatter point smoothing (LOWESS) was used to investigate long‐term trends in the raw data, alongside the Mann–Kendall (MK) trend test. Trend significance was established using Yue–Pilon's pre‐whitening approaches to determine trends in climate data. Also, the rescaled adjusted partial sums (RAPS) method was used to detect dates of possible changes in the time series. Statistically significant warming trends were observed for annual and seasonal minimum and maximum Tw at all investigated sites. The strongest warming was observed at Bogojevo gauging station for seasonal maximum Tw, with +0.05 °C per year on average. RAPS established that the trend began in the 1980s. This behaviour is linked to climate patterns in the North and East Atlantic which determine the amount of heat advected onto mainland Europe. Statistically significant correlations were found for all Tw on an annual basis. Overall, the strongest correlations (p < 0.01) between Tw residuals and the North Atlantic Oscillation (NAO) were recorded for the winter period. These findings suggest possible predictability of Tw over seasonal time‐scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
One of the best indicators of the potential erosion risks is the rainfall–runoff erosivity factor (R) of the revised universal soil loss equation (RUSLE). Frequently, however, there is not enough data available to compute the R value, and other parameters, such as the modified Fournier index (Fmod), are used instead. But RUSLE is less effective if only the alternative procedures exist. One of the major discrepancies between R and the alternative parameters is time resolution: individual storms are used to calculate R while monthly averages over the year are used to calculate Fmod.

In this study, a multiple linear regression (r2=0.89) involving monthly EI30, monthly rainfall for days with ≥10.0 mm and monthly number of days with rainfall ≥10.0 mm, for the Algarve region, is presented. Twenty-seven years of monthly rainfall erosivity values were computed for the 32 standard daily-read raingauge stations of the Algarve region.  相似文献   


11.
A physically constrained wavelet-aided statistical model (PCWASM) is presented to analyse and predict monthly groundwater dynamics on multi-decadal or longer time scales. The approach retains the simplicity of regression modelling but is constrained by temporal scales of processes responsible for groundwater level variation, including aquifer recharge and pumping. The methodology integrates statistical correlations enhanced with wavelet analysis into established principles of groundwater hydraulics including convolution, superposition and the Cooper–Jacob solution. The systematic approach includes (1) identification of hydrologic trends and correlations using cross-correlation and multi-time scale wavelet analyses; (2) integrating temperature-based evapotranspiration and groundwater pumping stresses and (3) assessing model prediction performances using fixed-block k-fold cross-validation and split calibration-validation methods. The approach is applied at three hydrogeologicaly distinct sites in North Florida in the United States using over 40 years of monthly groundwater levels. The systematic approach identifies two patterns of cross-correlations between groundwater levels and historical rainfall, indicating low-frequency variabilities are critical for long-term predictions. The models performed well for predicting monthly groundwater levels from 7 to 22 years with less than 2.1 ft (0.7 m) errors. Further evaluation by the moving-block bootstrap regression indicates the PCWASM can be a reliable tool for long-term groundwater level predictions. This study provides a parsimonious approach to predict multi-decadal groundwater dynamics with the ability to discern impacts of pumping and climate change on aquifer levels. The PCWASM is computationally efficient and can be implemented using publicly available datasets. Thus, it should provide a versatile tool for managers and researchers for predicting multi-decadal monthly groundwater levels under changing climatic and pumping impacts over a long time period.  相似文献   

12.
Huai River Basin, as the sixth largest river basin in China, has a high‐regulated river system and has been facing severe water problems. In this article, the changing patterns of runoff and precipitation at 10 hydrological stations from 1956 to 2000 on the highly regulated river (Shaying River) and less‐regulated river (Huai River) in the basin are evaluated at the monthly, seasonal and annual scales using the Mann–Kendall test and simple linear regression model. The results showed that: (1) No statistically significant trends of precipitation in the upper and middle Huai River Basins were detected at the annual scale, but the trend of annual runoff at Baiguishan, Zhoukou and Fuyang stations in Shaying River decreased significantly, whereas the others were not. Moreover, the decreasing trends of runoff for most months were significant in Shaying River, although the trend of monthly precipitation decreased significantly only in April in the whole research area and the number of months in the dry season having significantly decreasing trends in runoff was more than that in the wet season. (2) The rainfall–runoff relationship was significant in both highly regulated river and less‐regulated river. In regulated river, the reservoirs have larger regulation capacity than the floodgates and thus have the smaller correlation coefficient and t‐value. In Huai River, the correlation coefficients decreased from upper stream to downstream. (3) The regulation of dams and floodgates for flood control and water supply was the principal reason for the decreasing runoff in Huai River Basin, although the decreasing precipitation in April in this basin was statistically significant. The findings are useful for recognizing hydrology variation and will provide scientific foundation to integrated water resources management in Huai River Basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The scenario assumed for this study was that of a region with a complete or first‐order weather station surrounded by a network of second‐order stations, where only monthly air temperature data were available. The objective was to evaluate procedures to estimate the monthly α parameter of the Priestley–Taylor equation in the second‐order stations by adjusting and extrapolating α values determined at the first‐order station. These procedures were applied in two climatic zones of north‐east Spain with semi‐arid continental and semi‐arid Mediterranean climates, respectively. Procedure A assumed α to be constant over each zone for each month (direct extrapolation). Procedure B accounted for differences in vapour pressure deficit and available energy for evapotranspiration between the first‐ and second‐order stations. Procedure C was based on equating the Penman–Monteith (P–M) and Priestley–Taylor (P–T) equations on a monthly basis to solve for α. Methods to estimate monthly mean vapour pressure deficit, net radiation and wind speed were developed and evaluated. A total of 11 automated first‐order weather stations with a minimum period of record of 6 years (ranging from 6 to 10 years) were used for this study. Six of these stations were located in the continental zone and five in the Mediterranean zone. One station in each zone was assumed to be first‐order whereas the remainder were taken as second‐order stations. Monthly α parameters were calibrated using P–M reference crop evapotranspiration (ET0) values, calculated hourly and integrated for monthly periods, which were taken as ‘true’ values of ET0. For the extrapolation of monthly α parameters, procedure A was found to perform slightly better than procedure B in the Mediterranean zone. The opposite was true in the continental zone. Procedure C had the worst performance owing to the non‐linearity of the P–M equation and errors in the estimation of monthly available energy, vapour pressure deficit and wind speed. Procedures A and B are simpler and performed better. Overall, monthly P–T ET0 estimates using extrapolated α parameters and Rn?G values were in a reasonable agreement with P–M ET0 calculated on an hourly basis and integrated for monthly periods. The methods presented for the spatial extrapolation of monthly available energy, vapour pressure deficit and wind speed from first‐ to second‐order stations could be useful for other applications. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Özgür Kişi 《水文研究》2009,23(25):3583-3597
The accuracy of the wavelet regression (WR) model in monthly streamflow forecasting is investigated in the study. The WR model is improved combining the two methods—the discrete wavelet transform (DWT) model and the linear regression (LR) model—for 1‐month‐ahead streamflow forecasting. In the first part of the study, the results of the WR model are compared with those of the single LR model. Monthly flow data from two stations, Gerdelli Station on Canakdere River and Isakoy Station on Goksudere River, in Eastern Black Sea region of Turkey are used in the study. The comparison results reveal that the WR model could increase the forecast accuracy of the LR model. In the second part of the study, the accuracy of the WR model is compared with those of the artificial neural networks (ANN) and auto‐regressive (AR) models. On the basis of the results, the WR is found to be better than the ANN and AR models in monthly streamflow forecasting. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Trends of the three hydro-meteorological variables precipitation, temperature and stream flow, represented by 13, 12, and 9 gauging stations, respectively, within the Abay/Upper Blue Nile basin have been studied to support water management in the region. The Trends were evaluated over different time periods depending on data availability at the stations. The statistical Mann–Kendall and Pettitt tests have been used to assess trends and change points respectively. The tests have been applied to mean annual, monthly, seasonal, 1- and 7-days annual minimum and maximum values for streamflow, while mean annual, monthly and seasonal timescales were applied to meteorological variables. The results are heterogeneous and depict statistically significant increasing/decreasing trends. Besides, it showed significant abrupt change of point upward/downward shift for streamflow and temperature time series. However, precipitation time series did not show any statistically significant trends in mean annual and seasonal scales across the examined stations.Increasing trends in temperature at different weather stations for the mean annual, rainy, dry and small rainy seasons are apparent. The mean temperature at Bahir Dar – typical station in the Lake Tana sub basin, has been increasing at the rate of about 0.5 °C/decade, 0.3 °C/decade in rainy season (June–September), 0.6 °C/decade in small rainy season (March–May), and 0.6 °C/decade in dry season (October–February). Other stations in the Abay/Upper Blue Nile show comparable results. Overall it is found that trends and change point times varied considerably across the stations and catchment to catchment. Identified significant trends can help to make better planning decisions for water management. However, the cause attributes to the observed changes in hydro-meteorological variables need further research. In particular the combined effects of land use/land cover change and climate variability on streamflow of Abay/Blue Nile basin and its tributaries needs to be understood better.  相似文献   

16.
Changing climate and precipitation patterns make the estimation of precipitation, which exhibits two-dimensional and sometimes chaotic behavior, more challenging. In recent decades, numerous data-driven methods have been developed and applied to estimate precipitation; however, these methods suffer from the use of one-dimensional approaches, lack generality, require the use of neighboring stations and have low sensitivity. This paper aims to implement the first generally applicable, highly sensitive two-dimensional data-driven model of precipitation. This model, named frequency based imputation (FBI), relies on non-continuous monthly precipitation time series data. It requires no determination of input parameters and no data preprocessing, and it provides multiple estimations (from the most to the least probable) of each missing data unit utilizing the series itself. A total of 34,330 monthly total precipitation observations from 70 stations in 21 basins within Turkey were used to assess the success of the method by removing and estimating observation series in annual increments. Comparisons with the expectation maximization and multiple linear regression models illustrate that the FBI method is superior in its estimation of monthly precipitation. This paper also provides a link to the software code for the FBI method.  相似文献   

17.
Outlier trimming and homogeneity checking/correction were performed on the monthly precipitation time series of various lengths from 267 stations in Turkey. Outlier values are usually found during dry summer months, and are concentrated mostly over the southern parts of the country, where the dry period is most pronounced, implying natural extremes rather than wrong measurements. Homogeneity analysis was done using the Standard Normal Homogeneity Test, on an individual monthly basis, which led to many non‐testable series due to lack of reference stations, especially during summer months. Yet, remaining testable months were usually helpful for the assessment of homogenity, revealing a well distributed set of stations that proved to be homogeneous. There were still a number of stations which either could not be tested efficiently, or were classified as inhomogeneous. Lack of metadata is argued to be largely responsible for inefficient homogeneity testing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to theex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971–1988.  相似文献   

19.
Three-dimensional general circulation models (GCMs) are 'state-of-the-art' tools for projecting possible changes in climate. Scenarios constructed for the Czech Republic are based on daily outputs of the ECHAM-GCM in the central European region. Essential findings, derived from validating, procedures are summarized and changes in variables between the control and perturbed experiments are examined. The resulting findings have been used in selecting the most proper methods of generating climate change projections for assessing possible hydrological and agricultural impacts of climate change in selected exposure units. The following weather variables have been studied: Daily extreme temperatures, daily mean temperature, daily sum of global solar radiation, and daily precipitation amounts. Due to some discrepancies revealed, the temperature series for changed climate conditions (2×CO 2 ) have been created with the help of temperature differences between the control and perturbed runs, and the precipitation series have been derived from an incremental scenario based on an intercomparison of the GCMs' precipitation performance in the region. Solar radiation simulated by the ECHAM was not available and, therefore, it was generated using regression techniques relating monthly means of daily extreme temperatures and global radiation sums. The scenarios published in the paper consist of monthly means of all temperatures, their standard deviations, and monthly means of solar radiation and precipitation amounts. Daily weather series, the necessary input to impact models, are created (i) by the additive or multiplicative modification of observed weather daily series or (ii) by generating synthetic time series with the help of a weather generator whose parameters have been modified in accord with the suggested climate change scenarios.  相似文献   

20.
Abstract

The method of fragments is applied to the generation of synthetic monthly streamflow series using streamflow data from 34 gauging stations in mainland Portugal. A generation model based on the random sampling of the log-Pearson Type III distribution was applied to each sample to generate 1200 synthetic series of annual streamflow with an equal length to that of the sample. The synthetic annual streamflow series were then disaggregated into monthly streamflows using the method of fragments, by three approaches that differed in terms of the establishment of classes and the selection of fragments. The results of the application of such approaches were compared in terms of the capacity of the method to preserve the main monthly statistical parameters of the historical samples.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Silva, A.T. and Portela, M.M., 2012. Disaggregation modelling of monthly streamflows using a new approach of the method of fragments. Hydrological Sciences Journal, 57 (5), 942–955.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号