首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New data on the ages of detrital zircons from folded basement rocks and cover sediments of the Severnaya Zemlya archipelago and Izvestiy TSIK islands have been obtained. The basement age is defined as Cambrian (pre-Ordovician). The Ordovician and Silurian sandstones were mainly formed by erosion of the basement rocks. The Devonian sandstones were formed by debris sourced from the Caledonian orogen. The Carboniferous–Early Permian molasse was formed simultaneously with the erosion of the Carboniferous granitoids and weathering of the Ordovician volcanic arc rocks and the Cambrian basement. The North Kara basin was formed in the Ordovician as a back-arc basin. It experienced its main compression deformations at the boundary of the Devonian and Carboniferous and in the Carboniferous.  相似文献   

2.
The first U–Pb dating of detrital zircons from the Lower Carboniferous sandstones in the frontal part of the northern Verkhoyansk fold-and-thrust belt showed that detrital zircon age spectra for the Lower Visean (Krestyakh Formation) and the Upper Visean–Serpukhovian (Tiksi Formation) rocks are quite different. The Early Visean sandstones contain up to 95% detrital zircons of Precambrian age, while those of Late Visean–Serpukhovian age, only 55%. The shape of age distribution plots of Precambrian zircons for both samples is similar, indicating that reworking of terrigenous sediments of the Krestyakh Formation or the same sources dominated in Early Visean time (crystalline basement of the craton, eroded Meso- and Neoproterozoic sedimentary complexes, and igneous rocks of Central Taimyr) contributed significantly to the accumulation of the Late Visean–Serpukhovian deposits. In the rocks of the Tiksi Formation, 45% of detrital zircons are of Paleozoic age, while 24% are Early Paleozoic, with prevailing Cambrian and Ordovician ages. Possible provenance areas with abundant igneous rocks of this age could be the Taimyr–Severnaya Zemlya and Central Asian fold belts extending along the northern, western or southwestern margins of the Siberia. The presence of Middle–Late Devonian zircons is thought to be related to the erosion of granitoids of the Yenisei Ridge and the Altai–Sayan region. Early Carboniferous detrital zircons probably had a provenance in igneous rocks of the Taimyr–Severnaya Zemlya fold belt, on the assumption that collision between the Kara block and the northern margin of the Siberian continent had already occurred by that time. In Early Visean time, sedimentation occurred in small deltaic fans, likely along steep fault scarps that formed as a result of Middle Paleozoic (Devonian–Carboniferous) rifting. The clastic material came from small rivers that eroded the nearby area. Late Visean–Serpukhovian time was marked by a sharp increase in the amount of clastic material and by the appearance of detrital zircons coming from new provenance regions, such as fold belts extending along the northern and southwestern margins of the Siberian continent. A large river system, which was able to transport clastic material over large distances to deposit it in submarine fans on the northern Verkhoyansk passive continental margin, had already existed by that time.  相似文献   

3.
The U-Pb dating of detrital zircons from Carboniferous rocks in the northern frontal zone of the Verkhoyansk Fold-and-Thrust Belt (Kharaulakh Anticlinorium) at the boundary with the Siberian Platform is carried out for the first time. The age distribution of detrital zircons from the four dated samples has much in common, indicating that the same sources of clastic material were predominant. All of the samples are dominated by Precambrian zircons; the majority of them are Paleo- and Neoproterozoic grains. Early Ordovician and Late Devonian-Early Carboniferous detrital zircons are also numerous. The igneous rocks of the Taimyr-Severnaya Zemlya and/or Central Asian foldbelts extending along the northern, western, and southwestern margins of the Siberian continent probably were the main source areas of the studied sedimentary successions. The clastic material was transferred at a great distance by large river systems similar to the present-day Mississippi River and deposited in submarine fans at the passive margin of the Siberian continent. The occurrence of the detrital zircons whose age is synchronous to the time of sedimentation of the Carboniferous successions in the northern Verkhoyansk region (320–340 Ma) allows us to suggest that they were derived from the Taimyr-Severnaya Zemlya Foldbelt and that collision of the Kara Block with the Siberian continent began in the Early Carboniferous. The performed study shows the dating of detrital zircons is very helpful for the paleogeographic and tectonic reconstructions.  相似文献   

4.
Detrital zircon U/Pb ages provide new insights into the provenance of Upper Devonian–Permian clastic rocks of Bel’kovsky Island, within the New Siberian Islands archipelago. Based on these new data, we demonstrate that Upper Devonian–Carboniferous turbidites of Bel’kovsky Island were derived from Grenvillian, Sveconorwegian, and Timanian sources similar to those that fed Devonian–Carboniferous deposits of the Severnaya Zemlya archipelago and Wrangel Island and were probably located within Laurentia–Baltica. Detrital zircon ages from the lower Permian deposits of Bel’kovsky Island suggest a drastic change in provenance and show a strong affinity with the Uralian Orogen. Two possible models to interpret this shift in provenance are proposed. The first involves movement of these continental blocks from the continental margin of Laurentia–Baltica towards the Uralian Orogen during the late Carboniferous to Permian, while the second argues for long sediment transport across the Barents shelf.  相似文献   

5.
The first results of U–Pb dating of detrital zircons from Upper Ordovician sandstones of the Bashkir uplift in the Southern Urals and U–Pb isotopic ages available for detrital zircons from six stratigraphic levels of the Riphean–Paleozoic section of this region are discussed. It is established that the long (approximately 1.5 Ga) depositional history of sedimentary sequences of the Bashkir uplift includes a peculiar period lasting from the Late Vendian to the Emsian Age of the Early Devonian (0.55–0.41 Ga). This period is characterized by the following features: (1) prevalence of material from eroded Mesoproterozoic and Early Neoproterozoic crystalline complexes among clastics with ages atypical of the Volga–Urals segment of the East European Platform basement; (2) similarity of age spectra obtained for detrital zircons from different rocks of the period: Upper Vendian–Lower Cambrian lithic sandstones and Middle Ordovician substantially quartzose sandstones.  相似文献   

6.
Continental margin sediments of an exotic nature, which have been thrust over the Rhenohercynian zone of Central Germany, occur mainly in olistostromes of Lower Carboniferous age. A stratigraphy compiled from the exotic rocks reflects the wide spectrum of continental shelf and adjacent basinal facies that existed at least from the Early Ordovician to the Early Carboniferous. Facies and faunal relationships are comparable with those in the Palaeozoic of the western Mediterranean region, Saxothuringia (south-east Germany) and the Barrandian area (Czech Republic), which suggests deposition at the northern margin of the Gondwana Palaeozoic supercontinent. Among the exotic rocks, a Middle Devonian to Early Carboniferous facies, referred to as Flinzkalk, contains sediments showing characteristics of contourites. They may have originated from reworked turbidites, formed under a current which flowed parallel to the North Gondwana margin, similar to the Gulf Stream flowing along eastern North America today.  相似文献   

7.
ABSTRACT

Zircons from Carboniferous sandstones (three samples) and Mid-Late Triassic sandstones (four samples) from the Tauride and Anatolide continental units were analysed for U-Pb-Hf isotopes. For comparison, zircons were also analysed from Carboniferous granites of the Afyon Zone, Anatolides (three samples). A NE African/Arabian source is inferred for both the Carboniferous sandstones of the Taurides (Alada?) and the Anatolides (Konya Complex). In contrast, the Carboniferous Karaburun Melange is characterised by a NW African provenance. A prominent Devonian population occurs in the Carboniferous Karaburun Melange, characterised by mainly positive εHf(t) values that differ significantly from those of the Devonian granites of the Sakarya continental crustal unit (Pontides). Middle-Late Triassic Tauride sandstones include minor Palaeozoic and Early Mesozoic zircons. In contrast, Devonian and Carboniferous zircons are relatively abundant in Late Triassic sandstones of the Karaburun Peninsula. The Hf isotopic compositions of 25 Carboniferous-aged zircons from three samples of Mid-Late Triassic sandstone and one of Late Carboniferous age (one sample) overlap with the εHf(t) values of Carboniferous arc-type granites in the Anatolides. Taking account of the available U-Pb and Lu-Hf isotopic data from comparative crustal units, the Devonian zircon populations from the melanges in the Karaburun Peninsula and the Konya Complex are inferred to have a westerly source (e.g. granitic rocks of Aegean region or central Europe). A tectonic model is proposed in which Palaeozoic Tethys sutured during the late Carboniferous in the west (Aegean region westwards), leaving an eastward-widening oceanic gulf in which sandstone turbidites accumulated, including Devonian zircons.  相似文献   

8.
Neoproterozoic rocks in the Saxo-Thuringian part of Armorica formed in an active margin setting and were overprinted during Cadomian orogenic processes at the northern margin of Gondwana. The Early Palaeozoic overstep sequence in Saxo-Thuringia was deposited in a Cambro-Ordovician rift setting that reflects the separation of Avalonia and other terranes from the Gondwana mainland. Upper Ordovician and Silurian to Early Carboniferous shelf sediments of Saxo-Thuringia were deposited at the southern passive margin of the Rheic Ocean. SHRIMP U/Pb geochronology on detrital and inherited zircon grains from pre-Variscan basement rocks of the northern part of the Bohemian Massif (Saxo-Thuringia, Germany) demonstrates a distinct West African provenance for sediments and magmatic rocks in this part of peri-Gondwana. Nd-isotope data of Late Neoproterozoic to Early Carboniferous sedimentary rocks show no change in sediment provenance from the Neoproterozoic to the Lower Carboniferous, which implies that Saxo-Thuringia did not leave its West African source before the Variscan Orogeny leading to the Lower Carboniferous configuration of Pangea. Hence, large parts of the pre-Variscan basement of Western and Central Europe often referred to as Armorica or Armorican Terrane Assemblage may have remained with Africa in pre-Pangean time, which makes Armorica a remnant of a Greater Africa in Gondwanan Europe. The separation of Armorica from the Gondwana mainland and a long drift during the Palaeozoic is not supported by the presented data.  相似文献   

9.
The Novaya Zemlya fold‐and‐thrust‐belt is the northern continuation of the late Palaeozoic Uralide Orogen. Little is known about its deeper structure and the basement history of the adjacent Barents and Kara shelves. Based on geological evidence and detrital zircon analysis of 28 samples from the northeastern and stratigraphically deepest part of the archipelago, we demonstrate that Cambro‐Ordovician turbidite‐dominated deposition was almost exclusively sourced from rocks consolidated during the Timanian orogeny (Timanian basement). A profound change in provenance occurred near the end of the Ordovician. Over 90% of the zircons from Silurian and about 80% from Devonian strata have ages characteristic of the Sveconorwegian Orogen, implying uplift of these rocks in the vicinity of Novaya Zemlya. The presence of Sveconorwegian and Grenvillian rocks in the high Arctic suggests revision of recent reconstructions of the Rodinia supercontinent, its break‐up and subsequent Caledonian orogeny.  相似文献   

10.

Detrital zircons from 13 Late Mesoproterozoic to Early Neoproterozoic sandstones and two Palaeozoic sandstones from Tasmania were dated in order to improve constraints on depositional ages, to test correlation between Proterozoic inliers, and to characterise source regions. These include successions considered to be the oldest presently exposed in Tasmania. Typical features of the age distributions of the Proterozoic rocks are prominent data concentrations at 1800–1650 Ma and 1450–1400 Ma, and a minor spread of Archaean ages. Statistical testing of the similarity of the age profiles shows that widespread quartzarenaceous samples from the Detention Subgroup, Needles Quartzite and from the Tyennan region are strongly similar, consistent with broad correlation. Relatively large differences are seen between the Detention Subgroup and the conformable, stratigraphically higher Jacob Quartzite, which contains an additional spread of 1300–1000 Ma zircons suggestive of a Grenvillian source. Age profiles of the quartzarenites and quartzwacke turbidites (Oonah Formation and correlatives) cannot be readily differentiated. The Oonah Formation likewise includes samples with and without Grenvillian ages, and there is no 750 Ma zircon population that would be expected if the turbidites were genetically related to the Wickham Orogeny. The simplest interpretation is that the quartzarenites (Rocky Cape Group and correlatives) and the turbidites (Oonah Formation and correlates) are lateral equivalents, although a younger (post-Wickham Orogeny) age for the Oonah Formation cannot be discounted. A maximum age of ca 1000 Ma is inferred for the Oonah Formation, Rocky Cape Group and correlatives. A minimum age of ca 750 Ma is provided by the basal age of the overlying Togari Group and correlatives. In a metasediment from western King Island, the youngest detrital zircons are ca 1350 Ma, allowing a pre-Grenvillian depositional age as suggested by previous dating of metamorphic monazite. However, the age profile of this sample is not dissimilar to the other Tasmanian successions that are inferred to be 1000–750 Ma. The Wings Sandstone, of southern Tasmania, contains an unusual profile dominated by Grenvillian ages, consistent with an allochthonous origin. Basement ages that broadly match the age spectra of the Tasmanian Proterozoic sediments are found in southwestern Laurentia, consistent with mutual proximity in Rodinia reconstructions. The Palaeozoic sandstones, from the turbiditic Mathinna Supergroup of northeastern Tasmania, have zircon age profiles typical of the Lachlan Fold Belt, with a predominant latest Neoproterozoic-Early Cambrian component and a lesser, broad Proterozoic data concentration at ca 1000 Ma. Western Tasmania was not a significant part of the source area for these rocks.  相似文献   

11.
The vast Laptev and East Siberian shelves in the eastern Russian Arctic, largely covered by a shallow sea and buried beneath sea ice for 9 months of the year, remain one of the least studied parts of continental crust of the Earth and represent a big unknown when performing pre-Cenozoic reconstructions of the Arctic. The De Long Islands provide an important window into the geology of this area and are a key for understanding the Early Paleozoic history of the Amerasian Arctic. Four of them (Jeannette, Henrietta, Bennett and Zhokhov islands) were studied using structural data, petrographic and geochemical analyses and U–Pb zircon age dating to offer the following new constraints for the Early Paleozoic paleogeography of the Arctic realm. The basement beneath the De Long Islands is of Late Neoproterozoic to earliest Cambrian age, about 670–535 Ma. In the Early Paleozoic, the De Long Islands were located along the broad Timanian margin of Baltica, with a clastic sediment provenance from the Timanian, Grenville–Sveconorwegian, and Baltic Shield domains. The Cambro-Ordovician volcaniclastic successions on Jeannette and Henrietta islands formed part of a continental volcanic arc with a corresponding back-arc basin located to the south (in present co-ordinates). On the continent-ward side of the back-arc basin, shallow marine shelf clastic and carbonate rocks were deposited, which are exposed today on Bennett Island in the south-west of the archipelago (in modern coordinates). The De Long Islands together with other continental blocks, such as Severnaya Zemlya, Arctic Alaska–Chukotka, and the Alexander Terrane, formed the contiguous active continental margin of Baltica during the Early Paleozoic. Today however, these terranes are spread out over a distance of 5000 km across the Arctic and eastern Pacific margins due to the subsequent opening of a series of Late Paleozoic, Mesozoic and Cenozoic oceanic basins.  相似文献   

12.
Sedimentation environments were reconstructed for the Early Vendian successions of the western slope of the Central Urals, which comprises one of the most complete sections of the terminal Precambrian system in northern Eurasia. It was shown that, despite the presence of several diamictite levels in the sections of the Serebryanka Group, mature and multiply recycled fine-grained siliciclastic materials (CIA = 65–77) were delivered into the sedimentation basin over the whole Early Vendian. Based on the lithochemical characteristics of shales, the climate of Serebryanka time can be estimated as semiarid-semihumid, similar to that dominating in Late Vendian paleocatchments. Based on relatively high Mo/Mn values (0.011–0.024), it was suggested that anoxic or similar conditions existed in the basin of Buton time, whereas other sedimentary complexes of the Serebryanka Group were formed in well aerated environments. The systematics of Sr, Ba, Zr, Cu, and V in fine-grained siliciclastic rocks and Sr isotopic data for carbonate rocks indicate that the sediments were accumulated in a fresh-water basin. The values of trace-element indicator ratios, e.g., Th/Sc, La/Sc, Th/Cr and others, in the shales of the Serebryanka Group and Nd model age estimates indicate that a variety of mainly Early Proterozoic complexes, ranging from granitoids to basic rocks, occurred in the Early Vendian paleocatchments. The basic rocks were eroded most extensively probably in the end of Serebryanka time. Based on the Ce/Ce* values of shales, it was concluded that submarine volcanism had no significant influence on sedimentation processes in the Early Vendian. An exception is Koiva and Kernos time, when hematite-bearing shales were accumulated in association with pillow basalts in some zones of the basin. The distribution of the compositions of shales from various formations of the Serebryanka Group in discrimination diagrams suggests that the Early Vendian sedimentary sequences were formed in passive geodynamic settings.  相似文献   

13.
Melanges play a key role in the interpretation of orogenic belts, including those that have experienced deformation and metamorphism during continental collision. This is exemplified by a Palaeozoic tectonic-sedimentary melange (part of the Konya complex) that is exposed beneath a regionally metamorphosed carbonate platform near the city of Konya in central Anatolia. The Konya complex as a whole comprises three units: a dismembered, latest Silurian–Early Carboniferous carbonate platform, a Carboniferous melange made up of sedimentary and igneous blocks in a sedimentary matrix (also known as the Hal?c? Group or S?zma Group), and an overlying Volcanic-sedimentary Unit (earliest Permian?). The Palaeozoic carbonates accumulated on a subsiding carbonate platform that bordered the northern margin of Gondwana, perhaps as an off-margin unit. The matrix of the melange was mainly deposited as turbidites, debris flows and background terrigenous muds. Petrographic evidence shows that the clastic sediments were mostly derived from granitic and psammitic/pelitic metamorphic rocks, typical of upper continental crust. Both extension- and contraction-related origins of the melange can be considered. However, we interpret the melange as a Carboniferous subduction complex that formed along the northern margin of Gondwana, related to partial closure of Palaeotethys. Blocks and slices of Upper Palaeozoic radiolarian chert, basic igneous rocks and shallow-water carbonates were accreted and locally reworked by gravity processes. Large (up to km-sized) blocks and slices of shallow-water limestone were emplaced in response to collision of the Palaeozoic Carbonate Platform with the subduction zone. The overlying Volcanic-sedimentary Unit (earliest Permian?) comprises alkaline lava flows, interbedded with volcaniclastic debris flows and turbidites, volcanogenic shales and tuff. The complex as a whole is overlain by shallow-water, mixed carbonate–siliciclastic sediments of mainly Late Permian age that accumulated on a regional-scale shelf adjacent to Gondwana. Successions pass transitionally into Lower Triassic rift-related shallow-water carbonates and terrigenous sandstones in the southwest of the area. In contrast, Triassic sediments in the southeast overlie the melange unconformably and pass upwards from non-marine clastic sediments into shallow-marine calcareous sediments of Mid-Triassic age, marking the base of a regional Mesozoic carbonate platform. During the latest Cretaceous–Early Cenozoic the entire assemblage subducted northwards and underwent high pressure/low temperature metamorphism and polyphase folding as a part of the regional Anatolide unit.  相似文献   

14.
We have studied pebbles of igneous rocks from the Lower Jurassic sedimentary succession of Hall Island, Franz Josef Land. Pebbles are represented by felsic intrusive and extrusive rocks, often cataclased and greisenized. The U–Pb age of crystallization for zircons of the studied samples yielded the Latest Devonian–Early Carboniferous and Early–Middle Permian ages. In addition, the studied zircons demonstrate a broad scatter of ages, from Middle Paleozoic to Mesozoic, suggesting repeated thermal reworking and metamorphism of granites. It is shown that coeval Late Paleozoic magmatism indicates the similarity of the geological evolution of the northern Barents Sea and the Severnaya Zemlya archipelago.  相似文献   

15.
The sedimentary cover section of the North Kara Shelf had been subdivided based on extensive seismic data, and seismic correlation was carried out. The predominant role of Upper Riphean-Middle Paleozoic rocks has been corroborated. A series of relatively deepwater basins filled with primarily terrigenous fly-schoid rocks up to 7–9 km in thickness existed in the Late Riphean-Vendian at the place of the shelf. In the Cambrian, isolated basins merged into a wide and shallow-water basin as a result of the Baikalian reactivation in southeast Severnaya Zemlya and probably in Taimyr. After the pre-Ordovician hiatus, a vast sedimentation basin with a regressive section was formed on the shelf from Ordovician to Late Devonian. Shallow-water marine and near-shore carbonate and carbonate-terrigenous sequences accumulated in this basin and gave way to continental and less frequent near-shore, marine, variegated, and red beds in the Devonian. The thickness of the Ordovician-Devonian sequence reaches 6 km. Since the Mid-Carboniferous, block emergence and deep erosion of Ordovician-Devonian complexes have occurred in the north Kara shelf as a result of Hercynian events in northern Taimyr, Severnaya Zemlya, and in the southern Kara Sea. No Permian-Triassic rifts existed on the North Kara Shelf. At that time, the shelf was an area of erosion. The thickness of the Middle Carboniferous-Cretaceous sequence was insignificant and gradually increased toward Barents Sea troughs. The newly formed Svyataya Anna and Voronin troughs arose due to opening of the Eurasia Basin of the Arctic Ocean. The terrane concept has been subjected to criticism. The available data show that a large epi-Grenvillian continental block existed, and the North Kara region was part of it. Collision of the northern continent with the Paleosiberian Platform in the Late Paleozoic resulted in the formation of the Hercynian fold arc to the south of the North Kara Shelf, and an inverted orogenic arch arose at the place of shelf basin. The individual geological features that distinguish the North Kara Shelf from the Barents Sea troughs and the South Kara Syneclise are emphasized. The ancient pre-Riphean basement, a system of Late Riphean-Vendian relatively deepwater troughs and basins, Hercynian tectonic inversion, deep erosion of the most uplifted part of the arch, and significant block motions are the distinguishing features of the North Kara Shelf.  相似文献   

16.
Analyses of trace elements and Lu/Hf isotopes have been carried out in already U–Pb dated detrital zircons from the Upper Ordovician sandstones of the southern part of the Bashkir Uplift. The concentrations of trace elements in the zircons suggest that they were derived from rocks of intermediate (62%), basic (24%), and felsic (9%) compositions as well as alkaline rocks (2%). The Lu/Hf systematics of the zircons demonstrated a wide variation of both εHf (from +9.5 to–8.7) and model ages of the parental rocks (1.60 Ga < T DM C < 3.28 Ga). Comparison of the isotopic–geochemical characteristics of the detrital zircons from different levels of the Riphean–Paleozoic sequence of the Bashkir Uplift against those from the Early Cambrian Brusov Formation of the Mezen Basin and Early Neoproterozoic Dzhezhim sandstones of Timan Ridge suggests that at the end of the Late Precambrian near the Uralian margin of Baltica a large block of Late Mesoproterozoic–Early Neoproterozoic crust existed, comprising a significant proportion of melanocratic rocks.  相似文献   

17.
In the Eastern Lachlan Orogen, the mineralised Molong and Junee‐Narromine Volcanic Belts are two structural belts that once formed part of the Ordovician Macquarie Arc, but are now separated by younger Silurian‐Devonian strata as well as by Ordovician quartz‐rich turbidites. Interpretation of deep seismic reflection and refraction data across and along these belts provides answers to some of the key questions in understanding the evolution of the Eastern Lachlan Orogen—the relationship between coeval Ordovician volcanics and quartz‐rich turbidites, and the relationship between separate belts of Ordovician volcanics and the intervening strata. In particular, the data provide evidence for major thrust juxtaposition of the arc rocks and Ordovician quartz‐rich turbidites, with Wagga Belt rocks thrust eastward over the arc rocks of the Junee‐Narromine Volcanic Belt, and the Adaminaby Group thrust north over arc rocks in the southern part of the Molong Volcanic Belt. The seismic data also provide evidence for regional contraction, especially for crustal‐scale deformation in the western part of the Junee‐Narromine Volcanic Belt. The data further suggest that this belt and the Ordovician quartz‐rich turbidites to the east (Kirribilli Formation) were together thrust over ?Cambrian‐Ordovician rocks of the Jindalee Group and associated rocks along west‐dipping inferred faults that belong to a set that characterises the middle crust of the Eastern Lachlan Orogen. The Macquarie Arc was subsequently rifted apart in the Silurian‐Devonian, with Ordovician volcanics preserved under the younger troughs and shelves (e.g. Hill End Trough). The Molong Volcanic Belt, in particular, was reworked by major down‐to‐the‐east normal faults that were thrust‐reactivated with younger‐on‐older geometries in the late Early ‐ Middle Devonian and again in the Carboniferous.  相似文献   

18.
This work describes clastic dikes which intruded along cleavage planes into Lower Vendian clay shales of the Barakun Formation (the eastern part of the Patom folded zone). Dikes are composed of sandstones, which are common in other parts of the Barakun Formation, or more often by thin intercalations of finely oolitic limestones in surrounding shales. It is evident that dikes were formed as a result of elision processes synchronous to the folding, the major system of cleavage planes, and dehydration of clayey rocks of the Dalnetaiginsky Group at the end of Early Vendian. This stage of folding can be considered as one of the first phases of the Baikal folding by N.S. Shatsky.  相似文献   

19.
Late Palaeozoic deformation in the southern Appalachians is believed to be related to the collisional events that formed Pangaea. The Appalachian foreland fold and thrust belt in Alabama is a region of thin-skinned deformed Palaeozoic sedimentary rocks ranging in age from Early Cambrian to Late Carboniferous, bounded to the northwest by relatively undeformed rocks of the Appalachian Plateau and to the southeast by crystalline thrust sheets containing metasedimentary and metaigneous rocks ranging in age from late Precambrian to Early Devonian. A late Palaeozoic kinematic sequence derived for a part of this region indicates complex spatial and temporal relationships between folding, thrusting, and tectonic level of décollement. Earliest recognized (Carboniferous(?) or younger) compressional deformation in the foreland, observable within the southernmost thrust sheets in the foreland, is a set of large-scale, tight to isoclinal upright folds which preceded thrafing, and may represent the initial wave of compression in the foreland. Stage 2 involved emplacement of low-angle far-traveled thrust sheets which cut Lower Carboniferous rocks and cut progressively to lower tectonic levels to the southwest, terminating with arrival onto the foreland rocks of a low-grade crystalline nappe. Stage 3 involved redeformation of the stage 2 nappe pile by large-scale upright folds oriented approximately parallel to the former thrusts and believed to be related to ramping or imbrication from a deeper décollement in the foreland rocks below. Stage 4 involved renewed low-angle thrusting within the Piedmont rocks, emplacement of a high-grade metamorphic thrust sheet, and decapitation of stage 3 folds. Stage 5 is represented by large-scale cross-folding at a high angle to previous thrust boundaries and fold phases, and may be related to ramping or imbrication on deep décollements within the now mostly buried Ouachita orogen thrust belt to the southwest. Superposed upon these folds are stage 6 high-angle thrust faults with Appalachian trends representing the youngest (Late Carboniferous or younger, structures in the kinematic sequence.  相似文献   

20.
《Gondwana Research》2013,23(3-4):928-942
New SHRIMP U–Pb ages of detrital zircon obtained from eight samples of Neoproterozoic to Lower Paleozoic graywackes, schists, microconglomerates and shales provide the maximum depositional age and a new zircon age pattern for the Schist–Graywacke Complex (SGC) from the Iberian Massif (SW Europe). The ages of the youngest zircon grains found in four samples provide a maximum depositional age of latest Ediacaran–Lower Cambrian for the complex. Lower-Middle Cambrian fossiliferous formations on top of the lithologies correctly attributed to the SGC constrain its minimum depositional age. Unexpectedly, two samples attributed to the SGC yielded Cambro-Ordovician zircon populations. These must belong to younger Lower Ordovician sedimentary successions that, up to now, have not been differentiated from those of the SGC. The new age patterns are mainly composed of Neoproterozoic (73%) and Paleoproterozoic (15%) ages, with minor Neoarchean (7%), Mesoarchean (2%), Mesoproterozoic (3%) and Cambrian (1%) ages for the latest Ediacaran–Lower Cambrian successions, and Neoproterozoic (46%) and Cambro-Ordovician (46%) ages, with minor Neoarchean (1%), Mesoarchean (0.5%), Paleoproterozoic (6%), Mesoproterozoic (0.5%) and Carboniferous (1%) ages for the Lower Ordovician successions. The presence of Mesoproterozoic zircon points to the Saharan Metacraton as a contributing source for these sediments. Cadomian granitoids could have been a local Neoproterozoic source. The Cambro-Ordovician zircons may also indicate that Cambro-Ordovician magmatism contributed as a source. Cambro-Ordovician volcanism, the most probable source of the Cambro-Ordovician zircons, would have been coeval with the deposition of the Lower Ordovician successions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号