首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
Orthorhombic post-perovskite CaPtO3 is isostructural with post-perovskite MgSiO3, a deep-Earth phase stable only above 100 GPa. Energy-dispersive X-ray diffraction data (to 9.4 GPa and 1,024 K) for CaPtO3 have been combined with published isothermal and isobaric measurements to determine its PVT equation of state (EoS). A third-order Birch–Murnaghan EoS was used, with the volumetric thermal expansion coefficient (at atmospheric pressure) represented by α(T) = α0 + α1(T). The fitted parameters had values: isothermal incompressibility, $ K_{{T_{0} }} $  = 168.4(3) GPa; $ K_{{T_{0} }}^{\prime } $  = 4.48(3) (both at 298 K); $ \partial K_{{T_{0} }} /\partial T $  = ?0.032(3) GPa K?1; α0 = 2.32(2) × 10?5 K?1; α1 = 5.7(4) × 10?9 K?2. The volumetric isothermal Anderson–Grüneisen parameter, δ T , is 7.6(7) at 298 K. $ \partial K_{{T_{0} }} /\partial T $ for CaPtO3 is similar to that recently reported for CaIrO3, differing significantly from values found at high pressure for MgSiO3 post-perovskite (?0.0085(11) to ?0.024 GPa K?1). We also report axial PVT EoS of similar form, the first for any post-perovskite. Fitted to the cubes of the axes, these gave $ \partial K_{{aT_{0} }} /\partial T $  = ?0.038(4) GPa K?1; $ \partial K_{{bT_{0} }} /\partial T $  = ?0.021(2) GPa K?1; $ \partial K_{{cT_{0} }} /\partial T $  = ?0.026(5) GPa K?1, with δ T  = 8.9(9), 7.4(7) and 4.6(9) for a, b and c, respectively. Although $ K_{{T_{0} }} $ is lowest for the b-axis, its incompressibility is the least temperature dependent.  相似文献   

2.
Experiments reproducing the development of bimetasomatic zoning in the CaO-MgO-SiO2-H2O-CO2 system were conducted at elevated P-T parameters with the use of samples of naturally occurring quartzdolomite and calcite-serpentinite rocks. In order to maintain mass transfer exclusively via the diffusion-controlled mechanism, we used the method of the ensured compaction of the cylindrical sample surface with a thin-walled gold tube. In the course of the experiments, a single diopside zone ~2.5 × 10?5 m thick was obtained at the quartz-dolomite interface at T = 600°C, $P_{H_2 O + CO_2 } $ = 200 MPa, and $X_{CO_2 } $ = 0.5 for 25–40 days and a succession of metasomatic zones at T = 750°C, $P_{H_2 O + CO_2 } $ = 300 MPa, and $X_{CO_2 } $ = 0.4 for 48 days. The metasomatic zones were as follows (listed in order from quartz to dolomite): wollastonite ‖ diopside ‖ tremolite ‖ calcite + forsterite; with the average width of the diopside zone equal to ~1.3 × 10?5 m and the analogous part of the wollastonite zone equal to ~2.6 × 10?5 m. Two zones (listed in order from calcite to serpentine) diopside and diopside-forsterite (the average widths of these zones were ~6 × 10?4 and ~8 × 10?4 m, respectively) were determined to develop at contact between serpentine and calcite during experiments that lasted 124 days at T = 500°C, $P_{H_2 O + CO_2 } $ = 200 MPa, and $X_{CO_2 } $ = 0.2–0.4. In the former and latter situations, the growth rate of the zoning ranged between 3.1 × 10?12 and 1.2 × 10?11 m/s and between 5.6 × 10?11 and 7.5 × 10?11 m/s, respectively. The higher growth rate in the latter case can be explained by the higher water mole fraction in the fluid, with this water released during serpentinite decomposition in the experiments. The development of the only diopside zone in the experiments modeling the interaction of quartz and dolomite at T = 600–650°C and $P_{H_2 O + CO_2 } $ = 200 MPa is in conflict with theoretical considerations underlain by the Korzhinskii-Fisher-Joesten model. The interaction of quartz and dolomite in the CaO-MgO-SiO2-CO2-H2O system at the P-T- $X_{CO_2 } $ parameters specified above should be attended by the origin of a number of reaction zones consisting of various proportions of talc, forsterite, tremolite, diopside, and calcite. The saturation of the fluid with respect to these minerals was likely not reached, and this resulted in the degeneration of the respective stability fields in the succession of zones. Conceivably, this was related to the insufficient rates of quartz and dolomite dissolution and the relatively low diffusion rates of the dissolved species in the low-permeable medium. In the experiments with interacting calcite and serpentine, the zoning calcite ‖ diopside ‖ diopside + forsterite ‖ serpentine developed in its complete form, in agreement with the theory. Equilibrium was likely achieved in these experiments due to the higher diffusion coefficients.  相似文献   

3.
Fluids at crustal pressures and temperatures   总被引:1,自引:0,他引:1  
  相似文献   

4.
The density and compressibility of seawater solutions from 0 to 95 °C have been examined using the Pitzer equations. The apparent molal volumes (X = V) and compressibilities (X = κ) are in the form $$ X_{\phi } = \bar{X}^{0} + A_{X} I/(1.2 \, m)\ln (1 + 1.2 \, I^{0.5} ) + \, 2{\text{RT }}m \, (\beta^{(0)X} + \beta^{(1)X} g(y) + C^{X} m) $$ where $ \bar{X}^{0} $ is the partial molal volume or compressibility, I is the ionic strength, m is the molality of sea salt, AX is the Debye–Hückel slope for volume (X = V) or adiabatic compressibility (X = κ s), and g(y) = (2/y 2)[1 ? (1 + y) exp(?y)] where y = 2I 0.5. The values of the partial molal volume and compressibility ( $ \bar{X}^{0} $ ) and Pitzer parameters (β (0)X , β (1)X and C X ) are functions of temperature in the form $$ Y^{X} = \sum_{i} a_{i} (T-T_{\text{R}} )^{i} $$ where a i are adjustable parameters, T is the absolute temperature in Kelvin, and T R = 298.15 K is the reference temperature. The standard errors of the seawater fits for the specific volumes and adiabatic compressibilities are 5.35E?06 cm3 g?1 and 1.0E?09 bar?1, respectively. These equations can be combined with similar equations for the osmotic coefficient, enthalpy and heat capacity to define the thermodynamic properties of sea salt to high temperatures at one atm. The Pitzer equations for the major components of seawater have been used to estimate the density and compressibility of seawater to 95 °C. The results are in reasonable agreement with the measured values (0.010E?03 g cm?3 for density and 0.050E?06 bar?1 for compressibility) from 0 to 80 °C and salinities from 0 to 45 g kg?1. The results make it possible to estimate the density and compressibility of all natural waters of known composition over a wide range of temperature and salinity.  相似文献   

5.
The temperature dependences of the crystal structure and superstructure intensities in sodium nitrate, mineral name nitratine, NaNO3, were studied using Rietveld structure refinements based on synchrotron powder X-ray diffraction. Nitratine transforms from $R{\overline{3}} c\;\hbox{to}\;R{\overline{3}} m$ at T c = 552(1) K. A NO3 group occupies, statistically, two positions with equal frequency in the disordered $R{\overline{3}} m$ phase, but with unequal frequency in the partially ordered $R{\overline{3}} c$ phase. One position for the NO3 group is rotated by 60° or 180° with respect to the other. The occupancy of the two orientations in the $R{\overline{3}} c$ phase is obtained from the occupancy factor, x, for the O1 site and gives rise to the order parameter, S = 2x ? 1, where S is 0 at T c and 1 at 0 K. The NO3 groups rotate in a rapid process from about 541 to T c, where the a axis contracts. Using a modified Bragg–Williams model, a good fit was obtained for the normalized intensities (that is, normalized, NI1/2) for the (113) and (211) reflections in $R{\overline{3}} c\hbox {\,NaNO}_{3},$ and indicates a second-order transition. Using the same model, a reasonable fit was obtained for the order parameter, S, and also supports a second-order transition.  相似文献   

6.
We have investigated the effect of undercooling and deformation on the evolution of the texture and the crystallization kinetics of remelted basaltic material from Stromboli (pumice from the March 15, 2007 paroxysmal eruption) and Etna (1992 lava flow). Isothermal crystallization experiments were conducted at different degrees of undercooling and different applied strain rate (T = 1,157–1,187 °C and $ \dot{\gamma }_{i} $ γ · i  = 4.26 s?1 for Stromboli; T = 1,131–1,182 °C and $ \dot{\gamma }_{i} $ γ · i  = 0.53 s?1 for Etna). Melt viscosity increased due to the decrease in temperature and the increase in crystal content. The mineralogical assemblage comprises Sp + Plg (dominant) ± Cpx with an overall crystal fraction (?) between 0.06 and 0.27, increasing with undercooling and flow conditions. Both degree of undercooling and deformation rate deeply affect the kinetics of the crystallization process. Plagioclase nucleation incubation time strongly decreases with increasing ΔT and flow, while slow diffusion-limited growth characterizes low ΔT—low deformation rate experiments. Both Stromboli (high strain rate) and Etna (low strain rate) plagioclase growth rates (G) display relative small variations with Stromboli showing higher values (4.8 ± 1.9 × 10?9 m s?1) compared to Etna (2.1 ± 1.6 × 10?9 m s?1). Plagioclase average nucleation rates J continuously increase with undercooling from 1.4 × 106 to 6.7 × 106 m?3 s?1 for Stromboli and from 3.6 × 104 to 4.0 × 106 m?3 s?1 for Etna. The extremely low value of 3.6 × 104 m?3 s?1 recorded at the lowest undercooling experiment for Etna (ΔT = 20 °C) indicates that the crystallization process is growth-dominated and that possible effects of textural coarsening occur. G values obtained in this paper are generally one or two orders of magnitude higher compared to those obtained in the literature for equivalent undercooling conditions. Stirring of the melt, simulating magma flow or convective conditions, facilitates nucleation and growth of crystals via mechanical transportation of matter, resulting in the higher J and G observed. Any modeling pertaining to magma dynamics in the conduit (e.g., ascent rate) and lava flow emplacement (e.g., flow rate, pāhoehoe–‘a‘ā transition) should therefore take the effects of dynamic crystallization into account.  相似文献   

7.
The pressure–volume–temperature (PVT) relation of CaIrO3 post-perovskite (ppv) was measured at pressures and temperatures up to 8.6 GPa and 1,273 K, respectively, with energy-dispersive synchrotron X-ray diffraction using a DIA-type, cubic-anvil apparatus (SAM85). Unit-cell dimensions were derived from the Le Bail full profile refinement technique, and the results were fitted using the third-order Birth-Murnaghan equation of state. The derived bulk modulus \( K_{T0} \) at ambient pressure and temperature is 168.3 ± 7.1 GPa with a pressure derivative \( K_{T0}^{\prime } \) = 5.4 ± 0.7. All of the high temperature data, combined with previous experimental data, are fitted using the high-temperature Birch-Murnaghan equation of state, the thermal pressure approach, and the Mie-Grüneisen-Debye formalism. The refined thermoelastic parameters for CaIrO3 ppv are: temperature derivative of bulk modulus \( (\partial K_{T} /\partial T)_{P} \) = ?0.038 ± 0.011 GPa K?1, \( \alpha K_{T} \) = 0.0039 ± 0.0001 GPa K?1, \( \left( {\partial K_{T} /\partial T} \right)_{V} \) = ?0.012 ± 0.002 GPa K?1, and \( \left( {\partial^{2} P/\partial T^{2} } \right)_{V} \) = 1.9 ± 0.3 × 10?6 GPa2 K?2. Using the Mie-Grüneisen-Debye formalism, we obtain Grüneisen parameter \( \gamma_{0} \) = 0.92 ± 0.01 and its volume dependence q = 3.4 ± 0.6. The systematic variation of bulk moduli for several oxide post-perovskites can be described approximately by the relationship K T0  = 5406.0/V(molar) + 5.9 GPa.  相似文献   

8.
The heat capacity of synthetic ferrosilite, Fe2Si2O6, was measured between 2 and 820 K. The physical properties measurement system (PPMS, Quantum Design®) was used in the low-temperature region between 2 and 303 K. In the temperature region between 340 and 820 K measurements were performed using differential scanning calorimetry (DSC). The C p data show two transitions, a sharp λ-type at 38.7 K and a small shoulder near 9 K. The λ-type transition can be related to collinear antiferromagnetic ordering of the Fe2+ spin moments and the shoulder at 10 K to a change from a collinear to a canted-spin structure or to a Schottky anomaly related to an electronic transition. The C p data in the temperature region between 145 and 830 K are described by the polynomial $C_{p} {\left[ {\hbox{J\,mol}^{{ - 1}}\,{\hbox{K}}^{{ - 1}} } \right]} = 371.75 - 3219.2T^{{ - 1/2}} - 15.199 \times 10^{5} T^{{ - 2}} + 2.070 \times 10^{7} T^{{ - 3}} $ The heat content [H 298H 0] and the standard molar entropy [S 298S 0] are 28.6 ± 0.1 kJ mol?1 and 186.5 ± 0.5 J mol?1 K?1, respectively. The vibrational part of the heat capacitiy was calculated using an elastic Debye temperature of 541 K. The results of the calculations are in good agreement with the maximum theoretical magnetic entropy of 26.8 J mol?1 K?1 as calculated from the relationship 2*Rln5.  相似文献   

9.
The temperature dependence of the lattice parameters of pure anorthite with high Al/Si order reveals the predicted tricritical behaviour of the \(I\bar 1 \leftrightarrow P\bar 1\) phase transition at T c * =510 K. The spontaneous strain couples to the order parameter Q° as x iS xQ i 2 with S xQ 1 =4.166×10?3, S xQ 2 =0.771×10?3, S xQ 3 =?7.223×10?3 for the diagonal elements. The temperature dependence of Q° is $$Q^{\text{o}} = \left( {1 - \frac{T}{{510}}} \right)^\beta ,{\text{ }}\beta = \tfrac{{\text{1}}}{{\text{4}}}$$ A strong dependence of T c * , S xQ i and β is predicted for Al/Si disordered anorthite.  相似文献   

10.
In order to evaluate the effect of trace and minor elements (e.g., P, Y, and the REEs) on the high-temperature solubility of Ti in zircon (zrc), we conducted 31 experiments on a series of synthetic and natural granitic compositions [enriched in TiO2 and ZrO2; Al/(Na + K) molar ~1.2] at a pressure of 10 kbar and temperatures of ~1,400 to 1,200 °C. Thirty of the experiments produced zircon-saturated glasses, of which 22 are also saturated in rutile (rt). In seven experiments, quenched glasses coexist with quartz (qtz). SiO2 contents of the quenched liquids range from 68.5 to 82.3 wt% (volatile free), and water concentrations are 0.4–7.0 wt%. TiO2 contents of the rutile-saturated quenched melts are positively correlated with run temperature. Glass ZrO2 concentrations (0.2–1.2 wt%; volatile free) also show a broad positive correlation with run temperature and, at a given T, are strongly correlated with the parameter (Na + K + 2Ca)/(Si·Al) (all in cation fractions). Mole fraction of ZrO2 in rutile $ \left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) $ in the quartz-saturated runs coupled with other 10-kbar qtz-saturated experimental data from the literature (total temperature range of ~1,400 to 675 °C) yields the following temperature-dependent expression: $ {\text{ln}}\left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) + {\text{ln}}\left( {a_{{{\text{SiO}}_{2} }} } \right) = 2.638(149) - 9969(190)/T({\text{K}}) $ , where silica activity $ a_{{{\text{SiO}}_{2} }} $ in either the coexisting silica polymorph or a silica-undersaturated melt is referenced to α-quartz at the P and T of each experiment and the best-fit coefficients and their uncertainties (values in parentheses) reflect uncertainties in T and $ \mathop X\nolimits_{{{\text{ZrO}}_{2} }}^{\text{rt}} $ . NanoSIMS measurements of Ti in zircon overgrowths in the experiments yield values of ~100 to 800 ppm; Ti concentrations in zircon are positively correlated with temperature. Coupled with values for $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ for each experiment, zircon Ti concentrations (ppm) can be related to temperature over the range of ~1,400 to 1,200 °C by the expression: $ \ln \left( {\text{Ti ppm}} \right)^{\text{zrc}} + \ln \left( {a_{{{\text{SiO}}_{2} }} } \right) - \ln \left( {a_{{{\text{TiO}}_{2} }} } \right) = 13.84\left( {71} \right) - 12590\left( {1124} \right)/T\left( {\text{K}} \right) $ . After accounting for differences in $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ , Ti contents of zircon from experiments run with bulk compositions based on the natural granite overlap with the concentrations measured on zircon from experiments using the synthetic bulk compositions. Coupled with data from the literature, this suggests that at T ≥ 1,100 °C, natural levels of minor and trace elements in “granitic” melts do not appear to influence the solubility of Ti in zircon. Whether this is true at magmatic temperatures of crustal hydrous silica-rich liquids (e.g., 800–700 °C) remains to be demonstrated. Finally, measured $ D_{\text{Ti}}^{{{\text{zrc}}/{\text{melt}}}} $ values (calculated on a weight basis) from the experiments presented here are 0.007–0.01, relatively independent of temperature, and broadly consistent with values determined from natural zircon and silica-rich glass pairs.  相似文献   

11.
The chemistry of soil solutions can be altered by human activities, due to the intense agricultural and husbandry, leading to leaching of nutrients and subsequently elevating ground water levels. Multivariate statistical and inverse geochemical modeling techniques were used to determine the main factors controlling soil solution chemistry of calcareous soils. In this research, a total of 21 calcareous soils was characterized and assessed for soil solution using soil column. The major cations in the studied soil solutions were in the decreasing order as Ca2+ > Mg2+ > Na+ > K+. The anions were also arranged in decreasing order as HCO $ _{3}^{ - } $  > Cl $ ^{ - } $  > SO $ _{4}^{2 - } $  > NO $ _{3}^{ - } $ . Concentrations of NO $ _{3}^{ - } $ , P, and K+ in soil solutions were in the range of 6.8–307.5 mg l?1 (mean 63.2 mg l?1), 5.0–10.4 mg l?1 (mean 5.9 mg l?1), and 2.8–54.6 mg l?1 (mean 11.3 mg l?1), respectively. Results suggest that the concentration of P in the soil solutions could be primarily controlled by the solubility of dicalcium phosphate dihydrate and dicalcium phosphate. Interactions between soil properties and observed solubility of nutrients were described, and put into empirical multivariate formulations. Obtained equations contained electrical conductivity (EC) as a key factor in determining nutrients solubility. Inverse geochemical modeling of soil solution using PHREEQC indicates the dissolution of calcite, anhydrite, halite, CO2 (g), N2 (g), and hydroxyapatite, and precipitation of sulfur. Cation exchange between Ca2+, Mg2+, K+ and Na+ occurred with Mg2+ and K+ into the solution, and Ca2+ and Na+ out of the solution. Determination of soil solution will improve soil management in the area, and preventing groundwater deterioration.  相似文献   

12.
Iron-rich orthopyroxene plays an important role in models of the thermal and magmatic evolution of the Moon, but its density at high pressure and high temperature is not well-constrained. We present in situ measurements of the unit-cell volume of a synthetic polycrystalline end-member orthoferrosilite (FeSiO3, fs) at simultaneous high pressures (3.4–4.8 GPa) and high temperatures (1,148–1,448 K), to improve constraints on the density of orthopyroxene in the lunar interior. Unit-cell volumes were determined through in situ energy-dispersive synchrotron X-ray diffraction in a multi-anvil press, using MgO as a pressure marker. Our volume data were fitted to a high-temperature Birch–Murnaghan equation of state (EoS). Experimental data are reproduced accurately, with a  $\varDelta P$ Δ P  standard deviation of 0.20 GPa. The resulting thermoelastic parameters of fs are: V 0 = 875.8 ± 1.4 Å3K 0 = 74.4 ± 5.3 GPa, and $\frac{{\text d}K}{{\text d}T} = -0.032 \pm 0.005\,\hbox{GPa K}^{-1}$ d K d T = - 0.032 ± 0.005 GPa K - 1 , assuming ${K}^{\prime}_{0} = 10 $ K 0 ′ = 10 . We also determined the thermal equation of state of a natural Fe-rich orthopyroxene from Hidra (Norway) to assess the effect of magnesium on the EoS of iron-rich orthopyroxene. Comparison between our two data sets and literature studies shows good agreement for room-temperature, room-pressure unit-cell volumes. Preliminary thermodynamic analyses of orthoferrosilite, FeSiO3, and orthopyroxene solid solutions, (Mg1?x Fe x ) SiO3, using vibrational models show that our volume measurements in pressure–temperature space are consistent with previous heat capacity and one-bar volume–temperature measurements. The isothermal bulk modulus at ambient conditions derived from our measurements is smaller than values presented in the literature. This new simultaneous high-pressure, high-temperature data are specifically useful for calculations of the orthopyroxene density in the Moon.  相似文献   

13.
Precious metals accompany all types of epithermal deposits. In general, the largest of these deposits occur in intrusive or extrusive rocks of alkaline or calc-alkaline affinity. The Apigania Bay vein system and Au–Ag mineralization is hosted in Mesozoic marbles and schists, and is composed primarily of five nearly parallel, high-angle quartz veins that extend for at least 200 m. Gold–silver mineralization, in association with more than thirty ore and vein minerals, is developed in three stages and occurs at the contact of marbles and schists. Zones of epidote–chlorite–calcite and sericite–albite alteration are associated with precious metal-bearing milky and clear quartz veins. Fluid inclusion studies suggest that hydrothermal mineralization was deposited under hydrostatic pressures of ~100 bars, at temperature of 120–235°C, from low to moderate, calcium-bearing, saline fluids of 0.2 to 6.8 equiv. wt.% NaCl. Calculated isotope compositions (δ18O?=??4.7‰ to 1.7‰ and δD?=??120‰ to ?80‰) for waters in equilibrium with milky and clear quartz are consistent with mixing with dilute, low temperature meteoric ore fluids. Calculated δ 13CCO2 (0.6‰ to 1.1‰) and δ 34SH2S (?7.3 to ?0.3‰) compositions of the ore fluids indicate exchange, in an open system, with a metasedimentary source. Gold and silver deposition was associated with degassing of hydrogen due to intense uplift of the mineralizing area. The physicochemical conditions of mineralization stages I to III range between 200°C and 150°C, $f_{{\text{S}}_2 } = 10^{ - 18.1} $ to 10?16.8, $f_{{\text{O}}_2 } = 10^{ - 44.0} $ to 10?41.5, pH?=?6.9 to7.6, $f_{{\text{H}}_{\text{2}} {\text{S}}} = 10^{ - 3.4} $ to 10?2.6 and $a_{{\text{H}}_{\text{2}} {\text{S}}} = 10^{ - 2.7} $ to 10?2.6. Apigania Bay could be possibly considered the latest evolutional phase of Tinos hydrothermal system.  相似文献   

14.
Magnesium silicate perovskite is the predominant phase in the Earth’s lower mantle, and it is well known that incorporation of iron has a strong effect on its crystal structure and physical properties. To constrain the crystal chemistry of (Mg, Fe)SiO3 perovskite more accurately, we synthesized single crystals of Mg0.946(17)Fe0.056(12)Si0.997(16)O3 perovskite at 26 GPa and 2,073 K using a multianvil press and investigated its crystal structure, oxidation state and iron-site occupancy using single-crystal X-ray diffraction and energy-domain Synchrotron Mössbauer Source spectroscopy. Single-crystal refinements indicate that all iron (Fe2+ and Fe3+) substitutes on the A-site only, where \( {\text{Fe}}^{ 3+ } /\Upsigma {\text{Fe}}\sim 20\,\% \) based on Mössbauer spectroscopy. Charge balance likely occurs through a small number of cation vacancies on either the A- or the B-site. The octahedral tilt angle (Φ) calculated for our sample from the refined atomic coordinates is 20.3°, which is 2° higher than the value calculated from the unit-cell parameters (a = 4.7877 Å, b = 4.9480 Å, c = 6.915 Å) which assumes undistorted octahedra. A compilation of all available single-crystal data (atomic coordinates) for (Mg, Fe)(Si, Al)O3 perovskite from the literature shows a smooth increase of Φ with composition that is independent of the nature of cation substitution (e.g., \( {\text{Mg}}^{ 2+ } - {\text{Fe}}^{ 2+ } \) or \( {\text{Mg}}^{ 2+ } {\text{Si}}^{ 4+ } - {\text{Fe}}^{ 3+ } {\text{Al}}^{ 3+ } \) substitution mechanism), contrary to previous observations based on unit-cell parameter calculations.  相似文献   

15.
The heat capacity (C P) of a natural sample of calcite (CaCO3) has been measured from 350 to 775 K by differential scanning calorimetry (DSC). Heat capacities determined for a powdered sample and a single-crystal disc are in close agreement and have a total uncertainty of ±1 percent. The following equation for the heat capacity of calcite from 298 to 775 K was fit by least squares to the experimental data and constrained to join smoothly with the low-temperature heat capacity data of Staveley and Linford (1969) (C P in J mol?1 K?1, T in K): $$\begin{gathered} C_p = - 184.79 + 0.32322T - 3,688,200T^{ - 2} \hfill \\ {\text{ }} - (1.2974{\text{ }} \times {\text{ 10}}^{ - {\text{4}}} )T^2 + 3,883.5T^{ - 1/2} \hfill \\ \end{gathered} $$ Combining this equation with the S 298 0 value from Staveley and Linford (1969), entropies for calcite are calculated and presented to 775 K. A simple method of extrapolating the heat capacity function of calcite above 775 K is presented. This method provides accurate entropies of calcite for high-temperature thermodynamic calculations, as evidenced by calculation of the equilibrium: CaCO3 (s)=CaO(s)+CO2 (s).  相似文献   

16.
Thermal equation of state of an Al-rich phase with Na1.13Mg1.51Al4.47Si1.62O12 composition has been derived from in situ X-ray diffraction experiments using synchrotron radiation and a multianvil apparatus at pressures up to 24 GPa and temperatures up to 1,900 K. The Al-rich phase exhibited a hexagonal symmetry throughout the present pressure–temperature conditions and the refined unit-cell parameters at ambient condition were: a=8.729(1) Å, c=2.7695(5) Å, V 0=182.77(6) Å3 (Z=1; formula weight=420.78 g/mol), yielding the zero-pressure density ρ0=3.823(1) g/cm3 . A least-square fitting of the pressure-volume-temperature data based on Anderson’s pressure scale of gold (Anderson et al. in J Appl Phys 65:1534–543, 1989) to high-temperature Birch-Murnaghan equation of state yielded the isothermal bulk modulus K 0=176(2) GPa, its pressure derivative K 0 =4.9(3), temperature derivative (?K T /?T) P =?0.030(3) GPa K?1 and thermal expansivity α(T)=3.36(6)×10?5+7.2(1.9)×10?9 T, while those values of K 0=181.7(4) GPa, (?K T /?T) P =?0.020(2) GPa K?1 and α(T)=3.28(7)×10?5+3.0(9)×10?9 T were obtained when K 0 was assumed to be 4.0. The estimated bulk density of subducting MORB becomes denser with increasing depth as compared with earlier estimates (Ono et al. in Phys Chem Miner 29:527–531 2002; Vanpeteghem et al. in Phys Earth Planet Inter 138:223–230 2003; Guignot and Andrault in Phys Earth Planet Inter 143–44:107–128 2004), although the difference is insignificant (<0.6%) when the proportions of the hexagonal phase in the MORB compositions (~20%) are taken into account.  相似文献   

17.
Reversed phase equilibrium experiments in the system (Ca, Mg, Fe)2SiO4 provide four tielines at P?1 bar and 1 kbar and 800° C–1,100° C. These tielines have been used to model the solution properties of the olivine quadrilateral following the methods described by Davidson et al. (1981) for quadrilateral clinopyroxenes. The discrepancy between the calculated phase relations and the experimentally determined tielines is within the uncertainty of the experiments. The solution properties of quadrilateral olivines can be described by a non-convergent site-disorder model that allows for complete partitioning of Ca on the M2 site, highly disordered Fe-Mg cation distributions and limited miscibility between high-Ca and low-Ca olivines. The ternary data presented in this paper together with binary solution models for the joins Fo-Mo and Fa-Kst have been used to evaluate two solution parameters: $$\begin{gathered} F^0 \equiv 2(\mu _{{\rm M}o}^0 - \mu _{{\rm K}st}^0 ) + \mu _{Fa}^0 - \mu _{Fo}^0 = 12.660 (1.6) kJ, \hfill \\ \Delta G_*^0 \equiv \mu _{{\rm M}gFe}^0 + \mu _{FeMg}^0 - \mu _{Fo}^0 - \mu _{Fa}^0 = 7.030 (3.9) kJ. \hfill \\ \end{gathered} $$ . Ternary phase quilibrium data for olivines tightly constrain the value of F0, but not that for ΔG * 0 which describes nonideality in Fe-Mg mixing. From this analysis, we infer a function for the apparent standard state energy of Kst: $$\begin{gathered} \mu _{{\rm K}st}^0 = - 102.79 \pm 0.8 - (T - 298)(0.137026) \hfill \\ + (T - 298 - T1n(T/298))(0.155519) \hfill \\ + (T - 298)^2 (2.8242E - 05)/2 \hfill \\ + (T - 298)^2 (2.9665E + 03)/(2T(298)^2 ) kJ \hfill \\ \end{gathered} $$ where T is in Kelvins and the 298 K value is relative to oxides.  相似文献   

18.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

19.
Oxygen diffusion in albite has been determined by the integrating (bulk 18O) method between 750° and 450° C, for a P H2O of 2 kb. The original material has a low dislocation density (<106 cm?2), and its lattice diffusion coefficient (D 1), given below, agrees well with previous determinations. A sample was deformed at high temperature and pressure to produce a uniform dislocation density of 5 × 109 cm?2. The diffusion coefficient (D a) for this deformed material, given below, is about 0.5 and 0.7 orders of magnitude larger than D 1 at 700° and 450° C, respectively. This enhancement is believed due to faster diffusion along the cores of dislocations. Assuming a dislocation core radius of 4 Å, the calculated pipe diffusion coefficient (D p), given below, is about 5 orders of magnitude larger than D 1. These results suggest that volume diffusion at metamorphic conditions may be only slightly enhanced by the presence of dislocations. $$\begin{gathered} D_1 = 9.8 \pm 6.9 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 33.4 \pm 0.6(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_a = 7.6 \pm 4.0 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 30.9 \pm 1.1(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_p \approx 1.2 \times 10^{ - 1} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 29.8(kcal/mole)/RT]. \hfill \\ \end{gathered} $$   相似文献   

20.
The ferric-ferrous ratio of natural silicate liquids equilibrated in air   总被引:1,自引:1,他引:1  
Results of chemical analyses of glasses produced in 46 melting experiments in air at 1,350° C and 1,450° C on rocks ranging in composition from nephelinite to rhyolite have been combined with other published data to obtain an empirical equation relating in \((X_{{\text{Fe}}_{\text{2}} {\text{O}}_{\text{3}} }^{{\text{liq}}} /X_{{\text{FeO}}}^{{\text{liq}}} )\) to T, \(\ln f_{{\text{O}}_{\text{2}} } \) and bulk composition. The whole set of experimental data range over 1,200–1,450° C and oxygen fugacities of 10?9.00 to 10?0.69 bars, respectively. The standard errors of temperature and \(\log _{10} f_{{\text{O}}_{\text{2}} } \) predictions from this equation are 52° C and 0.5 units, respectively, for 186 experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号