首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A new pulsating X-ray source, AX J183220-0840, with a 1549.1 s period was discovered at R.A.=18h32m20s and decl.=-8&j0;40'30" (J2000, with an uncertainty of 0&farcm;6) during an ASCA observation on the Galactic plane. The source was observed two times, in 1997 and in 1999. A phase-averaged X-ray flux of 1.1x10-11 ergs cm-2 s-1 and a pulsation period of 1549.1+/-0.4 s were consistently obtained from these two observations. The X-ray spectrum was represented by a flat, absorbed power law with a photon index of Gamma approximately 0.8 and an absorption column density of NH approximately 1.3x1022 cm-2. Also, a signature of iron K-shell line emission with a centroid of 6.7 keV and an equivalent width of approximately 450 eV was detected. From the pulsation period and the iron-line feature, AX J183220-0840 is likely to be a magnetic white dwarf binary with a complexly absorbed thermal spectrum with a temperature of about 10 keV.  相似文献   

2.
The TW Hydrae system is perhaps the closest analog to the early solar nebula. We have used the Very Large Array to image TW Hya at wavelengths of 7 mm and 3.6 cm with resolutions of 0&farcs;1 ( approximately 5 AU) and 1&farcs;0 ( approximately 50 AU), respectively. The 7 mm emission is extended and appears dominated by a dusty disk of radius greater than 50 AU surrounding the star. The 3.6 cm emission is unresolved and likely arises from an ionized wind or gyrosynchrotron activity. The dust spectrum and spatially resolved 7 mm images of the TW Hya disk are fitted by a simple model with temperature and surface density described by radial power laws, T&parl0;r&parr0;~r-0.5 and Sigma&parl0;r&parr0;~r-1. These properties are consistent with an irradiated gaseous accretion disk of mass approximately 0.03 M middle dot in circle with an accretion rate approximately 10-8 M middle dot in circle yr-1 and viscosity parameter alpha=0.01. The estimates of mass and mass accretion rates are uncertain since the gas-to-dust ratio in the TW Hya disk may have evolved from the standard interstellar value.  相似文献   

3.
We investigate the question of disk formation during the protostar phase. We build on the results of Keene and Masson (1990) whose analysis of L1551 showed the millimeter continuum emission comes from both an unresolved circumstellar component, i.e., a disk and an extended cloud core. We model the dust continuum emission from the cloud core and show how it is important at 1.3 mm but negligible at 2.7 mm. Combining new 2.7 mm Owens Valley Interferometer data of IRAS-Dense cores with data from the literature we conclude that massive disks are also seen toward a number of other sources. However, 1.3 mm data from the IRAM 30 m telescope for a larger sample shows that massive disks are relatively rare, occurring around perhaps 5% of young embedded stars. This implies that either massive disks occur briefly during the embedded phase or that relatively few young stars form massive disks. At 1.3 mm the median flux of IRAS-Dense cores is nearly the same as T Tauri stars in the sample of Beckwithet al. (1990). We conclude that the typical disk mass during the embedded phase is nearly the same or less than the typical disk mass during the T Tauri phase.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

4.
Summary We report 1.2, 1.6, 2.2 and 3.6 μm slit scan observations of the young low-luminosity stars Elias 22 (also known as GSS 31) in the Rho Ophiuchus dark cloud and Glass I in the Chamaeleon dark cloud. We discovered an infrared companion to Elias 22 at a projected separation of 2.0 arcsec (320 AU) and an optical/infrared companion to Glass I at a projected separation of 2.9 arcsec (410 AU). The companion of Elias 22 is a very cool optically almost invisible object (∼1000 K) less luminous than the primary, while the companion to Glass I is an optically visible late-type star with an infrared excess so large that it is actually bolometrically brighter than the primary. In both cases the infrared excess is likely to be due to hot circumstellar dust grains heated by a central young star (much more obscured in the case of Elias 22 than in the case of Glass I). We outline a new method to determine the mass ratio of such systems assuming that both components lie on an isochrone in the H-R diagram. If the companions are in a bound orbit, the estimated specific angular momentum exceeds or is of the order of 1021 cm2 s−1, only one order of magnitude larger than that of the Sun-Jupiter system. Based on observations collected at the European Southern Observatory at La Silla, Chile.  相似文献   

5.
We have carried out a search for co‐moving stellar and substellar companions around 18 exoplanet host stars with the infrared camera MAGIC at the 2.2 m Calar Alto telescope, by comparing our images with images from the all sky surveys 2MASS, POSS I and II. Four stars of the sample namely HD80606, 55 Cnc, HD46375 and BD–10°3166, are listed as binaries in the Washington Visual Double Star Catalogue (WDS). The binary nature of HD80606, 55 Cnc, and HD46375 is confirmed with both astrometry as well as photometry, thereby the proper motion of the companion of HD46375 was determined here for the first time.We derived the companion masses as well as the longterm stability regions for additional companions in these three binary systems. We can rule out further stellar companions around all stars in the sample with projected separations between 270AU and 2500AU, being sensitive to substellar companions with masses down to ∼60 MJup (S /N = 3). Furthermore we present evidence that the two components of the WDS binary BD–10°3166 are unrelated stars, i.e this system is a visual pair. The spectrophotometric distance of the primary (a K0 dwarf) is ∼67 pc, whereas the presumable secondary BD–10°3166B (a M4 to M5 dwarf) is located at a distance of 13 pc in the foreground. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We report on our follow‐up spectroscopy of HD 1071478 B, a recently detected faint co‐moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35″ (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co‐moving companion, we obtained follow‐up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56 ± 0.05 M, a luminosity of (2.0 ± 0.2) × 10–4 L, log g [cm s–2]) = 7.95 ± 0.09, and a cooling age of 2100 ± 270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We have performed millimeter- and submilli- meter-wave survey observations using the Nobeyama millimeter array (NMA) and the Atacama Submillimeter Telescope Experiment (ASTE) in one of the nearest intermediate-mass (IM) star-forming regions: Orion Molecular Cloud-2/3 (OMC-2/3). Using the high-resolution capabilities offered by the NMA (∼several arcsec), we observed dust continuum and H13CO+(1–0) emission in 12 pre- and proto-stellar candidates identified previously in single-dish millimeter observations. We unveiled the evolutionary changes with variations of the morphology and velocity structure of the dense envelopes traced by the H13CO+(1–0) emission. Furthermore, using the high-sensitivity capabilities offered by the ASTE, we searched for large-scale molecular outflows associated with these pre- and proto-stellar candidates observed with the NMA. As a result of the CO(3–2) observations, we detected six molecular outflows associated with the dense gas envelopes traced by H13CO+(1–0) and 3.3 mm continuum emission. The estimated CO outflow momentum increases with the evolutionary sequence from early to late type of the protostellar cores. We also found that the 24 μm flux increases as the dense gas evolutionary sequence. We propose that the enhancement of the 24 μm flux is caused by the growth of the cavity (i.e. the CO outflow destroys the envelope) as the evolutionary sequence. Our results show that the dissipation of the dense gas envelope plays an essential role in the evolution of the IM protostars. The extremely high-sensitivity and high-angular resolution offered by ALMA will reveal unprecedented details of the inner ∼50 AU of these protostars, which will provide us a break through in the classic scenario of IM star/disk formation.  相似文献   

8.
The observation of [OI] 6300 » emission in the coma of Halley's comet 1982i, using the imaging Fabry-Pérot spectrometer, was carried out from Gurushikhar (2439N, 7243E, 1700m altitude), Mt. Abu, India on March 15, 1986 (R = 0.90 AU, = 0.96 AU). The analysis of the interferogram show the absence of the differential velocity of neutral oxygen above 5 km s–1.  相似文献   

9.
We have measured polarization of the 1.1 mm and 0.8 mm continuum emission for 3 pre-T Tauri stars and 2 T Tauri stars. Positive detections were made for NGC 1333 IRAS 4 and IRAS 16293-2422, while L1551 IRS 5 and HL Tau were only marginally detected. For GG Tau we measured a 2 upper limit of 3%. The polarization is interpreted in terms of thermal emission by magnetically aligned dust grains in circumstellar disks or envelopes. We have found a definite geometrical relation between the polarization and other circumstellar structure.  相似文献   

10.
The paper contains an analysis of the structure of envelopes ejected during the outbursts of Novae. The data used for this purpose: (a) Direct photographs of envelopes and the photographs taken with the use of different colour filters; (b) Spectra of envelopes. The envelope of DQ Her is studied most carefully. The analysis of all available data for the envelopes around DQ Her and V 603 Aql permits us to outline a morphological model of these envelopes, see Figure 3. It appears, that the structure of both these envelopes is approximately identical and that the difference in the observed properties of the photographic images of the nebulae (Figure 2 and Figure 4) is connected with a difference in the orientation of the polar axes of the envelopes relative to the line of sight. The envelope ejected during the outburst of T Aur (Figure 5) reveals the same properties, which are characteristic for the envelopes of DQ Her and V 603 Aql.From this we conclude that the distribution of gases inside the envelopes of the majority of Novae is approximately of the same character. This speaks in favour of the presence of certain forces around many Novae, which guide the motion of ejected plasma along some quite definite directions inside rather small solid angles. It seems that the only conceivable forces of this type may be the forces of a magnetic nature. This hypothesis for example permits us to explain the difference between the envelope of GK Per (Figure 1) and the envelopes of DQ Her, V 603 Aql, T Aur (Figures 2, 4 and 5).Comparing the velocity of expansion of the envelope of DQ Her and the rate of change of its angular size we computed that the distance to DQ Her is equal to 320 pc.On the base of photographs of the envelope of DQ Her it is found that in 1968 the fluxF H of radiation in the H-line was equal to (6±2)×10–12 ergs/cm2sec, whereas the mass of the envelope was equal to 1029 G and its electronic concentrationn e to 2×103 cm–3. Several hypotheses, which may explain the stratification of emission from different elements inside the envelope are discussed.  相似文献   

11.
Most known trans-neptunian objects (TNO's) are either on low eccentricity orbits or could have been perturbed to their current trajectories via gravitational interactions with known bodies. However, one or two recently-discovered TNO's are distant detached objects (DDO's) (perihelion, q>40 AU and semimajor axis, a>50 AU) whose origins are not as easily understood. We investigate the parameter space of a hypothetical distant planetary-mass solar companion which could detach the perihelion of a Neptune-dominated TNO into a DDO orbit. Perturbations of the giant planets are also included. The problem is analyzed using two models. In the first model, we start with a distribution of undetached, low-inclination TNO's having a wide range of semimajor axes. The planetary perturbations and the companion perturbation are treated in the adiabatic, secularly averaged tidal approximation. This provides a starting point for a more detailed analysis by providing insights as to the companion parameter space likely to create DDO's. The second model includes the companion and the planets and numerically integrates perturbations on a sampling that is based on the real population of scattered disk objects (SDO's). A single calculation is performed including the mutual interactions and migration of the planets. By comparing these models, we distinguish the distant detached population that can be attributable to the secular interaction from those that require additional planetary perturbations. We find that a DDO can be produced by a hypothetical Neptune-mass companion having semiminor axis, bc?2000 AU or a Jupiter-mass companion with bc?5000 AU. DDO's produced by such a companion are likely to have small inclinations to the ecliptic only if the companion's orbit is significantly inclined. We also discuss the possibility that the tilt of the planets' invariable plane relative to the solar equatorial plane has been produced by such a hypothetical distant planetary-mass companion. Perturbations of a companion on Oort cloud comets are also considered.  相似文献   

12.
We search for stellar and substellar companions of young nearby stars to investigate stellar multiplicity and formation of stellar and substellar companions. We detect common proper‐motion companions of stars via multi‐epoch imaging. Their companionship is finally confirmed with photometry and spectroscopy. Here we report the discovery of a new co‐moving (13 σ) stellar companion ∼17.8 arcsec (350AU in projected separation) north of the nearby star HD141272 (21 pc).With EMMI/NTT optical spectroscopy we determined the spectral type of the companion to be M3±0.5V. The derived spectral type as well as the near infrared photometry of the companion are both fully consistent with a M dwarf located at the distance of HD141272 (21 pc). Furthermore the photometry data rules out the pre‐main sequence status, since the system is consistent with the ZAMS of the Pleiades. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Energetic particle (1–100 MeV) pitch angle scattering in the Interplanetary Magnetic Field (IMF) is studied using spacecraft magnetometer data at 1 AU (IMP 7 and HEOS 2) and at 5 AU (Pioneer 10). Particle trajectories are followed by a computer simulation of their movement in a realistic model of the IMF. Determination of the pitch angle diffusion coefficient at 1 AU (D ) leads to a parallel mean free path which is roughly independent of particle energy, 0.03 AU. At the lowest energy our result is at least a factor of 3 larger than the predictions of quasi linear theory. Results at 5 AU lead to a radial mean free path which is between 2 to 6 times smaller than at 1 AU, probably indicating a greater importance for perpendicular diffusion at large heliodistances. In fact a roughly constant radial mean free path ( r 0.01 AU) is obtained when the contribution of perpendicular diffusion at 5 AU is taken into account (Moussaset al., 1981).  相似文献   

14.
We present near-infrared spectral measurements of Themis family Asteroid (379) Huenna (D ∼ 98 km) and its 6 km satellite using SpeX on the NASA IRTF. The companion was farther than 1.5″ from the primary at the time of observations and was approximately 5 magnitudes dimmer. We describe a method for separating and extracting the signal of a companion asteroid when the signal is not entirely resolved from the primary. The spectrum of (379) Huenna has a broad, shallow feature near 1 μm and a low slope, characteristic of C-type asteroids. The secondary’s spectrum is consistent with the taxonomic classification of C-complex or X-complex. The quality of the data was not sufficient to identify any subtle feature in the secondary’s spectrum.  相似文献   

15.
New speckle holographic images of the T Tauri infrared companion (T Tauri IRC; T Tauri S) reveal it to be a double system with a sky-projected separation of 0&farcs;05, corresponding to a linear distance of 7 AU. The presence of this third star may account for the relative paucity of dust surrounding the IRC.  相似文献   

16.
We present high angular resolution spectra taken along the jets from L1551 IRS 5 and DG Tau obtained with the Subaru Telescope. The position-velocity diagrams of the [Fe II] λ 1.644 μmemission line revealed remarkably similar characteristics for the two sources, showing two distinct velocity components separated from each other in both velocity and space with the entire emission range blueshifted with respect to the stellar velocity. The high velocity component (HVC) has a velocity of –200 ––300 km s-1 with a narrow line width, while the low velocity component (LVC) is around –100 km s-1 exhibitinig a broad line width. The HVC is located farther away from the origin and is more extended than the LVC. Our results suggest that the HVC is a well-collimated jet originating from the region close to the star, while the LVC is a widely-opened wind accelerated in the region near the inner edge of the accretion disk.  相似文献   

17.
We analyze the superfine structure of the supermaser H2O emission region in Orion KL over the period 1979–1999. The angular resolution reached 0.1 mas, which corresponds to 0.045 AU at a distance to Orion KL of 450 pc. We determined the velocity of the local standard of rest, VLSR = 7.65 km s?1. The formation of a protostar is accompanied by a structure that consists of an accretion disk, a bipolar outflow, and a surrounding envelope. The disk is at the stage of separation into protoplanetary rings. The disk plane is warped like the brim of a hat. The disk is 27 AU in diameter and ~0.3 AU in thickness. The rings contain ice granules. Radiation and stellar wind sublimate and blow away the water molecules to form halos around the rings, maser rings. The radiation from the rings is concentrated in the azimuthal plane, and its directivity reaches 10?3. The relative velocities of the rings located in the central part of the disk 15 AU in diameter correspond to rigid-body rotation, Vrot = ΩR. The rotation period is T ≈ 170 yr. The injector is surrounded by a toroidal structure 1.2 AU in diameter. The diameter of the injected flow does not exceed 0.05 AU. A highly collimated bipolar outflow with a diameter of ~0.1 AU is observed at a distance as large as 3 AU. Precession of the injector axis with a period of ~10 yr forms a spiral flow structure. The flow velocity is ~10 km s?1. The kinetic energy of the accreting matter and the disk is assumed to be transferred to the bipolar outflow, causing the rotation velocity distribution of the rings to deviate from the Keplerian velocity. The surrounding envelope amplifies the emission from the structure at a velocity of 7.65 km s?1 in a band of ~0.5 km s?1 by more than two orders of magnitude, which determines the supermaser emission.  相似文献   

18.
We report on observations of the dust trail of Comet 67P/Churyumov-Gerasimenko (CG) in visible light with the Wide Field Imager at the ESO/MPG 2.2 m telescope at 4.7 AU before aphelion, and at with the MIPS instrument on board the Spitzer Space Telescope at 5.7 AU both before and after aphelion. The comet did not appear to be active during our observations. Our images probe large dust grains emitted from the comet that have a radiation pressure parameter β<0.01. We compare our observations with simulated images generated with a dynamical model of the cometary dust environment and constrain the emission speeds, size distribution, production rate and geometric albedo of the dust. We achieve the best fit to our data with a differential size distribution exponent of −4.1, and emission speeds for a β=0.01 particle of 25 m/s at perihelion and 2 m/s at 3 AU. The dust production rate in our model is on the order of 1000 kg/s at perihelion and 1 kg/s at 3 AU, and we require a dust geometric albedo between 0.022 and 0.044. The production rates of large (>) particles required to reproduce the brightness of the trail are sufficient to also account for the coma brightness observed while the comet was inside 3 AU, and we infer that the cross-section in the coma of CG may be dominated by grains of the order of .  相似文献   

19.
We present subarcsecond thermal infrared imaging of HD 98800, a young quadruple system composed of a pair of low-mass spectroscopic binaries separated by 0&farcs;8 (38 AU), each with a K-dwarf primary. Images at wavelengths ranging from 5 to 24.5 μm show unequivocally that the optically fainter binary, HD 98800B, is the sole source of a comparatively large infrared excess on which a silicate emission feature is superposed. The excess is detected only at wavelengths of 7.9 μm and longer, peaks at 25 μm, and has a best-fit blackbody temperature of 150 K, indicating that most of the dust lies at distances greater than the orbital separation of the spectroscopic binary. We estimate the radial extent of the dust with a disk model that approximates radiation from the spectroscopic binary as a single source of equivalent luminosity. Given the data, the most likely values of disk properties in the ranges considered are Rin=5.0+/-2.5 AU, DeltaR=13+/-8 AU, lambda0=2+4-1.5 μm, gamma=0+/-2.5, and sigmatotal=16+/-3 AU2, where Rin is the inner radius, DeltaR is the radial extent of the disk, lambda0 is the effective grain size, gamma is the radial power-law exponent of the optical depth tau, and sigmatotal is the total cross section of the grains. The range of implied disk masses is 0.001-0.1 times that of the Moon. These results show that, for a wide range of possible disk properties, a circumbinary disk is far more likely than a narrow ring.  相似文献   

20.
We present 1-20 micrometers photometry of P/Giacobini-Zinner obtained at the NASA Infrared Telescope Facility, during 1985 June-September (r = 1.57-1.03 AU). A broad, weak 10 micrometers silicate emission feature was detected on August 26.6; a similar weak emission feature could have been hidden in the broadband photometry on other dates. The total scattering and emitting cross section of dust in the inner coma was similar to that in other short-period comets, but a factor of 10 (r = 1.56 AU) to 100 (r = 1.03 AU) lower than the amount of dust in Comet Halley. The thermal emission continuum can be fit with models weighted toward either small or large absorbing grains. The dust production rate near perihelion was approximately 10(5) g/s (small-grain model) to approximately 10(6) g/s (large-grain model). The corresponding dust/gas mass ratio on August 26 was approximately 0.1-1. A silicate-rich heterogeneous grain model with an excess of large particles is compatible with the observed spectrum of Giacobini-Zinner on August 26. Thus, weak or absent silicate emission does not necessarily imply an absence of silicates in the dust, although the abundance of silicate particles < or = 1 micrometer radius must have been lower than in Comet Halley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号