首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
X-rays should be generated throughout the heliosphere as a consequence of charge transfer collisions between heavy (Z>2) solar wind ions and interstellar neutrals. The high charge state solar wind ions resulting from these collisions are left in highly excited states and emit extreme ultraviolet or soft X-ray photons. This solar wind charge exchange mechanism applied to cometary neutrals has been used to explain the soft X-ray emission observed from comets. A simple model demonstrates that heliospheric X-ray emission can account for about 25%-50% of the observed soft X-ray background intensities. The spatial and temporal variations of heliospheric X-ray emission should reflect variations in the solar wind flux and composition as well as variations in the distribution of interstellar neutrals within the heliosphere. The heliospheric X-ray "background" can perhaps be identified with the "long-term enhancements" in the soft X-ray background measured by ROSAT.  相似文献   

2.
Lisse  C. M.  Dennerl  K.  Englhauser  J.  Trümper  J.  Marshall  F. E.  Petre  R.  Valinia  A.  Kellett  B. J.  Bingham  R. 《Earth, Moon, and Planets》1997,77(3):283-291
The discovery of X-ray emission from comets has created a number of questions about the physical mechanism producing the radiation. There are now a variety of explanations for the emission, from thermal bremsstrahlung of electrons off neutrals or dust, to charge exchange induced emission from solar wind ions, to scattering of solar X-rays from attogram dust, to reconnection of solar magnetic field lines. In an effort to understand this new phenomenon, we observed but failed to detect in the X-ray the very dusty and active comet C/Hale-Bopp 1995 O1 over a two year period, September 1996 to December 1997, using the ROSAT HRI imaging photometer at 0.1–2.0 keV and the ASCA SIS imaging spectrometer at 0.5–10.0 keV. The results of our Hale-Bopp non-detections, when combined with spectroscopic imaging 0.08–1.0 keV observations of the comet by EUVE and BeppoSAX, show that the emission has the same spectral shape and strong variability seen in other comets. Comparison of the ROSAT photometry of the comet to our ROSAT database of 8 comets strongly suggests that the overall X-ray faintness of the comet was due to an emission mechanism coupled to gas, and not dust, in the comet’s coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
About 15 years ago, charge exchange (CX) X‐ray emission was discovered in comet observations, and was identified as the radiative decay of excited states of highly‐charge solar wind ions populated in collisions with neutral cometary material. This non‐thermal X‐ray emission mechanism is now generally acknowledged in planetary environments (e.g. Mars, Earth), as well as interstellar atoms sweeping through the heliosphere. In this paper I present the most recent improvements made in simulations of the heliospheric CX X‐ray emission. The model results are compared to X‐ray data from Suzaku, XMM‐Newton and Chandra spanning over a 10‐year period, and some conclusions are drawn on the heliospheric contribution to the diffuse soft X‐ray background. The solar system CX X‐ray sources can serve as prototypes in terms of modeling and diagnostics to more distant astrophysical objects where CX emission signatures are being discovered (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
An axisymmetric gasdynamical model of an interaction between the solar wind and comet atmospheres is formulated. Photoionization of the cometary neutral particles as well as their resonance charge-exchange are taken into account to determine the flow in the distured region containing three discontinuity surfaces (two shocks and the contact discontinuity).It is shown that these two processes are significant for many comets. The problem so formulated is solved numerically. A dependence of the obtained solutions on comets gas production, charge-exchange cross-section, photoionization time scale and other parameters is studied. The numerical solutions are in good agreement with the experimental data obtained during the spacecraft missions to the comet Halley in March 1986.  相似文献   

5.
《Planetary and Space Science》2007,55(9):1031-1043
A new three-dimensional magnetohydrodynamic model of the coma of a comet has been developed and applied to simulations of a Halley-class coma using the solar-wind conditions of the Giotto flyby of Halley in 1986. The code developed for high-performance parallel processing computers, combines the high spatial resolution of smaller than 1 km grid spacing near the nucleus, with a large computational domain that enables structures nearly 10 million km down the comet tail to be modeled. Ions, neutrals, and electrons are considered as separate interacting fluids. Significant physical processes treated by the model include both photo and electron impact ionization of neutrals, recombination of ions, charge exchange between solar-wind ions and cometary neutrals, and frictional interactions between the three fluids considered in the model. A variety of plasma structures and physical parameters that are the output of this model are compared with relevant Giotto data from the 1986 Halley flyby.  相似文献   

6.
《Planetary and Space Science》1999,47(6-7):773-779
The recent passage of the Hale–Bopp (C/1995 O1) comet has provided the first opportunity to analyse the infrared spectral properties of a bright comet both from the ground and by the ISO space observatory. Previous works have already been dedicated to study the potential candidates to reproduce the cometary feature at 10 μm observed for different comets. We have applied a similar approach to compare the Hale–Bopp (C/1995 O1) spectra with laboratory data. The best fit has been obtained by using a mixture of crystalline Mg-rich olivine (forsterite), amorphous olivine and amorphous carbon grains. Some constraints on the possible cometary grain types derive from our simulation. Aggregates of submicron particles, composed of amorphous and crystalline olivine and amorphous carbon materials seem to be compatible with the cometary emission. Moreover, the possibility of fitting observational data on a wide IR spectra range, offered by ISO, provides interesting hints about the size distribution of grains responsible for the detected features.  相似文献   

7.
Comet McNaught-Hartley was observed in five 1-h exposures on January 8-14 2001 using the advanced CCD imaging spectrometer on board the Chandra X-ray Observatory. The X-ray image of the comet does not show a crescent-like shape. The brightest region is offset from the nucleus between the sunward and comet velocity directions. The comet mean X-ray luminosity is equal to 7.8×1015 erg s−1 for photon energy E>150 eV and aperture ρ=1.5×105 km where the comet X-ray brightness exceeds 20% of the peak value. Gas production rate was 1029 s−1 during the observations, and the efficiency of X-ray excitation was equal to 4×10−14 erg AU3/2. Day-to-day variations in X-rays reached a factor of 5. The strongest short-term variation was by a factor of 1.75 for 1600 s. This variation may be explained by a decline in the solar-wind flux by the same factor in ≈800 s. The comet and Earth were seeing different faces of the Sun, and time delay in the solar-wind events on the Earth and the comet was long, equal to 6 days. The best correlation between the comet X-ray luminosity and the solar-wind proton density is for the time delay of 5.5 days and may be explained by the higher velocity of heavy ions.Careful background subtraction made it possible to extract the comet spectrum from 150 to 1000 eV. No signal was detected at E>1000 eV, and a 3σ upper limit to any emission with E>1000 eV is 0.3% of the photon emission at 150-1000 eV. The best χ2-fit model to the spectrum consists of nine narrow emission features. The emission energies and intensities are in good agreement with a charge exchange spectrum calculated by us for the slow solar wind. Using this spectrum, we identify the observed emissions as (Ne7++Mg7++Mg8+) at 195 eV, (Mg8++Mg9++Si8+) at 250 eV, C5+ at 370 and 460 eV, O6+ at 560 eV, O7+ at 650, 780, and 840 eV, and Ne8+ at 940 eV. X-ray spectroscopy of comets may be used to diagnose the solar-wind composition and its interaction with comets.  相似文献   

8.
Comets must form a major part of the interstellar medium. The solar system provides a flux of comets into the interstellar space and there is no reason to suspect that many other stars and their surrounding cometary systems would not make a similar contribution. Occasionally interstellar comets must pass through the inner solar system, but Whipple (1975) considers it unlikely that such a comet is among the known cases of apparently hyperbolic comets. Even so the upper limit for the density of unobserved interstellar comets is relatively high.In addition, we must consider the possibility that comets are a genuine component of interstellar medium, and that the Oort Cloud is merely a captured part of it (McCrea, 1975). Here we review various dynamical possibilities of two-way exchange of comet populations between the Solar System and the interstellar medium. We describe ways in which a traditional Oort Cloud (Oort, 1950) could be captured from the interstellar medium. However, we note that the so called Kuiper belt (Kuiper, 1951) of comets cannot arise through this process. Therefore we have to ask how necessary the concept of the yet unobserved Kuiper belt is for the theory of short period comets.There has been considerable debate about the question whether short period comets can be understood as a captured population of the Oort Cloud of comets or whether an additional source has to be postulated. The problem is made difficult by the long integration times of comet orbits through the age of the Solar System. It would be better to have an accurate treatment of comet-planet encounters in a statistical sense, in the form of cross sections, and to carry out Monte Carlo studies. Here we describe the plan of action and initial results of the work to derive cross sections by carrying out large numbers of comet — planet encounters and by deriving approximate analytic expressions for them. Initially comets follow parabolic orbits of arbitrary inclination and perihelion distance; cross sections are derived for obtaining orbits of given energy and inclination after the encounter. The results are used in subsequent work to make evolutionary models of the comet population.  相似文献   

9.
In this paper we analyze the dynamical behavior of large dust grains in the vicinity of a cometary nucleus. To this end we consider the gravitational field of the irregularly shaped body, as well as its electric and magnetic fields. Without considering the effect of gas friction and solar radiation, we find that there exist grains which are static relative to the cometary nucleus; the positions of these grains are the stable equilibria. There also exist grains in the stable periodic orbits close to the cometary nucleus. The grains in the stable equilibria or the stable periodic orbits won’t escape or impact on the surface of the cometary nucleus. The results are applicable for large charge dusts with small area-mass ratio which are near the cometary nucleus and far from the Solar. It is found that the resonant periodic orbit can be stable, and there exist stable non-resonant periodic orbits, stable resonant periodic orbits and unstable resonant periodic orbits in the potential field of cometary nuclei. The comet gravity force, solar gravity force, electric force, magnetic force, solar radiation pressure, as well as the gas drag force are all considered to analyze the order of magnitude of these forces acting on the grains with different parameters. Let the distance of the dust grain relative to the mass centre of the cometary nucleus, the charge and the mass of the dust grain vary, respectively, fix other parameters, we calculated the strengths of different forces. The motion of the dust grain depends on the area-mass ratio, the charge, and the distance relative to the comet’s mass center. For a large dust grain (> 1 mm) close to the cometary nucleus which has a small value of area-mass ratio, the comet gravity is the largest force acting on the dust grain. For a small dust grain (< 1 mm) close to the cometary nucleus with large value of area-mass ratio, both the solar radiation pressure and the comet gravity are two major forces. If the a small dust grain which is close to the cometary nucleus have the large value of charge, the magnetic force, the solar radiation pressure, and the electric force are all major forces. When the large dust grain is far away from the cometary nucleus, the solar gravity and solar radiation pressure are both major forces.  相似文献   

10.
The observation of ions created by ionization of cometary gas, either by ground-based observations or byin situmeasurements can give us useful information about the gas production and composition of comets. However, due to the interaction of ions with the magnetized solar wind and their high chemical reactivity, it is not possible to relate measured ion densities (or column densities) directly to the parent gas densities. In order to quantitatively analyze measured ion abundances in cometary comae it is necessary to understand their dynamics and chemistry. We have developed a detailed ion–chemical network of cometary atmospheres. We include production of ions by photo- and electron impact-ionization of a background neutral atmosphere, charge exchange of solar wind ions with cometary atoms/molecules, reactions between ions and molecules, and dissociative recombination of molecular ions with thermal electrons. By combining the ion–chemical network with the three-dimensional plasma flow as computed by a new fully three-dimensional MHD model of cometary plasma environments (Gombosiet al.1996) we are able to compute the density of the major cometary ions everywhere in the coma. The input parameters for our model are the solar wind conditions (density, speed, temperature, magnetic field) and the composition and production rate of the gas. We applied our model to Comet P/Halley in early March 1986, for which the input parameters are reasonably well known. We compare the resulting column density of H2O+with ground-based observations of H2O+from DiSantiet al.(1990). The results of our model are in good agreement with both the spatial distribution and the absolute abundance of H2O+and with their variations with the changing overall water production rate between two days. The results are encouraging that it will be possible to obtain production rates of neutral cometary constituents from observations of their ion products.  相似文献   

11.
The energization of positive ions in front of a cometary bow shock is investigated. Ions produced by ionization of the cometary neutrals interact with the solar wind protons to produce, among other waves, large amplitude oscillations of the ambient magnetic field. Such oscillations are convected towards the comet at the unperturbed solar wind speed far from the shock and at a lower speed closer to the shock (due to the solar wind mass loading) ; hence, they can energize the suprathermal ions by Fermi acceleration. The spatial extension of the acceleration region is of the order of 106 km and the resulting ion energy spectrum is harder than in the Earth's bow shock case. The energization of cometary ions produces an additional deceleration of the solar wind, such that the cometary bow shock of Halley-type comet may be regarded as a “cosmic ray shock”.  相似文献   

12.
The paper presents an analysis of the actual brightness change of comet 73P/Schwassmann-Wachmann, which took place in 1995. The consequence of a cometary outburst is the destruction of a fragment of its surface. This causes the emission of comet material from both the surface and from exposed subsurface layers. Therefore, the calculations take into account the scattering cross-sections that come from ice and dust particles. It was assumed that the dust particles are silicates which are characterized by high irregularity of their structure. This assumption is a consequence of the analysis of the results provided by the Rosetta mission to the comet 67P/Churyumov-Gerasimenko. The main factor determining the amplitude of a cometary outburst is the mass ejected as well as the loss of ice that holds the individual nucleus structures together. Consequently, this phenomenon can significantly contribute to the destruction and even decay of the cometary nucleus.  相似文献   

13.
Ground based observations of comets obtained in support of spacecraft missions and space telescopes have provided critical supporting context that greatly enhances the value of the combined dataset. Major areas of ground-based contribution include providing unique instrumental capabilities and an increased temporal or global perspective on the system under study. This paper describes a decades long program of supporting cometary observations focused on high resolving power measurements of ions and atomic/molecular radicals in the coma. The instrumentation is described, along with the species under study and the results from a large campaign to study comet C/1995O1 (Hale-Bopp).  相似文献   

14.
Despois  D. 《Earth, Moon, and Planets》1997,79(1-3):103-124
We present here a review of the radio observations of the remarkable comet Hale-Bopp C/1995 O1 in which most major radio astronomical facilities have been involved. These observations started in August 1995, soon after the discovery of the comet (it was then at ∼7 AU from the sun), and well before its perihelion on April 1st, 1997; they are still going on, hopefully up to end of 1998. Extended cartographies have been obtained using multibeam receivers and on-the-fly techniques. High spatial resolution (a few ″) has been achieved with interferometers. Submillimetric observations are playing an increasing role, and high resolution (R ∼ 106−107) spectroscopy of cometary lines is now performed from decimetric to submillimetric wavelengths. The number of species observed at radio wavelengths now reaches ∼28,when it was ∼14 for comet C/1996 B2 Hyakutake. Most of these species are parent molecules. However, ions have been observed for the first time at radio wavelengths, and their velocities measured. Several isotopic species (involving D,13C,34S,15N) have been sought, allowing isotopic enrichment determinations. The abundances of cometary molecules present many similarities and some differences with the abundances of interstellar molecules in regions where grain mantles are believed to be evaporated to the gas phase (hot cores, bipolar flows). They will be discussed for their implications on the origin of cometary ices and of comets themselves. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Since the initial discovery of cometary charge exchange emission, more than 20 comets have been observed with a variety of X‐ray and UV observatories. This observational sample offers a broad variety of comets, solar wind environments and observational conditions. It clearly demonstrates that solar wind charge exchange emission provides a wealth of diagnostics, which are visible as spatial, temporal, and spectral emission features. We review the possibilities and limitations of each of those in this contribution (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Electrographic imagery of Comet Kohoutek in the 1100–1500 Å wavelength range was obtained from a sounding rocket on January 8, 1974, and from the Skylab space station on 13 occasions between November 26, 1973 and February 2, 1974. These images are predominantly due to Lyman-α (1216 Å) emission from the hydrogen coma of the comet.The rocket pictures have been calibrated for absolute sensitivity and a hydrogen production rate has been determined. However, the Skylab camera suffered degradation of its sensitivity during the mission, and its absolute sensiti vity fbservation ofn only be estimated by comparison of the comet images with those taken by the rocket camera, with imagery of the geocoronal Lyman-α glow, of the moon in reflected Lyman-α, and of ultraviolet-bright stars. The rocket and geocoronal comparisons are used to derive a preliminary, qualitative history of the development of the cometary hydrogen coma and the associated hydrogen production rate.  相似文献   

17.
We report on the analysis of a deep (100-ks) observation of the starburst galaxy M82 with the EPIC and RGS instruments onboard the X-ray telescope XMM–Newton . The broad-band (0.5–10 keV) emission is due to at least three spectral components: (i) continuum emission from point sources; (ii) thermal plasma emission from hot gas; and (iii) charge-exchange emission from neutral metals (Mg and Si). The plasma emission has a double-peaked differential emission measure, with the peaks at ∼0.5 and ∼7 keV. Spatially resolved spectroscopy has shown that the chemical absolute abundances are not uniformly distributed in the outflow, but are larger in the outskirts and smaller close to the galaxy centre. The abundance ratios also show spatial variations. The X-ray-derived oxygen abundance is lower than that measured in the atmospheres of red supergiant stars, leading to the hypothesis that a significant fraction of oxygen ions have already cooled off and no longer emit at energies ≳0.5 keV.  相似文献   

18.
X-ray fluxes observed from comet C/1996 B2 (Hyakutake) are readily explained in terms of scattering by carbonaceous particles with radii of several tens of Angstroms. A few tenths of a megatonne of such particles appear to have been present in the cometary coma on March 26–28 1996.  相似文献   

19.
A brief discussion of the infrared observations from 4 to 20 micrometers of seven comets is presented. The observed infrared emission from comets depends primarily on their heliocentric distance. A model based on grain populations composed of a mixture of silicate and amorphous carbon particles in the mass ratio of about 40 to 1, with a power-law size distribution similar to that inferred for comet Halley, is applied to the observations. The model provides a good match to the observed heliocentric variation of both the 10 micrometers feature and the overall thermal emission from comets West and Halley. Matches to the observations of comet IRAS-Araki-Alcock and the antitail of comet Kohoutek require slightly larger grains. While the model does not match the exact profile and position of the 3.4 micrometers feature discovered in comet Halley, it does produce a qualitative fit to the observed variation of the feature's strength as a function of heliocentric distance. The calculations predict that the continuum under the 3.4 micrometers feature is due primarily to thermal emission from the comet dust when the comet is close to the Sun and to scattered solar radiation at large heliocentric distances, as is observed. A brief discussion of the determination of cometary grain temperatures from the observed infrared emission is presented. It is found that the observed shape of the emission curve from about 4 to 8 micrometers provides the best spectral region for estimating the cometary grain temperature distribution.  相似文献   

20.
Since many years cometary ions have been observed by the authors and their coworkers in order to study the comet-solar wind interaction. Comets with water production rates ranging from 1028(46P/Wirtanen) to 6 1030molecules s−1(C/1995 O1 Hale-Bopp) have been observed. In this paper we briefly introduce the physics of the comet-solar wind interaction. New observations of comet C/1996 Q1 (Tabur) are presented, where for the first time H2O+and CO+ions have been recorded exactly simultaneously with a two-channel system. They are compared with previous observations of comets C/1989 X1 (Austin), 46P (Wirtanen) and 109P (Swift-Tuttle). We use a new method of Wegmann et al. (1998), based on the MHD scaling law, to determine the water production of comet Tabur from its H2O+column density map and obtain a value of 3.3 1028water molecules s−1. Nonstationary phenomena like tail rays and so-called tail disconnections are very briefly reviewed. A movie of plasma envelopes observed in the light of OH+in comet 1995 O1 (Hale-Bopp) is presented on the attached CD-ROM. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号