首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Study on the suitability of New Zealand coals for hydrogen production   总被引:4,自引:0,他引:4  
Internationally there is considerable interest in utilizing hydrogen as an energy carrier. The use of hydrogen offers considerable potential benefits such as reducing greenhouse emissions, reducing urban pollution, increased energy security and increased efficiencies from the use of advanced energy conversion technologies.One of the most important questions when considering the development of a hydrogen economy is “where will the hydrogen come from?” Possible answers include electrolysis of water, steam reforming of methane and the gasification of coal. Given the high costs associated with electrolysis of water, and the increase in the cost of methane predicted over time, the gasification of coal is viewed by many as being the cheapest method of hydrogen production in the foreseeable future. These considerations are particularly relevant to New Zealand where gas supplies are dwindling but where there is sufficient coal to last for many centuries at present utilization rates. This, along with the current high international interest in hydrogen energy, has been recognized by the New Zealand Government in the form of a six-year [2002–2008] research project “Hydrogen Energy for the Future of New Zealand”.One important coal property that, in particular, determines the suitability of a particular coal for use in a fluidised bed gasifier is its reactivity towards the gasification reaction. It was found that a high percentage of New Zealand's coal resource is particularly well-suited towards fluidised bed gasification, reacting at anywhere between 0.9 to 1.75 times the rate of Australian brown coals. It was found the New Zealand lignites contained significant levels of organically bound calcium, which was shown to be responsible for not only the high reactivity of the New Zealand lignites, but also a product gas composition with higher than expected hydrogen concentrations. These findings are discussed along with their implications for the gasifier and gas clean-up design.  相似文献   

2.
Sasol has been operating the Sasol–Lurgi fixed bed coal gasification process for more than fifty years, and with ninety seven units in operation still remains the world's largest commercial application of this technology. The combined operational and engineering expertise vested in Sasol represents a formidable capability in the field of coal and gasification science. Coal is a crucial feedstock for South Africa's unique synfuels and petrochemicals industry, and is used by Sasol as a feedstock to produce synthesis gas (CO and H2) via the Sasol–Lurgi fixed bed dry bottom gasification process.South Africa, as well as many other countries in the world, will for many years to come rely on its abundant coal resources for energy and specifically for the production of petrochemical products. Synthesis gas production through gasification is growing at a rate of approximately 10% per annum [Office of Fossil Energy, National Energy Technology Laboratory and the Gasification Technologies Council, 2000. Gasification: Worldwide use and acceptance. Contract DE-AMO1-98FE65271], indicating that gasification is definitely not a dying technology. The Sasol plants located in Secunda and Sasolburg (South Africa) gasify > 30 million tons per annum of bituminous coal to synthesis gas, which is converted to fuels and chemicals via the Fischer–Tropsch process. The production of chemicals is currently the dominant application for synthesis gas, followed by power generation, Fischer–Tropsch synthesis and gaseous fuels.Sasol–Lurgi gasifiers are extremely robust devices, and coal from sources with widely varying properties (e.g. ash content < 10% to as high as 35% or “brown coal” with moisture content of approximately 30%) can be gasified provided that certain operational changes are implemented. Other properties, like high caking propensity for example, require blending to acceptable levels and /or mechanical modifications. Interpretation of coal characterization data gives an indication of expected gasifier performance and the suitability of a specific coal source for Sasol–Lurgi Fixed Bed Gasification process. It is therefore critically important to gain an accurate and fundamental understanding of the properties and expected behavior of the targeted coal feedstock in order to (1) prepare a suitable conceptual flow scheme and (2) to maximize the eventual probability of success in any proposed gasification venture and (3) to optimize the operation and profitability of existing plants and (4) effectively address the environmental aspects.It is the view of the authors that fixed bed gasification technology has a bright future in the areas mentioned above and that Sasol has a unique role in the future application and commercialization of gasification technology globally. The unique skills of Sasol could however be complementary to those of other parties who share our view on the future of gasification and related technologies.  相似文献   

3.
《China Geology》2022,5(4):722-733
Global energy structure is experiencing the third transition from fossil energy to non-fossil energy, to solve future energy problems, cope with climate change, and achieve net-zero emissions targets by 2050. Hydrogen is considered to be the most potential clean energy in this century under the background of carbon neutrality. At present, the industrial methods for producing hydrogen are mainly by steam-hydrocarbon (such as coal and natural gas) reforming and by electrolysis of water, while the exploration and development of natural hydrogen had just started. According to this literature review: (1) Natural hydrogen can be divided into three categories, including free hydrogen, hydrogen in inclusions and dissolved hydrogen; (2) natural hydrogen could be mainly from abiotic origins such as by deep-seated hydrogen generation, water-rock reaction or water radiolysis; (3) natural hydrogen is widely distributed and presents great potential, and the potential natural hydrogen sources excluding deep source of hydrogen is about (254±91)×109 m3/a according to a latest estimate; (4) at present, natural hydrogen has been mined in Mali, and the exploration and development of natural hydrogen has also been carried out in Australia, Brazil, the United States and some European countries, to find many favorable areas and test some technical methods for natural hydrogen exploration. Natural hydrogen is expected to be an important part of hydrogen energy production in the future energy pattern. Based on a thorough literature review, this study introduced the origin, classification, and global discovery of natural hydrogen, as well as summarized the current global status and discussed the possibility of natural hydrogen exploration and development, aiming to provide reference for the future natural hydrogen exploration and development.©2022 China Geology Editorial Office.  相似文献   

4.
《Organic Geochemistry》1999,30(8):881-889
The 13C/12C isotopic ratios for coal-derived polycyclic aromatic hydrocarbons (PAHs) from a number of processes encompassing low and high temperature carbonisation, gasification and combustion have been determined using gas chromatography–isotope ratio mass spectrometry (δ13C GC–IRMS). The results, in conjunction with those for PAHs released under controlled laboratory pyrolysis conditions, indicate that the primary control on the isotopic values of coal-derived PAHs is likely to be the extent of ring growth required to form PAHs during processing. Thus, for relatively mild conversion processes such as low temperature carbonisation where the major aromatics are alkyl substituted 2–3 ring PAHs, the isotopic signatures are similar to those of the parent coals (−24 to −25‰ for UK bituminous coals). However, the δ13C values for the PAHs become lighter in going to high temperature carbonisation (−25 to −27‰), gasification (−27 to −29‰ for old Town gas plants in the UK) and combustion (−29 to −31‰) as the extent of ring condensation increases and confirming that the PAHs are not released as primary volatiles. To demonstrate the potential of applying these differences to source apportion environmental PAHs where major inputs from coals can be expected, soil and vegetation samples taken close to a low temperature carbonisation plant (Bolsover, North Derbyshire) have been analysed. In addition to low temperature coal tar, significant inputs of PAHs from transport fuels, high temperature carbonisation and possibly combustion (coal/biomass) have been inferred from the isotopic ratios, taken in conjunction with the differences in alkyl substitution patterns.  相似文献   

5.
The molecular compositions and stable carbon and hydrogen isotopic compositions of natural gas from the Xinchang gas field in the Sichuan Basin were investigated to determine the genetic types. The natural gas is mainly composed of methane (88.99%–98.01%), and the dryness coefficient varies between 0.908 and 0.997. The gas generally displays positive alkane carbon and hydrogen isotopic series. The geochemical characteristics and gas-source correlation indicate that the gases stored in the 5~(th) member of the Upper Triassic Xujiahe Formation are coal-type gases which are derived from source rocks in the stratum itself. The gases reservoired in the 4~(th) member of the Xujiahe Formation and Jurassic strata in the Xinchang gas field are also coal-type gases that are derived from source rocks in the 3~(rd) and 4~(th) members of the Xujiahe Formation. The gases reservoired in the 2~(nd) member of the Upper Triassic Xujiahe Formation are mainly coal-type gases with small amounts of oil-type gas that is derived from source rocks in the stratum itself. This is accompanied by a small amount of contribution brought by source rocks in the Upper Triassic Ma'antang and Xiaotangzi formations. The gases reservoired in the 4~(th) member of the Middle Triassic Leikoupo Formation are oil-type gases and are believed to be derived from the secondary cracking of oil which is most likely to be generated from the Upper Permian source rocks.  相似文献   

6.
氢能是未来能源的“终极形态”,目前工业上主要的制氢方式为化石燃料制氢。CO2捕集、利用和封存(CCUS)技术是实现氢气从“灰氢”向“蓝氢”转变的重要手段,对国家“双碳目标”的实现至关重要。文章以Web of Science核心合集数据库为数据源,利用CiteSpace软件对制氢与CCUS技术耦合领域的文献来源、研究力量、研究热点和研究前沿进行分析。结果表明,中国的发文量居于世界首位,与其他国家有着广泛的合作基础,国内外研究所和高校为主要研究力量;吸附强化甲烷蒸汽重整(SESMR)制氢技术、化学链燃烧(CLC)制氢技术以及催化剂、吸附剂、载氧体为主要的研究热点;金属载氧体处在研究前沿,研发具有催化和吸附作用的复合催化剂与应用CLC技术和煤气化结合的电、氢联产工艺到火电行业是未来研究发展的两大方向;考虑到“双碳目标”的政策压力和碳税的额外支出,配套CCUS的制氢技术仍是一个优选的方案。  相似文献   

7.
Coal is present in the Alberta Foothills/Mountains in five zones: the Kootenay, Gething, Gates, Brazeau and Coalspur coal zones. For coalbed-methane (CBM) evaluation purposes, they can be divided into shallow (less than 1000 m depth) and deep (greater than 1000 m depth) coal zones. The potential gas content of all shallow coal zones totals about 878 × 109 m3 (31 Tcf) of CBM, which is considered an inferred, initial, in-place, coalbed-methane resource estimate based on limited data. The limited amount of data on formation testing and measured gas content indicate that the inferred resource is bordering on the speculative category.The gas content of all deep coal zones (deeper than 1000 m) totals 2.8 × 1012 m3 (about 99 Tcf) of in-place coalbed-methane gas. Consequently, the total ultimate coalbed-methane resource could be 3.7 × 1012 m3 (130 Tcf). However, coalbed-methane recovery from deep coals is generally not attempted because of the high cost of drilling and the low permeability that results from high overburden load and stress.The only (limited) Foothills coalbed-methane production has been from the southern Alberta Kootenay Coal Zone, which is very prospective for coalbed-methane production. The shallow Gates Coal Zone in the central and northern Foothills is also prospective, but needs to be better tested. The best potential for coalbed methane in the Coalspur Coal Zone is in the Edson area (Entrance Syncline and Triangle Zone). The Kootenay and Gates coal zones are not well defined in the northern part of the Calgary (NTS 82O) map sheet.  相似文献   

8.
Coal gasification with CO2 has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO2 mitigation policies through simultaneous CO2 sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals from the north-eastern region (NER) of India in a CO2 atmosphere using thermogravimetric analysis (TGA-DTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO2 gasification process of the coals. Multivariate non-linear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO2 mainly occurs in the temperature range of 800°–1400°C and a maximum of at around 1100°C. The reaction mechanisms responsible for CO2 gasification of the coals were observed to be of the ‘nth order with autocatalysis (CnB)’ and ‘nth order (Fn) mechanism’. The activation energy of the CO2 gasification was found to be in the range 129.07–146.81 kJ mol?1.  相似文献   

9.
《China Geology》2020,3(1):38-51
Coal measure gas (also known as coal-bearing unconventional gas) is the key field and development direction of unconventional natural gas in recent years. The exploration and evaluation of coal measure gas (coalbed methane, coal shale gas and coal measure tight sandstone gas) from single coalbed methane has greatly expanded the field and space of resource evaluation, which is of positive significance for realizing the comprehensive utilization of coal resources, maximizing the benefits and promoting the innovation of oil and gas geological theory and technological advances in exploration and development. For the first time, in Yangmeishu Syncline of Western Guizhou Province, the public welfare coalbed methane geological survey project of China Geological Survey has been carried out a systematic geological survey of coal measure gas for the Upper Permian Longtan Formation, identified the geological conditions of coal measure gas and found high quality resources. The total geological resource quantity of coalbed methane and coal shale gas is 51.423×109 m3 and the geological resource abundance is up to 566×109 m3/km2. In this area, the coal measures are characterized by many layers of minable coal seams, large total thickness, thin to the medium thickness of the single layer, good gas-bearing property of coal seams and coal measure mudstone and sandstone, good reservoir physical property and high-pressure coefficient. According to the principle of combination of high quality and similarity of key parameters of the coal reservoir, the most favorable intervals are No.5−2, No.7 and No.13−2 coal seam in Well YMC1. And the pilot tests are carried out on coal seams and roof silty mudstone, such as staged perforation, increasing hydraulic fracturing scale and “three gas” production. The high and stable industrial gas flow with a daily gas output of more than 4000 m3 has been obtained, which has realized the breakthrough in the geological survey of coal measure gas in Southwest China. Based on the above investigation results, the geological characteristics of coal measure gas in the multi-thin-coal-seam-developed area and the co-exploration and co-production methods, such as the optimization method of favorable intervals, the high-efficiency fracturing and reservoir reconstruction method of coal measures, and the “three gas” drainage and production system, are systematically summarized in this paper. It will provide a reference for efficient exploration and development of coal measure gas in similar geological conditions in China.  相似文献   

10.
Changes in high-volatile bituminous coal (Pennsylvanian) near contacts with two volcanic intrusions in Illinois were investigated with respect to optical properties, coal chemistry, and coal pore structure. Vitrinite reflectance (Ro) increases from 0.62% to 5.03% within a distance of 5.5 m from the larger dike, and from 0.63% to 3.71% within 3.3 m from the small dike. Elemental chemistry of the coal shows distinct reductions in hydrogen and nitrogen content close to the intrusions. No trend was observed for total sulfur content, but decreases in sulfate content towards the dikes indicate thermochemical sulfate reduction (TSR). Contact-metamorphism has a dramatic effect on coal porosity, and microporosity in particular. Around the large dike, the micropore volume, after a slight initial increase, progressively decreases from 0.0417 cm3/g in coal situated 4.7 m from the intrusive contact to 0.0126 cm3/g at the contact. Strongly decreasing mesopore and micropore volumes in the altered zone, together with frequent cleat and fracture filling by calcite, indicate deteriorating conditions for both coalbed gas sorption and gas transmissibility.  相似文献   

11.
为应对世界气候变化并丰富能源供给手段,实现碳中和目标,世界主要发达国家和地区均在2020年制定了本国的氢能战略,将发展氢能产业提升到国家能源战略的高度,旨在于2030—2050年间完成CO2减排目标。详细介绍了世界各国的氢能发展战略、发展氢能在解决能源安全和生态安全中起到的作用、氢能制取的技术路线以及发展氢能带来的经济效益和社会效益,并着重介绍了地质工作在国家氢能战略部署和实施中的作用,主要包括: ①要保证充足的制氢原材料供给,需要大力勘探开发天然气、页岩气等化石能源; ②为封存制氢过程中产生的CO2,地质工作者需要对储层和盖层开展详细的地质勘查; ③在发展大规模地质储氢中发挥作用,如地下盐穴储氢、废弃油藏储氢等。结合国情,我国应大力发展从煤气化制氢到CO2管道运输,再到CO2驱油及地质封存的一体化产业链,实现经济和社会的双收益。可为我国加速推进氢能战略部署提供借鉴。  相似文献   

12.
《Applied Geochemistry》2001,16(13):1481-1497
The maximum contents of Pb (360 mg l−1), Zn (360 mg l−1) and Ag (7.9 mg l−1) in formation waters from the Alberta basin were high enough to suggest that it would be of interest to test the concept of recovering these metals by passing natural gas through the water, thereby precipitating the metal sulphides as the result of contact with hydrogen sulphide. The idea was to see if these metals could be recovered from formation water co-produced with crude oil prior to disposal of the water in deep formations, with the possibility of the sale of the metals partially offsetting the cost of disposal. It was proposed to use natural gas with a relatively small amount of hydrogen sulphide (insufficient for sulphur recovery) that must be removed by flaring before the gas is utilized. Accordingly, a database of 694 formation waters with major, minor and trace components was searched for appropriate analyses for detailed study. Of the nine analyses selected the majority were from Devonian and Granite Wash aquifers in the Peace River Arch area of northern Alberta, Canada. Modelling with PATH.ARC showed that there is a consistent set and order of precipitation reactions, in spite of the differences among the formation waters. As would be expected intuitively, acid gas addition makes the formation water more acidic, and metallic sulphide minerals are precipitated. Depending on the initial composition, the end minerals are any of galena, sphalerite, acanthite, covellite and pyrite. These are the minerals that must be beneficiated to recover the metals. A preliminary evaluation of the dollar value of the recovered metals shows that although the absolute values are low, there may be an advantage to recovering the metals if the waters are already being handled at the surface.  相似文献   

13.
煤炭地下气化是一种煤炭原位开采技术。文中介绍了煤炭地下气化的工艺过程、技术特征、技术发展历程及其应用前景,特别强调煤炭地下气化应用过程的科学选址及地下水污染防控问题。煤炭地下气化的析气过程是基于煤岩混杂的渗滤通道反应,包含沿径向及沿轴向的煤气化反应过程。随气化通道扩展形成单个稳定气化周期。基于长距离定向钻井及连续油管的移动注气点后退气化工艺,奠定了煤炭地下气化商业化应用的技术基础。地下气化煤气可用于燃气蒸汽联合循环发电,并逐步用作化工原料气。通过科学选址并采取地下水污染防控措施,可以使煤炭地下气化成为新一代的绿色化学采煤技术,具有广阔的应用前景。  相似文献   

14.
Gas outburst disasters are becoming more serious as the underground coal mines become deeper in China, and a thick zone of deformed coal provides conditions favorable to coal and gas outbursts. The Daning coal mine’s main mining seam is the No. 3 coal seam with coal and gas outburst hazard, which often contains two normal coal sub-layers and one deformed sub-layer. Considering both the geological conditions of the coal seam and applications of the in-seam directional longhole drilling technology, a new schematic diagram of in-seam directional longholes for gas drainage is developed. The two borehole layout models of longwall panel and main entries for gas outburst disasters control have been successfully applied. The gas drainage rates of both models are >70 %, and the residual gas contents are both <8 m3/t, which can be considered that the gas outburst disasters were effectively controlled. To better guide gas drainage, gas drainage normal and failure modes have been obtained. Although in-seam directional longhole technology has been successfully applied for regional gas drainage with benefits to gas outburst control, there are also some problems that are detrimental to greenhouse gas reductions in gas drainage and gas utilization. The three main problems are air leakage failure in gas drainage, decreasing gas concentration and a low gas utilization ratio. To address the problems mentioned above, five improvements are suggested.  相似文献   

15.
The San Juan Basin natural gas field, located in northwestern New Mexico and southwestern Colorado in the USA, is a case-type coalbed methane system. Groundwater is thought to play a key role in both biogenic methane generation and the CO2 sequestration potential of coalbed systems. We show here how noble gases can be used to construct a physical model that describes the interaction between the groundwater system and the produced gas. We collected 28 gas samples from producing wells in the artesian overpressured high production region of the basin together with 8 gas samples from the underpressured low production zone as a control. Stable isotope and major species determination clearly characterize the gas in the high production region as dominantly biogenic in origin, and the underpressured low producing region as having a significant admix of thermogenic coal gas. 3He/4He ratios increase from 0.0836Ra at the basin margin to 0.318Ra towards the center, indicating a clear but small mantle He signature in all gases. Coherent fractionation of water-derived 20Ne/36Ar and crustal 4He/40Ar* are explained by a simple Rayleigh fractionation model of open system groundwater degassing. Low 20Ne concentrations compared to the model predicted values are accounted for by dilution of the groundwater-associated gas by desorbed coalbed methane. This Rayleigh fractionation and dilution model together with the gas production history allows us to quantify the amount of water involved in gas production at each well. The quantified water volumes in both underpressured and overpressured zones range from 1.7 × 103 m3 to 4.2 × 105 m3, with no clear distinction between over- and underpressured production zones. These results conclusively show that the volume of groundwater seen by coal does not play a role in determining the volume of methane produced by secondary biodegradation of these coalbeds. There is no requirement of continuous groundwater flow for renewing the microbes or nutrient components. We furthermore observe strong mass related isotopic fractionation of 20Ne/22Ne and 38Ar/36Ar isotopic ratios. This can be explained by a noble gas concentration gradient in the groundwater during gas production, which causes diffusive partial re-equilibration of the noble gas isotopes. It is important for the study of other systems in which extensive groundwater degassing may have occurred to recognize that severe isotopic fractionation of air-derived noble gases can occur when such concentration gradients are established during gas production. Excess air-derived Xe and Kr in our samples are shown to be related to the diluting coalbed methane and can only be accounted for if Xe and Kr are preferentially and volumetrically trapped within the coal matrix and released during biodegradation to form CH4.  相似文献   

16.
The natural gases in the Upper Paleozoic strata of the Ordos basin are characterized by relatively heavy C isotope of gaseous alkanes with δ 13C1 and δ13C2 values ranging mainly from ?35‰ to ?30‰ and ?27‰ to ?22‰, respectively, high δ13C excursions (round 10) between ethane and methane and predominant methane in hydrocarbon gases with most C1/(C1-C5) ratios in excess of 0.95, suggesting an origin of coal-derived gas. The gases exhibit different carbon isotopic profiles for C1-C4 alkanes with those of the natural gases found in the Lower Paleozoic of this basin, and believed to be originated from Carboniferous-Permian coal measures. The occurrence of regionally pervasive gas accumulation is distinct in the gently southward-dipping Shanbei slope of the central basin. It is noted that molecular and isotopic composition changes of the gases in various gas reservoirs are associated with the thermal maturities of gas source rocks. The abundances and δ13C values of methane generally decline northwards and from the basin center to its margins, and the effects of hydrocarbon migration on compositional modification seem insignificant. However, C isotopes of autogenetic calcites in the vertical and lateral section of reservoirs show a regular variation, and are as a whole depleted upwards and towards basin margins. Combination with gas maturity gradient, the analysis could be considered to be a useful tool for gas migration.  相似文献   

17.
The alternative development of coal-bearing hydrocarbon source rocks and low-porosity and low-permeability tight sandstone reservoirs of the Triassic Xujiahe Formation in the Sichuan Basin is favorable for near-source hydrocarbon accumulation. The natural gas composition of the Xujiahe Formation in the Sichuan Basin is dominated by hydrocarbon gases, of which the methane content is80.16%-98.67%. Typically, the C_2~+ content is larger than 5% in main wet gas. The dry gas is mainly distributed in the western and northern regions of the basin. The non-hydrocarbon gases mainly contain nitrogen, carbon dioxide, hydrogen, and helium, with a total content of 2%. The carbon isotope ranges of methane and its homologues in natural gas are: δ~(13)C_1 of-43.8‰ to-29.6‰, δ~(13)C_2 of-35.4‰ to-21.5‰, δ~(13)C_3 of-27.6‰ to-19.8‰,and δ~(13)C_4 of-27.7‰ to-18.8‰. δ~(13)C_3δ~(13)C_4 occurs in some natural gas with a low evolution degree; such gas is mainly coal-related gas from humic-type source rocks of the Xujiahe Formation. As for the natural gas, δ~2 H_(CH4) values ranged from-195‰ to-161‰,δ~2 H_(C2H6) values ranged from-154‰ to-120‰, and δ~2 H_(C3H8) values ranged from-151‰ to-108‰. The dry coefficient,δ~(13)C and δ~2 H_(CH4) are all positively correlated with the maturity of source rocks. The higher the maturity of source rocks is, the larger the natural gas dry coefficient is and the larger the δ~(13)C and δ~2 H_(CH_4) values are, indicative of the characteristic of near-source accumulation. The δ~2 H_(C2H6) value of natural gas is influenced by paleosalinity to a relatively large extent; the higher the paleosalinity is, the larger the δ~2 H_(C2H6) value is. The Pr/Ph value of the condensate oil ranged from 1.60 to 3.43, illustrating light oxidization-light reduction and partial-oxidization characteristics of the depositional environment of coal-bearing source rocks of the Xujiahe Formation. The natural gas light hydrocarbon(C_5-C_7) from the Xujiahe Formation presented two characteristics: the first was the relatively high aromatic hydrocarbon content(19%-32.1%), which reveals the characteristic of natural gas with humic substances of high-maturity; the second was the low content of aromatic hydrocarbon(0.4%-9.3%),reflecting water-washing during the accumulation of the natural gas. The reported research outcomes indicate a potential mechanism for natural gas accumulation in the Xujiahe Formation, which will further guide natural gas exploration in this region.  相似文献   

18.
Based on the pyrolysis products for the Jurassic low-mature coal under programmed temperature,and chemical and carbon isotopic compositions of natural gas from the Kuqa Depression, the genetic origin of natural gas was determined,and then a gas filling model was established,in combination with the geological background of the Kuqa Depression.The active energy of CH_4,C_2H_6 and C_3H_8 was gotten after the data of pyrolysis gas products under different heating rates(2℃/h and 20℃/h)were fitted by the Gas O...  相似文献   

19.
http://www.sciencedirect.com/science/article/pii/S167498711200031X   总被引:1,自引:0,他引:1  
Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation.Gas accumulations include coal-bed methane(CBM), tight gas and conventional gas in different structural areas.CBM accumulations are mainly distributed in the marginal area of the Ordos Basin,and are estimated at 3.5×1012 m3.Tight gas accumulations exist in the middle part of the Yishan Slope area,previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs.This paper reviews the characteristics of tight gas accumulations:poor physical properties(porosity < 8%,permeability < 0.85×10-3μm2),abnormal pressure and the absence of well-defined gas water contacts.CBM is a self-generation and selfreservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir.Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area.However,the producing area of the two systems may be significantly different.  相似文献   

20.
gd15N-values and nitrogen contents of a series of humic and bituminous organic sediments of different ranks were determined. The change of the isotopic abundance of nitrogen was investigated during heating in model experiments, using a gas flame coal.In the case of humic carbon coals the relative nitrogen contents vary from 0.8 to 1.4% and the δ15N-values from +3.5 to +6.3%. increasing from the brown coal to anthracite ranks. During the coalification process both the δ15N-values and the relative nitrogen contents do not vary continuously with the rank, but pass through maxima and minima. Model experiments using a gas flame coal show the same trend. Nitrogen with δ15N-values of +2.8 or ?7%. was released in pyrolysis experiments, applying a gas flame coal and a steam coal at temperatures of 650 and 1000°C, respectively.The investigated bitmuinous sediments yielded relative amounts of 0.1 to 0.8% with δ15N-values of + 4.2 to + 10.7%.The obtained results are discussed with respect to the elucidation of nitrogen genesis in natural gas deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号