首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The gamma-ray burst (GRB) mission Swift has made a much deeper GRBsurvey than any previous one. I present a systematical comparison between GRB samples detected with pre-Swift missions and those from Swift, in order to investigate whether they show any statistical difference. Our Swift GRB sample includes the bursts detected by Swift/BAT before 2007 September. With both flux-limited surveys and redshift-known GRB samples, I show that, apparently, the observed distributions of the redshifts, T90, and log N-log P are significantly different, but not for the spectral hardness ratio, fluence and Eiso. The redshifts of the Swift GRB sample are statistically larger than those of pre-Swift GRBs, with a mean of 1.95±0.17 compared to ~ 1 for pre-Swift GRBs. The cosmological effect on the observables is thus considerable. This effect on the spectral hardness ratio, fluence and Eiso is cancelled out, and the distributions of these quantities indeed do not show significant differences between the Swift and pre-Swift GRBs. Taking this effect into account, I found that the corrected distributions of T90 for long GRBs and log N - log P observed with Swift/BAT are also consistent with those observed with CGRO/BATSE. These results indicate that the Swift and pre-Swift GRBs are from the same population.  相似文献   

2.
The proposed correlations between the energetics of gamma-ray bursts (GRBs) and their spectral properties, namely the peak energy of their prompt emission, can broadly account for the observed fluence distribution of all 'bright' BATSE GRBs, under the hypothesis that the GRB rate is proportional to the star formation rate and that the observed distribution in peak energy is independent of redshift. The correlations can also be broadly consistent with the properties of the whole BATSE long GRB population for a peak energy distribution smoothly extending towards lower energies, and in agreement with the properties of a sample at 'intermediate' fluences and with the luminosity functions inferred from the GRB number counts. We discuss the constraints that this analysis imposes on the shape of such peak energy distribution, the opening angle distribution and the tightness of the proposed correlations.  相似文献   

3.
In the present paper, we investigate the distribution of the hardness ratio (HR) for short and long gamma-ray bursts (GRBs) in different time-scales for the first two seconds. After including and subtracting the background count, we performed a Kolmogorov–Smirnov (K–S) test on the HR distributions of the two classes of GRBs in each time interval. Our analysis shows that the probabilities of the K–S test to the distributions are very small, suggesting that the two classes of bursts are unlikely to arise from the same HR distributions. The result indicates that the two kinds of bursts probably originate from different mechanisms or have different central engines. In addition, we found that the HR of short bursts within the time interval 0–0.96 s changes from hard to soft; the HR of long bursts does not. The two kinds of bursts have different characteristics in the first two seconds, which might be associated with different physical mechanisms.  相似文献   

4.
The mechanism for gamma-ray bursters and the detection of gravitational waves (GWs) are two outstanding problems facing modern physics. Many models of gamma-ray bursters predict copious GW emission, so the assumption of an association between GWs and gamma-ray bursts (GRBs) may be testable with existing bar GW detector data. We consider Weber bar data streams in the vicinity of known GRB times and present calculations of the expected signal after co-addition of 1000 GW/GRBs that have been shifted to a common zero time. Our calculations are based on assumptions concerning the GW spectrum and the redshift distribution of GW/GRB sources that are consistent with current GW/GRB models. We discuss further possibilities of GW detection associated with GRBs in light of future bar detector improvements and suggest that co-addition of data from several improved bar detectors may result in detection of GWs (if the GW/GRB assumption is correct) on a time-scale comparable to the LIGO projects.  相似文献   

5.
We study statistical properties of long gamma-ray bursts (GRBs) produced by the collapsing cores of WR stars in binary systems. Fast rotation of the cores enables a two-stage collapse scenario, implying the formation of a spinar-like object. A burst produced by such a collapse consists of two pulses, whose energy budget is enough to explain observed GRBs. We calculate models of spinar evolution using results from a population synthesis of binary systems (done by the 'Scenario Machine') as initial parameters for the rotating massive cores. Among the resulting bursts, events with a weaker first peak, namely precursor, are identified, and the precursor-to-main-pulse time separations fully agree with the range of the observed values. The calculated fraction of long GRBs with precursor (about 10 per cent of the total number of long GRBs) and the durations of the main pulses are also consistent with observations. Precursors with lead times greater by up to one order of magnitude than those observed so far are expected to be about a factor of 2 less numerous. Independently of the GRB model assumed, we predict the existence of precursors that arrive up to  ≳103 s  in advance of the main events of GRBs.  相似文献   

6.
We study time-resolved spectra of the prompt emission of Swift γ-ray bursts (GRB). Our goal is to see if previous BATSE claims of the existence of a large amount of spectra with the low-energy photon indices harder than 2/3 are consistent with Swift data. We perform a systematic search of the episodes of the spectral hardening down to the photon indices  ≤2/3  in the prompt emission spectra of Swift GRBs. We show that the data of the Burst Alert Telescope (BAT) instrument on board of Swift are consistent with BATSE data, if one takes into account differences between the two instruments. Much lower statistics of the very hard spectra in Swift GRBs are explained by the smaller field of view and narrower energy band of the BAT telescope.  相似文献   

7.
X-ray emission and absorption features are of great importance in our understanding the nature and environment of gamma-ray bursts (GRBs). So far, iron emission lines have been detected in at least four GRB afterglows. In this paper, the observational properties and physical constraints on materials surrounding GRB sources are reviewed, and several classes of theoretical models are also discussed. We will specially concentrate on the Cerenkov line mechanism, in which the broad iron lines are expected, and a small mass of Fe is required to produce the large line luminosity. In addition, our interpretation can favor the recent jet unified model for different classes of gamma-ray bursts with a standard energy reservoir.  相似文献   

8.
Long gamma-ray bursts (GRBs) are important for the study of the Universe near and beyond the epoch of reionization. In this paper, we describe the characteristics of an 'ideal' instrument that can be used to search for GRBs at z ≥ 6–10. We find that the detection of these objects requires soft-band detectors with high sensitivity and a moderately large field of view. In light of these results, we compare available and planned GRB missions, deriving conservative predictions of the number of high-redshift GRBs detectable by these instruments along with the maximum accessible redshift. We show that the Swift satellite will be able to detect various GRBs at z ≥ 6, and likely at z ≥ 10 if the trigger threshold is decreased by a factor of ∼2. Furthermore, we find that INTEGRAL and GLAST are not the best tools to detect bursts at z ≥ 6, the former being limited by the small field of view, and the latter by its hard energy band and relatively low sensitivity. Finally, future missions ( SVOM , EDGE and, in particular, EXIST ) will provide a good sample of GRBs at z ≥ 6 within a few years of operation.  相似文献   

9.
We compute the luminosity function (LF) and the formation rate of long gamma-ray bursts (GRBs) by fitting the observed differential peak flux distribution obtained by the Burst and Transient Source Experiment (BATSE) in two different scenarios: (i) the GRB luminosity evolves with redshift and (ii) GRBs form preferentially in low-metallicity environments. In both cases, model predictions are consistent with the Swift number counts and with the number of detections at   z > 2.5  and >3.5. To discriminate between the two evolutionary scenarios, we compare the model results with the number of luminous bursts (i.e. with isotropic peak luminosity in excess of 1053 erg s−1) detected by Swift in its first 3 yr of mission. Our sample conservatively contains only bursts with good redshift determination and measured peak energy. We find that pure luminosity evolution models can account for the number of sure identifications. In the case of a pure density evolution scenario, models with   Z th > 0.3 Z  are ruled out with high confidence. For lower metallicity thresholds, the model results are still statistically consistent with available lower limits. However, many factors can increase the discrepancy between model results and data, indicating that some luminosity evolution in the GRB LF may be needed also for such low values of Z th. Finally, using these new constraints, we derive robust upper limits on the bright end of the GRB LF, showing that this cannot be steeper than ∼2.6.  相似文献   

10.
The search for high energy ray bursts (GRBs) from primordial black holes (PBHs) has continued for the past 20 years. We discuss a very interesting group of GRBs of very short time duration and an increasing hard spectrum from the published BATSE catalog. We point out that the trend, i.e. anti-correlation of hardness ratio vs. GRB duration, would be expected if some of the short GRBs came from black holes evaporation. We discuss the possibility that the onset of the quark-gluon plasma can give rise to such GRB from PBH evaporation.  相似文献   

11.
The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse widths, however, there is no correlation be- tween the relative spectral lags and the relative pulse widths. We suspect that the correlations between spectral lags and pulse widths might be caused by the Lorentz factor of the GRBs concerned. Our analysis on the relative quantities suggests that the intrinsic spectral lag might reflect other aspect of pulses than the aspect associated with the dynamical time of shocks or that associated with the time delay due to the curvature effect.  相似文献   

12.
In this paper, we have performed a temporal analysis of single pulses from short (46) and long (51) gamma-ray bursts (GRBs) to investigate possible differences in their properties. In particular we pay detailed attention to the asymmetry of pulses. We find that the asymmetry ratio of short GRB pulses clusters around 0.81 and that these pulses are on average more symmetric than those from long GRBs, which have an average value of 0.47. In addition we note that the pulses in short GRBs display exponential rises and fast decays (ERFD) in comparison the fast rise exponential decays (FRED) pulses of long GRBs. The asymmetry ratio does not depend on the full width at half maximum (FWHM) and does not vary with energy channel. Moreover, there is a general trend for slower pulses to be more asymmetric. Finally, we deduce that the asymmetry could be used to probe the emission mechanisms of GRBs.  相似文献   

13.
We present millimetre (mm) and submillimetre (submm) photometry of a sample of five host galaxies of gamma-ray bursts (GRBs), obtained using the Max Planck Millimetre Bolometer (MAMBO2) array and Submillimetre Common-User Bolometer Array (SCUBA). These observations were obtained as part of an ongoing project to investigate the status of GRBs as indicators of star formation. Our targets include two of the most unusual GRB host galaxies, selected as likely candidate submm galaxies: the extremely red  ( R − K ≈ 5)  host of GRB 030115, and the extremely faint  ( R > 29.5)  host of GRB 020124. Neither of these galaxies is detected, but the deep upper limits for GRB 030115 impose constraints on its spectral energy distribution, requiring a warmer dust temperature than is commonly adopted for submillimetre galaxies (SMGs).
As a framework for interpreting these data, and for predicting the results of forthcoming submm surveys of Swift -derived host samples, we model the expected flux and redshift distributions based on luminosity functions of both submm galaxies and GRBs, assuming a direct proportionality between the GRB rate density and the global star formation rate density. We derive the effects of possible sources of uncertainty in these assumptions, including (1) introducing an anticorrelation between GRB rate and the global average metallicity, and (2) varying the dust temperature.  相似文献   

14.
Based on nine BATSE GRBs with known redshifts, we found that the maximum spectral lag of all the pulses in a gamma-ray burst (GRB) appears to be anti-correlated with the redshift of the burst. In order to confirm this finding, we analyzed 10 GRBs detected by HETE-2 with known redshifts and found a similar relation. Using the relation, we estimated the redshifts of 878 long GRBs in the BATSE catalog, then we investigated the distributions of the redshifts and 869 Eiso of these GRBs. The distribution of the estimated redshifts is concentrated at z = 1.4 and the distribution of Eiso peaks at 1052.5 erg. The underlying physics of the correlation is unclear at present.  相似文献   

15.
We test the gamma-ray burst (GRB) correlation between temporal variability and peak luminosity of the γ-ray profile on a homogeneous sample of 36 Swift /Burst Alert Telescope (BAT) GRBs with firm redshift determination. This is the first time that this correlation can be tested on a homogeneous data sample. The correlation is confirmed, as long as the six GRBs with low luminosity (  <5 × 1050   erg s−1  in the rest-frame 100–1000 keV energy band) are ignored. We confirm that the considerable scatter of the correlation already known is not due to the combination of data from different instruments with different energy bands, but it is intrinsic to the correlation itself. Thanks to the unprecedented sensitivity of Swift /BAT, the variability/peak luminosity correlation is tested on low-luminosity GRBs. Our results show that these GRBs are definite outliers.  相似文献   

16.
Gamma-ray bursts (GRBs) are powerful probes of the early Universe, but locating and identifying very distant GRBs remain challenging. We report here the discovery of the K -band afterglow of Swift GRB 060923A, imaged within the first hour post-burst, and the faintest so far found. It was not detected in any bluer bands to deep limits, making it a candidate very high- z burst  ( z ≳ 11)  . However, our later-time optical imaging and spectroscopy reveal a faint galaxy coincident with the GRB position which, if it is the host, implies a more moderate redshift (most likely   z ≲ 2.8  ) and therefore that dust is the likely cause of the very red-afterglow colour. This being the case, it is one of the few instances so far found of a GRB afterglow with high-dust extinction.  相似文献   

17.
Gravitational lensing of a gamma-ray burst (GRB) by a single point mass will produce a second, delayed signal. Several authors have discussed using microlensed GRBs to probe a possible cosmological population of compact objects. We analyse a closely related phenomenon: the effect of microlensing by low to medium optical depth in compact objects on the averaged observed light curve of a sample of GRBs. We discuss the cumulative measured flux as a function of time resulting from delays caused by microlensing by cosmological compact objects. The time-scale and curvature of this function describe unique values for the compact object mass and optical depth. For GRBs with durations larger than the detector resolution, limits could be placed on the mass and optical depth of cosmological compact objects. The method does not rely on the separation of lensed bursts from those that are spatially coincident.  相似文献   

18.
It is believed that orphan afterglow searches can help to measure the beaming angle in gamma-ray bursts (GRBs). Great expectations have been put on this method. We point out that the method is in fact not as simple as we originally expected. As a result of the baryon-rich environment that is common to almost all popular progenitor models, there should be many failed gamma-ray bursts, i.e. fireballs with Lorentz factor much less than  100–1000  , but still much larger than unity. In fact, the number of failed gamma-ray bursts may even be much larger than that of successful bursts. Owing to the existence of these failed gamma-ray bursts, there should be many orphan afterglows even if GRBs are due to isotropic fireballs, then the simple discovery of orphan afterglows never means that GRBs are collimated. Unfortunately, to distinguish between a failed-GRB orphan and a jetted but off-axis GRB orphan is not an easy task. The major problem is that the trigger time is unknown. Some possible solutions to the problem are suggested.  相似文献   

19.
We present a homogeneous X-ray analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23; this represents the largest sample of X-ray GRB data published to date. In Sections 2–3 , we detail the methods which the Swift -XRT team has developed to produce the enhanced positions, light curves, hardness ratios and spectra presented in this paper. Software using these methods continues to create such products for all new GRBs observed by the Swift -XRT. We also detail web-based tools allowing users to create these products for any object observed by the XRT, not just GRBs. In Sections 4–6 , we present the results of our analysis of GRBs, including probability distribution functions of the temporal and spectral properties of the sample. We demonstrate evidence for a consistent underlying behaviour which can produce a range of light-curve morphologies, and attempt to interpret this behaviour in the framework of external forward shock emission. We find several difficulties, in particular that reconciliation of our data with the forward shock model requires energy injection to continue for days to weeks.  相似文献   

20.
林一清 《天文学报》2007,48(4):428-432
Swift卫星的X射线望远镜观测揭示部分伽玛暴的早期余辉光变曲线有一个缓慢衰减的成分,而相当一部分却没有这样的成分.研究比较这两种暴的观测性质发现两类暴的持续时间、伽玛辐射总流量、谱指数、谱硬度比峰值能量等物理量均没有显著差异.然而有该成分的那些伽玛暴谱比较软、早期X射线余辉比较弱、伽玛射线辐射效率显著高于没有这个成分的那些暴.结果表明两类暴的前身星和中心机制一致,是否呈现这个缓慢衰减成分可能取决于外部介质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号