首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
Enthalpies of solution in 2PbO· B2O3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO2-SiO2, Ca0.5AlO2-SiO2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO2-SiO2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si4O8-CaAl2Si2O8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive.Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by Taylor and Brown (1979a, b) and others for the structure of aluminosilicate glasses.  相似文献   

2.
Entropies and enthalpies of aluminosilicate garnets   总被引:1,自引:0,他引:1  
Activity-composition data have been used to obtain excess entropies and enthalpies of mixing for almandine-grossular and Mg-rich pyrope-grossular solid solutions. Excess free energies of Fe-rich almandine-grossular garnets are negative and imply the formation of a stable garnet compound with a different structure from the end members in this series.X-ray investigations of natural and synthetic calcium-poor aluminosilicate garnets indicate a lower space group symmetry than Ia3d, that of the end members. The most probable space group is I213 in which there are two crystallographically distinct 8-coordinate sites present in equal numbers in the garnet structure.Excess entropies of mixing for almandine-grossular garnets are asymmetric and can be explained by Fe-Ca ordering in calcium-poor garnets together with Fe positional disorder on sub-sites within the 8-coordinate polyhedra. In the middle of the series and towards the Ca-rich end, a high degree of sub-site disorder with little or no Fe-Ca ordering may be responsible for the high positive entropies. Excess entropies of calcium-poor pyrope-grossular garnets show a similar trend, but are slightly more positive. Excess enthalpies of mixing for Mg-rich pyropegrossular garnets are in good agreement with the high-temperature calorimetric measurements of other workers.  相似文献   

3.
Enthalpies of solution in 2PbO · B2O3 at 981 K have been measured for glasses in the system albite-orthoclase-silica and along the join Na1.6Al1.6Si2.4O8-K1.6Al1.6Si2.4O8. The join KAlSi3O8-Si4O8 shows zero heat of mixing similar to that found previously for NaAlSi3O8-Si4O8 glasses. Albite-orthoclase glasses show negative heats of mixing symmetric about Ab50Or50 (Wn = ? 2.4 ± 0.8 kcal). Negative heats of (Na, K) mixing are also found at Si(Si + Al) = 0.6. Ternary excess enthalpies of mixing in the glassy system Ab-Or-4Q are positive but rarely exceed 1 kcal mol?1.Using earlier studies of the thermodynamic properties of the crystals, the present calorimetric data and the “two-lattice” entropy model, the albite-orthoclase phase diagram is calculated in good agreement with experimental data. Attempts to calculate albite-silica and orthoclase-silica phase diagrams reveal complexities probably related to significant (but unknown) mutual solid solubility between cristobalite and alkali feldspar and to the very small heat and entropy of fusion of SiO2.  相似文献   

4.
The surface tension between silicate melts and air has been measured for melt compositions lying on the diopside-anorthite (Di-An) join from 1300° C to 1580° C. It ranges from 300 dyne/cm to 400 dyne/cm, and decreases with increasing temperature, except for a pure diopside composition. At relatively high temperatures, the surface tension decreases as the anorthite content increases, whereas at lower temperature it is almost constant. These results suggest that diopside melt has a more discrete structure at higher temperatures, whereas, anorthite-bearing melts do not dissociate in the temperature range studied. They also suggest that the structure of both the surface and interior parts of the melt are almost identical at lower temperatures, but at higher temperatures, the surface part has a more polymerized structure with Al2O3 enrichment. The surface energy, obtained from the relationship between surface tension and temperature, increases from 294 erg/cm2 (Di composition) to 1013 erg/cm2 (Di40An60) with increasing anorthite content.  相似文献   

5.
In the system CaO-MgO-Al2O3-SiO2, the tetrahedron CaMgSi2O6(di)-Mg2SiO4(fo)-SiO2-CaAl2 SiO6(CaTs) forms a simplified basalt tetrahedron, and within this tetrahedron, the plane di-fo-CaAl2Si2O8(an) separates simplified tholeiitic from alkalic basalts. Liquidus phase relations on this join have been studied at 1 atm and at 7, 10, 15, and 20 kbar. The temperature maximum on the 1 atm isobaric quaternary univariant line along which forsterite, diopside, anorthite, and liquid are in equilibrium lies to the SiO2-rich side of the join di-fo-an. The isobaric quaternary invariant point at which forsterite, diopside, anorthite, spinel, and liquid are in equilibrium passes, with increasing pressure, from the silica-poor to the silica-rich side of the join di-fo-an, which causes the piercing points on this join to change from forsterite+diopside+anorthite+liquid and forsterite +spinel+anorthite+liquid below 5 kbar to forsterite +diopside+spinel+liquid and diopside +spinel+anorthite+liquid above 5 kbar. As pressure increases, the forsterite and anorthite fields contract and the diopside and corundum fields expand. The anorthite primary phase field disappears entirely from the join di-fo-an between 15 and 20 kbar. Below about 4 kbar, the join di-fo-an represents, in simplified form, a thermal divide between alkalic and tholeiitic basalts. From about 4 to at least 12 kbar, alkalic basalts can produce tholeiitic basalts by fractional crystallization, and at pressures above about 12 kbar, it is possible for alkalic basalt to be produced from oceanite by crystallization of both olivine and orthopyroxene. If alkalic basalts are primary melts from a lherzolite mantle, they must be produced at high pressures, probably greater than about 12 kbar.Department of Geosciences, University of Texas at Dallas Contribution No. 327. Hawaii Institute of Geophysics Contribution No. 814.  相似文献   

6.
The effect of Cr on the silicate system has been studied in air at 1 atm by adding a small amount of MgCr2O4 (0.2–0.5 wt.%) to the join Mg2SiO4 (forsterite) — CaAl2Si2O8 (anorthite) — CaMgSi2O6 (diopside), which has been considered to form a thermal divide in the system CaO-MgO-Al2O3-SiO2. The spinel primary field is enlarged compared with that in the Cr-free join at the expense of the anorthite primary field. The piercing points forsterite+anorthite+diopside+liquid and forsterite+anorthite+spinel+liquid approach each other with increasing MgCr2O4, meet at the join with 0.25 wt.% MgCr2O4 (0.20 wt.% Cr2O3) to form the ‘isobaric quaternary invariant point’ forsterite+anorthite+diopside+spinel+liquid, and then separate again as new ‘piercing points’ of diopside+spinel+anorthite+liquid and forsterite+diopside+ spinel+liquid. This process indicates that the join Mg2SiO4-CaAl2Si2O8-CaMgSi2O6 containing more than 0.2 wt.% Cr2O3 cannot be a thermal divide in the basalt tetrahedron. The results of the present study show that the presence of a minor amount of Cr causes a significant effect on the phase relations and therefore, the role of Cr must be taken into account in the formulation of a petrologic model.  相似文献   

7.
The solubility and stability of synthetic grossular were determined at 800 °C and 10 kbar in NaCl-H2O solutions over a large range of salinity. The measurements were made by evaluating the weight losses of grossular, corundum, and wollastonite crystals equilibrated with fluid for up to one week in Pt capsules and a piston-cylinder apparatus. Grossular dissolves congruently over the entire salinity range and displays a large solubility increase of 0.0053 to 0.132 molal Ca3Al2Si3O12 with increasing NaCl mole fraction (XNaCl) from 0 to 0.4. There is thus a solubility enhancement 25 times the pure H2O value over the investigated range, indicating strong solute interaction with NaCl. The Ca3Al2Si3O12 mole fraction versus NaCl mole fraction curve has a broad plateau between XNaCl = 0.2 and 0.4, indicating that the solute products are hydrous; the enhancement effect of NaCl interaction is eventually overtaken by the destabilizing effect of lowering H2O activity. In this respect, the solubility behavior of grossular in NaCl solutions is similar to that of corundum and wollastonite. There is a substantial field of stability of grossular at 800 °C and 10 kbar in the system CaSiO3-Al2O3-H2O-NaCl. At high Al2O3/CaSiO3 bulk compositions the grossular + fluid field is limited by the appearance of corundum. Zoisite appears metastably with corundum in initially pure H2O, but disappears once grossular is nucleated. At XNaCl = 0.3, however, zoisite is stable with corundum and fluid; this is the only departure from the quaternary system encountered in this study. Corundum solubility is very high in solutions containing both NaCl and CaSiO3: Al2O3 molality increases from 0.0013 in initially pure H2O to near 0.15 at XNaCl = 0.4 in CaSiO3-saturated solutions, a >100-fold enhancement. In contrast, addition of Al2O3 to wollastonite-saturated NaCl solutions increases CaSiO3 molality by only 12%. This suggests that at high pH (quench pH is 11-12), the stability of solute Ca chloride and Na-Al ± Si complexes account for high Al2O3 solubility, and that Ca-Al ± Si complexes are minor. The high solubility and basic dissolution reaction of grossular suggest that Al may be a very mobile component in calcareous rocks in the deep crust and upper mantle when migrating saline solutions are present.  相似文献   

8.
The effect of silica concentration on the solubility of Al and Ti in diopsidic pyroxenes has been investigated at one atmosphere in the system diopside-CaTiAl2O6-SiO2 at temperatures between 1150–1420° C. The composition of pyroxene in the system diopside-CaTiAl2O6-SiO2 is influenced by the total SiO2 content. Near the join diopside-CaTiAl2O6, the pyroxene forms a solid solution with the CaTiAl2O6 molecule, and co-exists with perovskite for compositions greater than 11 weight percent CaTiAl2O6. Anorthite is an accompanying phase. With increasing total SiO2 content a series of mineralogical changes involving Ti-bearing phases occur. Sphene solid solution co-exists with diopside solid solution, anorthite, and perovskite in a small compositional range near the diopside-CaTiAl2O6 join. Additional total SiO2 results in the elimination of perovskite and a decrease of solid solution in the pyroxenes. With further increase in SiO2 content, tridymite appears and the pyroxene is approximately pure diopside. Rutile joins diopside, anorthite, sphene solid solution and tridymite over a broad compositional range in the Ti, Si-rich part of the system. These results demonstrate that increased silica concentration decreases the solubility of Al and Ti in diopsidic pyroxenes and controls the stability of co-existing Ti-bearing phases.  相似文献   

9.
The enthalpies of solution of petrologically important phases in the system MgO-Al2O3-SiO 2 were measured in a melt of composition 2PbO · B2O3 at 970 ± 2K. The substances investigated included synthetic and natural (meteoritic) enstatite (MgSiO3), synthetic aluminous enstatite (MgSiO30.9Al2O30.1), synthetic and natural cordierite (Mg2Al4Si5O18), synthetic and natural sapphirine (approx. 7MgO·9Al2O3 · 3SiO2), synthetic spinel (MgAl2O4), natural sillimanite (Al2SiO5), synthetic forsterite (Mg2SiO4), synthetic pyrope (Mg3Al2Si3O12), natural quartz (SiO2), synthetic periclase (MgO) and corundum (Al2O3). Improvement in standardization of the calorimeter solvent made possible greater precision in this study than obtainable in former work in this laboratory on some of the same substances.The enthalpies of formation of enstatite, synthetic cordierite, forsterite and spinel are in reasonable agreement with values previously determined by solution calorimetry. The enthalpy of formation of enstatite is about 0.7 kcal less negative than the value for clinoenstatite resulting from the HF calorimetry of Torgesen and Sahama (J. Amer. Chem. Soc.70. 2156–2160, 1948), and is in accord with predictions based on analysis of published pyroxene equilibrium work. Aluminous enstatite with 10 wt.% Al2O3 shows an enthalpy of solution markedly lower than pure MgSiO3: the measurements lead to an estimate of the enthalpy of formation at 970 K for MgAl2SiO6 (Mg-Tschermak) orthopyroxene of + 9.4 ± 1.5 kcal/mole from MgSiO3 and Al2O3.Comparison of the enthalpies of formation of synthetic cordierite and anhydrous natural low-iron cordierite shows that they are energetically quite similar and that the synthetic cordierite is not likely to have large amounts of (Al, Si) tetrahedral disorder. Comparison of the enthalpies of formation of synthetic sapphirine and natural low-iron sapphirine shows, on the other hand, that the former is not a good stability model for the latter. The lower enthalpy of formation of the high-temperature synthetic sample is undoubtedly a consequence of cation disordering.The enthalpy of formation of natural sillimanite is considerably less negative than given by the tables of Robie andWaldbaum (U.S. Geol. Surv. Bull.1259 1968).The measured enthalpy of formation of synthetic pyrope is consistent with that deduced from published equilibrium diagrams in conjunction with the present measured enthalpy of formation of aluminous enstatite. Calculation of the entropy of synthetic pyrope from the present data yields surprisingly high values and suggests that synthetic pyrope is not a good stability model for natural pyrope-rich garnets. Hence, considerable doubt exists about the direct quantitative application of experimental diagrams involving pyropic garnet to discussions of the garnet stability field in the Earth's outer regions.  相似文献   

10.
Enthalpies of solution of synthetic clinopyroxenes on the join CaMgSi2O6-Mg2Si2O6 have been measured in a melt of composition Pb2B2O5 at 970 K. Most of the measurements were made on samples crystallized at 1600°–1700°C and 30 kbar pressure, which covered the range 0–78 mole per cent Mg2Si2O6, and whose X-ray patterns could be satisfactorily indexed on the diopside (C2/c) structure. For the reaction: Mg2Si2O6→-Mg2Si2O6 enstatite diopside the present data, in conjunction with previous and new measurements on Mg2Si2O6 enstatite, determine ΔH° ~ 2 kcal and WH (regular solution parameter) ~ 7 kcal. These values are in good agreement with those deduced by Saxena and Nehru (1975) from a study of high temperature, high pressure phase equilibrium data under the assumption that the excess entropy of mixing is small, but, in light of the recent theoretical treatment of Navrotsky and Loucks (1977, Phys. Chem. Min.1, 109–127), the meanings of these parameters may be ambiguous.Heat of solution measurements on Ca-rich binary diopsides made by annealing glasses at 1358°C in air gave slighter higher values than the higher temperature high pressure samples. This may be evidence for some (Ca, Mg) disorder of the sort postulated by Navrotsky and Loucks (1977, Phys. Chem. Min.1, 109–127), although no differences in heat of solution dependent on synthesis temperature in the range 1350°–1700°C could be found in stoichiometric CaMgSi2O6.  相似文献   

11.
12.
13.
Raman spectra of silicate garnets   总被引:2,自引:1,他引:1  
The single-crystal polarized Raman spectra of four natural silicate garnets with compositions close to end-members almandine, grossular, andradite, and uvarovite, and two synthetic end-members spessartine and pyrope, were measured, along with the powder spectra of synthetic pyrope-grossular and almandine-spessartine solid solutions. Mode assignments were made based on a comparison of the different end-member garnet spectra and, in the case of pyrope, based on measurements made on additional crystals synthesized with 26Mg. A general order of mode frequencies, i.e. R(SiO4)>T(metal cation)>T(SiO4), is observed, which should also hold for most orthosilicates. The main factors controlling the changes in mode frequencies as a function of composition are intracrystalline pressure (i.e. oxygen-oxygen repulsion) for the internal SiO4-vibrational modes and kinematic coupling of vibrations for the external modes. Low frequency vibrations of the X-site cations reflect their weak bonding and dynamic disorder in the large dodecahedral site, especially in the case of pyrope. Two mode behavior is observed for X-site cation vibrations along the pyrope-grossular binary, but not along the almandine-spessartine join. Received: 3 December 1996 / Revised, accepted: 13 April 1997  相似文献   

14.
Eclogite facies metarodingites occur as deformed dykes in serpentinites of the Zermatt‐Saas ophiolite (Western Alps). They formed during the subduction of the Tethys oceanic lithosphere in the Early Tertiary. The metarodingites developed as a consequence of serpentinization of the oceanic mantle. Three major types of metarodingites (R1, R2 & R3) can be distinguished on the basis of their mineralogical composition. All metarodingites contain vesuvianite, chlorite and hydrogrossular in high modal amounts. In addition they contain: R1 – diopside, tremolite, clinozoisite, calcite; R2 – hydroandradite, diopside, epidote, calcite; and R3 – hydroandradite. Both garnets contain a small but persistent amount of hydrogarnet component. The different metarodingites reflect different original dyke rocks in the mantle. In each group of metarodingite, textural relations suggest that reactions adjusted the assemblages along the P–T path travelled by the ophiolite during subduction and exhumation. Reactions and phase relations derived from local textures in metarodingite can be modelled in the eight‐component system: SiO2‐Al2O3‐Fe2O3‐FeO‐MgO‐CaO‐CO2‐H2O. This permits the analysis of redox reactions in the presence of andradite garnet and epidote in many of the rocks. Within this system, the phase relations in eclogite facies metarodingites have been explored in terms of TXCO2, T–μ(SiO2), μ(Cal)–μ(SiO2) and P–T sections. It was found that rodingite assemblages are characterized by low μ(SiO2) and low XCO2 conditions. The low SiO2 potential is externally imposed onto the rodingites by the large volume of antigorite‐forsterite serpentinites enclosing them. Moreover, μ(SiO2) decreases consistently from metarodingite R1 to R3. The low μ(SiO2) enforced by the serpentinites favours the formation of hydrogarnet and vesuvianite. Rodingite formation is commonly associated with hydrothermal alteration of oceanic lithosphere at the ocean floor, in particular to ocean floor serpentinization. Our analysis, however, suggests that the metarodingite assemblages may have formed at high‐pressure conditions in the subduction zone as a result of serpentinization of oceanic mantle by subduction zone fluids.  相似文献   

15.
Phase equilibria in the join CaMgSi2O6-CaFeAlSiO6-CaTiAl2O6 have been determined in air at 1 atm by the ordinary quenching method. Clinopyroxeness, forsterite, perovskite, magnetitess, spinelss, hibonite and an unknown phase X are present at liquidus temperatures (ss: solid solution). At subsolidus temperatures the following phase assemblages were encountered; clinopyroxeness+perovskite, clinopyroxeness +perovskite+spinelss, clinopyroxeness +perovskite+melilite (+anorthite), clinopyroxeness +perovskite+melilite+spinelss+anorthite, clinopyroxeness +perovskite+anorthite+spinelss, and clinopyroxeness +perovskite+anorthite+hibonite. At subsolidus temperatures the single phase field of clinopyroxeness extends up to 19 wt.% CaTiAl2O6. Even in the field of clinopyroxeness+perovskite, the TiO2 content in clinopyroxeness continues to increase and attains 9.2 wt.% TiO2 with 24.8 wt.% Al2O3. An interesting fact is that unusual clinopyroxenes which contain more AlIV than SiIV are present in the CaFe-AlSiO6-rich region. The liquid coexisting with pyroxene is richer in Ti, Al, and Fe3+ than the coexisting pyroxene. The clinopyroxenesss coexisting with liquid contain less TiO2, Al2O3 and Fe2O3 than those crystallized at subsolidus temperatures. The petrological significance of the join and the crystallization of Ti- and Al-rich clinopyroxenes are discussed on the basis of the experimental results of the join.  相似文献   

16.
17.
Single-crystal Raman spectra of synthetic end-member uvarovite (Ca3Cr2Si3O12) and of a binary solution (59% uvarovite, 41% andradite) have been measured using single crystal techniques. For each of these garnets, 22 and 21 of the 25 Raman modes were located, respectively. The spectra for uvarovite garnets closely resemble those of the other calcic garnets, grossular, and andradite. The modes for uvarovites do not fit into the same trends as established by the other five anhydrous end-member garnets: the high energy “internal” Si–O modes do not depend on lattice constant in uvarovite. They exceed frequencies for both andradite and grossular. This is likely due to the large crystal field stabilization energy of trivalent chromium. The low energy and midrange modes are at similar frequencies to the other calcic garnets.  相似文献   

18.
A thermodynamic model is proposed for calculation of liquidus relations in multicomponent systems of geologic interest. In this formulation of mineral-melt equilibria, reactions are written in terms of the liquid oxide components, and balanced on the stoichiometry of liquidus phases. In order to account for non-ideality in the liquid, a ‘Margules solution’ is derived in a generalized form which can be extended to systems of any number of components and for polynomials of any degree. Equations are presented for calculation of both the excess Gibbs free energy of a solution and the component activity coefficients.Application to the system CaO-Al2O3-SiO2 at one atmosphere pressure is achieved using linear programming. Thermodynamic properties of liquidus minerals and the melt are determined which are consistent with adopted error brackets for available calorimetric and phase equilibrium data. Constraints are derived from liquidus relations, the CaO-SiO2 binary liquid immiscibility gap, solid-solid P-T reactions, and measured standard state entropies, enthalpies, and volumes of minerals in this system.Binary and ternary liquidus diagrams are recalculated by computer programs which trace cotectic boundaries and isothermal sections while checking each point on a curve for metastability. The maximum differences between calculated and experimentally determined invariant points involving stoichiometric minerals are 17°C and 1.5 oxide weight per cent. Because no solid solution models have been incorporated, deviations are larger for invariant points which involve non-stoichiometric minerals.Calculated heats of fusion, silica activities in the melt, and heats of mixing of liquids compare favorably with experimental data, and suggest that this model can be used to supplement the limited amount of available data on melt properties.  相似文献   

19.
Recent work on the pyrope-grossular and almandine grossular solid solution series has shown that at concentrations of Ca up to 15mol.% the garnets show negative excess volumes and negative excess free energies of mixing. It has been suggested that this results from a change in structure caused by Ca ordering. This note describes a preliminary X-ray study of such a garnet and concludes that there is a structural change, possibly to space group I 213, caused by Ca substitution and that further work must be done to see if this is caused by ordering.  相似文献   

20.
Recent experimental, theoretical, and thermodynamic studies permit better calibration of two reactions for geobarometry: grossular+pyrope+quartz=anorthite+enstatite grossular+almandine+quartz=anorthite+ferrosilite If both reactions are applied using the same thermodynamic data and activity models they should yield the same pressure for a given garnet-pyroxene-plagioclase-quartz assemblage. Application to a variety of high-grade terrains generally yielded excellent results. However, poor results have been obtained for high-Fe rocks which can be traced to errors in activity models for garnet and/or pyroxene. Either a two-site ideal mixing model for orthopyroxene (cf. Wood and Banno 1973) underestimates enstatite activity for high-Fe orthopyroxenes or the Ganguly and Saxena (1984) model overestimates pyrope activity in low-Mg garnets. Application of both barometers to a variety of high-grade terrains gives the following average pressures:
Terrain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号