首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isotopic fractionation as great as 1600% exists between 234U and 238U in spring waters, sediments, and fossils in the Pomme de Terre Valley, southwestern Missouri. The activity ratios of 234U238U in five springs range from 7.2 to 16 in water which has been discharged for at least the past 30,000 years. The anomalies in 234U238U ratio in deep water have potential usefulness in hydrologic investigations in southern Missouri. Clayey units overlying the spring bog sediments of Trolinger Spring are enriched in 230Th relative to their parent 234U by as much as 720%. The results indicate that both preferential displacement via alpha recoil ejection and the preferential emplacement via recoiling and physical entrapment are significant processes that are occurring in the geologic environment.  相似文献   

2.
234Th produced from 238U within sea water was found to be in radioactive disequilibrium with respect to its progenitor nuclide 238U in the surface layer of the ocean. The median value for 234Th238U activity ratio is 0.80 in the upper 200 m layer. A box-model calculation gives a removal residence time of thorium of about 0.38 yr. This suggests that 234Th is scavenged from the surface layer by the uptake of thorium by biota.  相似文献   

3.
The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 238U238U activity ratios.The 238U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, σ Na + K + Mg + Ca, and with the HCO3? ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. These findings lead us to conclude that 238U is brought into the aqueous phase along with major cations and bicarbonate. The strong positive correlation between 238U and total dissolved salts for selected rivers of the world yield an annual dissolved 238U flux of 0.88 × 1010g/yr to the oceans, a value very similar to its removal rate from the oceans, 1.05 × 1010g/yr, estimated based on its correlation with HCO3? contents of rivers.In the estuaries, both 238U and its great-grand daughter 234U behave conservatively beyond chlorosities 0.14 g/l. These data confirm our earlier findings in other Indian estuaries. The behavior of uranium isotopes in the chlorosity zone 0.02–0.14 g/l, was studied in the Narbada estuary in some detail. The results, though not conclusive, seem to indicate a minor removal of these isotopes in this region. Reexamination of the results for the Gironde and Zaire estuaries (Martin et al., 1978a and b) also appear to confirm the conservative behavior of U isotopes in unpolluted estuaries. It is borne out from all the available data that estuaries beyond 0.14 g/l chlorosities act neither as a sink nor as a source for uranium isotopes, the behavior in the low chlorosity zones warrants further detailed investigation.A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238U concentration of 0.22 μg/l with a 234U238U activity ratio of 1.20 ± 0.06ismissing. The residence time of uranium isotopes in the oceans estimated from the 238U concentration and the 234U238U A. R. of the rivers yield conflicting results; the material balance of uranium isotopes in the marine environment still remains a paradox. If the disparity between the results is real, then an additional 234U flux of about 0.25 dpm/cm2·103 yr into the oceans (about 20% of its river supply) is necessitated.  相似文献   

4.
Approximately one thousand drilled wells were investigated for their natural radioactivity. The determinations of 238U, 234U, 226Ra and 222Rn from 310 samples showed a high state of radioactive disequilibrium between the members of the uranium series present in water. The 238U226Ra activity ratio usually fell in the range 1–20 and the 238U222Rn activity ratio in the range 1–20 × 10?4, the highest activity ratios being from samples with an elevated uranium content. The 234U238U activity ratio varied between 0.76 and 4.67, the most frequent values showing a 60% excess of 234U in the samples. Most of the 234U238U activity ratios near unity were found in samples with a high uranium content. Several drilled wells with anomalously high uranium contents were found in southern Finland. The average 226Ra and 222Rn contents of these wells were not exceptionally high, which suggests high mobility of uranium in groundwater from the areas involved.  相似文献   

5.
Hydrothermal submarine metalliferous deposits, common in areas of the ocean floor with high heat flow, contain generally about 10 ppm U as an order of magnitude. The U234U238 ratio is in the majority of cases close to that of seawater; only in a few cases is it anomalously high. Anomalous U234U238 ratios are coupled with low U concentrations. These data are explained by a model where thermal water (essentially heated seawater) in its sub-bottom circulation often is unable to leach U from the basaltic oceanic crust; in fact, these thermal waters may in some cases lose U. When leaching of U from the basalt does take place, probably during shallow stages of the sub-bottom circulation, the resulting anomalous U234U238 ratio can be preserved in the hydrothermal deposit only if mixing with ‘seawater’ U is prevented.  相似文献   

6.
The solution of radioelements and radiogenic 4He by groundwaters in fractured rocks is dependent upon the radioelement distribution in the rock matrix and the extent of the rock-water interface. The 234U238U activity ratio and the dissolved U, Rn and He contents of such groundwaters respond to changes in the flow regime with time. Although 234U238U activity ratios change with groundwater residence time as a consequence of 234Th-recoil induced solution of 234U, the activity ratio is strongly influenced by the U distribution within fractures, by the extent of the rock-water interface and by the amount of 238U in solution. A model for the quantitative evaluation of these effects is presented.Groundwaters from depths up to 880 m in the Stripa granite have variable dissolved uranium contents and 234U238U activity ratios. The uranium geochemistry is primarily determined by variations in flow path rather than by groundwater age.Dissolved radiogenic 4He in the groundwaters increases with their depth of origin, and is dependent upon the U content of the granite and upon its fracture porosity. It increases with groundwater residence time but movement of 4He by diffusion and transport processes make the actual groundwater age indeterminate.  相似文献   

7.
Previous studies of the distribution of U and Th in parent versus weathered granites have shown both depletion and enrichment of these elements during weathering. In this study, the distribution of U and Th decay series isotopes was determined in a weathering profile of a granitic saprolite, which showed textural preservation indicating isovolumetric weathering. Two types of dissolution methods were used: a whole-rock dissolution and a sodium-citrate dithionite leach to preferentially attack noncrystalline phases of weathering products. Using volume-based activities, 45–70 percent of the total 232Th was gradually removed during weathering. Although the whole-rock 228Th232Th activity ratios were in equilibrium, there were large excesses of 228Th in the leachable fraction of both parent rock (228Th232Th = 2.06) and partially weathered saprolite (228Th232Th = 3–6.5), due to alpha recoil and release of daughter 228Th to the weathering rind of the mineral grain. For the most weathered sample, 81 percent of the thorium was in the teachable fraction and 228Th232Th = 1, indicating that even the more resistant minerals were attacked.The total U activities showed as much variation in the six parent rock samples as in the weathered profile, and 234U238U were in equilibrium in both the whole-rock and leachable fractions. 230Th was deficient relative to 234U and 226Ra in both fractions, suggesting recent addition of U and Ra to the entire profile. The large variation in U was not from absorption onto the intermediate weathering products, because only 11–23 percent of the U was in the leachable fraction.  相似文献   

8.
The concentrations of 238U, 234Th, 226Ra, 222Rn and 210Pb and 234U238U activity ratios have been measured in several groundwater samples from Gujarat, India. In the aqueous phase the abundances of 234Th and 210Pb are grossly deficient relative to their parents, 238U and 222Rn respectively. The deficiency is ascribable to the impact adsorption of 234Th and 210Pb atoms onto particle surfaces which are very abundant in the groundwater regimes. The scavenging residence times for both these nuclides is about a day, suggesting that irreversible removal of ‘reactive’ metals and pollutants in groundwaters can occur on very short time scales. The fast removal of 234Th onto particles necessitates that in these groundwaters 234U ‘excess’ has to originate through leaching of soil grains rather than through in situ decay of dissolved 234Th in the water.  相似文献   

9.
Speleothem from West Virginia, ranging in age from 2000 to 200,000 yr B.P. contains uranium with U234U238 ratios significantly greater than unity. This ratio varies from one speleothem to another, as does average U content. Initial ratios, corrected for age, are remarkably constant for a given speleothem. By contrast, U234U238 ratios in seepage waters vary significantly from month to month at a given drip site, and their average values differ from that of the speleothem which they are depositing. This discrepancy is attributed either to long-term averaging-out of fluctuations, or fractional precipitation on the speleothem of a chemical species of uranium with a more constant ratio. Constancy of initial U234U238 ratios from Th230U234. datable portions of speleothems should permit U234U238-dating of older portions of the same speleothem, back to about 106 yr B.P., with estimated precision of ±5 per cent.  相似文献   

10.
Micromanganese nodules from three deep-sea cores are found to contain less U than average nodules dredged from the sea floor. The 234U238U ratio in these micronodules is higher than any previously reported in deep-sea sediments. We interpret these data to mean that at least some micronodules form well after deposition of the enclosing sediments, in particular where conditions are less oxidizing than average.  相似文献   

11.
The concentrations of uranium. 226Ra and 222Rn were determined in 308 drilled and 58 dug wells in the Helsinki region. The study area was about 400 km2 and geologically highly variable, with granites, amphibolites and migmatites the dominant rocks. The radioactivity of water in the dug wells was on a “normal” level, but in numerous drilled wells it was anomalously high. In 14 drilled wells the concentration of uranium exceeded 1000 μg/l, the highest concentration being 14,870 μg/l. For 222Rn the maximum concentration was 880,000 pCi/l. The 226Ra228Ra and 230Th232Th activity ratios showed the isotopes of the uranium series to be dominant in the study area. A state of disequilibrium between 238U and 234U was very common in the samples. The 234U238U activity ratios varied in the range 1.0–4.0 regardless of the amount of uranium in the water. The conclusion can be drawn from the isotopic data that the high radioactivity of water is in some cases caused by primary uranium mineralizations, but mostly by uranium deposited in fissures of the bedrock. The paper includes a summary of the results of two studies carried out between 1967 and 1977.  相似文献   

12.
A detailed study of the U distribution of the St. Severin chondrite has been made by fission track radiography in order to clarify the interpretation of fission Xe thermal release data in terms of the mineralogical location of the fission Xe within the meteorite. This is of importance because the 244Pu238U ratio for St. Severin has been widely adopted as the average solar system value. The U contents of the constituent minerals cannot account for the total rock U which, instead, appears to be primarily localized on grain boundaries. The greatest localizations of U are in olivine-poor, orthopyroxene-rich ‘clasts’. Our data coupled with those of Podosek (1970a) show that 244Pu in St. Severin was also located on grain boundaries and that the bulk of Pu and U are unfractionated within this meteorite. Due to recoil, the 244Pu fission Xe is found in 10 micron surface layers on major phases. Assuming that the grain boundaries (on which the Pu was located) was formed during metamorphism, the 244Pu238U ratio for St. Severin applies to a time subsequent to the textural recrystallization of the meteorite. Our data support the interpretation of Podosek and our best estimate of the solar system 244Pu238U is 0.015.  相似文献   

13.
14.
A simple method to determine the 234U238U ratio in water by α-spectrometry is presented. The thiocyanate complex of uranium is extracted from the water by anion exchange. After elution of the U from the resin it is further purified by extraction from nitrate medium into ether. The source for α-spectrometry is prepared by oxalate electrodeposition. The overall yield is 70%.  相似文献   

15.
The 227Th230Th dating method is described in detail and its usefulness investigated by comparing ages of sixteen Pleistocene carbonates (mainly cave deposits) with those determined by the 231Pa235U and 230Th234U methods. The 227Th230Th ages are found to be critically dependent on corrections for decay of 227Th prior to alpha counting and ingrowth of daughter isotopes of 232Th derived from clastic detritus. Of nineteen sets of ages determined for the sixteen samples, good agreement is found for only seven sets. Differences are attributed to low U content of some samples and the possibility of excess 227Th in the calcite of samples younger than ~50 ky, possibly due to the coprecipitation of 231Pa during formation. Calculated “negative” 227Th230Th ages may be a direct result of this process and the fact that, unlike the other methods, the activity ratio is non-zero at zero age. Nevertheless, the 227Th230Th is found to be a useful alternative dating technique for carbonates which are between ~50 and 300 ky, because no spiking is required. It also serves as a check for partial concordancy with ages dated by the other methods.  相似文献   

16.
17.
The behavior of U during the diagenetic formation of marine phosphorite has been modelled. The model examines a dissolution-reprecipitation replacement of skeletal hydroxyapatite, calcium carbonate and earlier generated francolite by francolite. The amount of organic matter consumed relative to the mass of francolite formed, the replacement reaction progress, and the concentration of U in the replaced phases are the important parameters which dictate the concentration of U in the phosphate rock.A partition coefficient between apatite and interstitial solution was calculated, and is λUF = 0.57.Natural phosphorites have been examined and are discussed in the light of the proposed model. The U mass-balance in a Recent phosphorite is in good accord with theoretical predictions. Differences in U concentrations between sea-floor phosphorites are explained either by the (original) variation in the organic matter distribution in the corresponding sediments and/or by mineralogical differences (CaCO3vs. hydroxyapatite) therein.Senonian phosphate rocks which were formed via the francolite → francolite transformation, demonstrate that during that process the organic matter content in the sediment was approximately 50%.The model supports the idea that phosphorite rock formation is a multistage process.  相似文献   

18.
19.
The reef-crest coral Acropora palmata from late Pleistocene reefs on Barbados has recorded the same global variations in oxygen isotopes as planktonic and benthonic foraminifera. Although the record of oxygen isotopes in Acropora palmata is discontinuous, it offers several advantages over the isotope records from deep-sea sediments: (1) the coral grows at water depths of less than 5 m; (2) the samples are unmixed; (3) specimens may be sampled from various elevations of paleo-sea level; and (4) aragonitic corals are suitable for 230Th234U and HeU dating techniques. The latter advantage means that direct dating of the marine oxygen isotope record is possible. Oxygen isotope stage 5e corresponds to Barbados III, dated at 125,000 ± 6000 yr BP. Petrographic and geochemical evidence from five boreholes drilled into the south coast of Barbados indicates a major eustatic lowering (greater than 100 m below present sea level) occurred between 180,000 and 125,000 yr BP. The age and isotopic data suggest correlation of this change in sea level to Emiliani's oxygen isotope stage 6. Acropora palmata deposited at various elevations of sea level during oxygen isotope stage 6 vary by 0.11 ‰ δ18O for each 10 m of change in sea level. We further hypothesize a minimum drop of 2°C in the average temperature occurred during the regressive phase of oxygen isotope stage 6. These data indicate that temperature lowering of surface water near Barbados lagged behind a major glacial buildup during this time period. Using the δ18O vs sea level calibration herein derived, we estimate the relative height of sea stands responsible for Barbados coral reef terraces in the time range 80,000 to 220,000 yr BP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号