首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an analysis of the rainfall-evaporation-atmospheric moisture cycle in a semi-arid tropical zone (southwestern Madagascar) to quantify the recycling and mixing processes that occur above an endorheic lake system (Lake Ihotry) during an annual cycle. The study combines an isotope mass balance with a detailed field investigation of the lake system and a previously established daily time-step lake water balance model. The mass balance and Craig-Gordon equations are used to calculate the isotopic composition of the evaporative flux from the lake surface (δE) and to derive a daily time series of the ambient atmospheric water vapour composition above the lake (δAL) during a 8-month dry season. Calculated δAL results from a mixing between regional moisture (δAR) and locally evaporated water (δE), the latter representing 50% of δAL at the end of the dry season. The contribution of recycled moisture to on-lake precipitation during the wet season is estimated to ?16%. We show that, as expected, the deuterium excess is high in recycled precipitation and low in evaporated precipitation, but also that the recycled moisture in an endorheic system may have a low deuterium excess resulting from the low deuterium excess in regional precipitation. In case of a long evaporative season, the atmospheric moisture is not in isotopic equilibrium with the annual composition of precipitation because of the contribution of the recycled vapour to the local atmospheric pool. Our approach demonstrates the importance of water recycling on the atmospheric moisture cycle and precipitation in a tropical semi-arid system, and can be applied to other natural systems, enlarging the potential range of investigation of the atmospheric vapour cycle and rainfall sources in tropical lands. It may also represent a valuable complement to direct water vapour sampling, in yielding the long-term evolution of the atmospheric vapour composition with spatially averaged values and smoothed temporal variations.  相似文献   

2.
This paper gives an account of the assessment and quantification of the water balance and the hydrogeological processes related to lake–groundwater interaction in the Pampa Plain by using hydrogeochemical, isotopic and flow numerical modeling techniques. La Salada is a permanent shallow lake, with an area of 5.8 km2, located on the SE of Buenos Aires Province. A total of 29 lake water samples and 15 groundwater samples were collected for both hydrochemical analysis and environmental stable isotope determination. Water table depths were measured in wells closed to the lake. Groundwater samples appear grouped on the Local Meteoric Water Line, suggesting a well-mixed system and that rainfall is the main recharge source to the aquifer. Water evaporation process within La Salada is also corroborated by its isotopic composition. The model that best adjusts to La Salada Lake hydrochemical processes includes evaporation from groundwater, calcite precipitation with CO2 release and cationic exchange. The annual water balance terms for the lake basin indicates for each hydrological component the following values: 1.16 E08 m3 rainfall, 8.15 E07 m3 evapotranspiration, 1.90 E06 m3 runoff, 1.55 E07 m3 groundwater recharge, 6.01 E06 m3 groundwater discharge to the lake, 9.54 E06 m3 groundwater discharge to the river, 5.00 E05 m3 urban extraction and 4.90 E06 m3 lake evaporation. Integrated analysis of hydrochemical and isotopic information helped to calibrate the groundwater flow model, to validate the conceptual model and to quantitatively assess the basin water balance.  相似文献   

3.
《Chemical Geology》2007,236(3-4):181-198
Variations in molybdenum isotopic composition, spanning the range of ∼ 2.3‰ in the terms of 97Mo/95Mo ratio, have been measured in sediment cores from three lakes in northern Sweden and north-western Russia. These variations have been produced by both isotopically variable input of Mo into the lakes due to Mo isotopic heterogeneity of bedrock in the drainage basins and fractionation in the lake systems due to temporal variations in limnological conditions. Mo isotope abundances of bedrock in the lake drainage basins have been documented by analysis of Mo isotope ratios of a suite of molybdenite occurrences collected in the studied area and of detrital fractions of the lake sediment cores. The median δ97Mo value of the investigated molybdenites is 0.26‰ with standard deviation of 0.43‰ (n = 19), whereas the median δ97Mo value of detrital sediment fractions from two lakes is − 0.40‰ with standard deviation of 0.36‰ (n = 15).The isotopic composition of Mo in the sediment cores has been found to be dependent on redox conditions of the water columns and the dominant type of scavenging phases. Hydrous Fe oxides have been shown to be an efficient scavenger of Mo from porewater under oxic conditions. Oxidative precipitation of Fe(II) in the sediments resulted in co-precipitation of Mo and significant authigenic enrichment at the redox boundary. In spite of a pronounced increase in Mo concentration associated with Fe oxides at the redox boundary the isotopic composition of Mo in this zone varies insignificantly, suggesting little or no isotope fractionation during scavenging of Mo by hydrous Fe oxides. In a lake with anoxic bottom water a chironomid-inferred reconstruction of O2 conditions in the bottom water through the Holocene indicates that increased O2 concentrations are generally associated with low δ97Mo/95Mo values of the sediments, whereas lowered O2 contents of the bottom water are accompanied by relatively high δ97Mo/95Mo values, thus confirming the potential of Mo isotope data to be a proxy for redox conditions of overlying waters. However, it is pointed out that other processes including input of isotopically heterogeneous Mo and Mn cycling in the redox-stratified water column can be a primary cause of variations in Mo isotopic compositions of lake sediments.  相似文献   

4.
The volcano-sedimentary sequence at the Raul mine, central Peru, consists of andesitic volcanics, graywackes, and siltstones, and has been metamorphosed to the upper greenschist-lower amphibolite facies at temperatures of 400–500°C. Isotopic data (O and H) have been collected from: (a) quartz and magnetite from stratiform ores, (b) amphiboles from amphibolite units that host stratiform ores, (c) calcite from late veins, (d) detrital quartz from graywackes, and (e) whole rocks.Interunit differences in quartz and magnetite δ18O values suggest that these minerals have resisted isotopic exchange during metamorphism, and that quartz-magnetite isotopic temperatures (380–414°C) represent primary formational temperatures. Calculated δ18O values of water in equilibrium with quartz and magnetite range from 9.1 to 12.6%..Amphibole δ18O and δD values show no interunit differences and suggest that the amphiboles have exchanged isotopes with a large metamorphic fluid reservoir. Calculated δ18OH2O and δDH2O values range from 8 to 12%. and ?3 to +42%., respectively.δ18OH2O values calculated from δ18O calcite and fluid inclusion filling temperatures range from 7.5 to 10%.. Water extracted from fluid inclusions in calcite has a δD value of ?20%..δ18O values of metamorphosed graywackes and volcanic sediments are not atypical, but andesitic lavas are 18O-rich (8–10%.) compared to normal andesites.Waters involved in ore deposition, metamorphism, and late vein formation at Raul are all thought to have a common source, principally seawater. The δ18OH2O and δDH2O values could be produced by evaporation of seawater, shale ultrafiltration, and isotopic exchange with host rocks during deep circulation through the volcano-sedimentary pile.A model is proposed whereby coastal ocean water is restricted from the open sea by volcanic island arcs, and subsequently undergoes evaporation. Circulation of this water is initiated by heat associated with seafloor volcanism. 18O-enrichment in andesites may be produced by isotopic exchange with high 18O waters at elevated temperatures and sufficiently high water/rock ratios.  相似文献   

5.
6.
Vacuum evaporation experiments with Type B CAI-like starting compositions were carried out at temperatures of 1600, 1700, 1800, and 1900 °C to determine the evaporation kinetics and evaporation coefficients of silicon and magnesium as a function of temperature as well as the kinetic isotope fractionation factor for magnesium. The vacuum evaporation kinetics of silicon and magnesium are well characterized by a relation of the form J = JoeE/RT with Jo = 4.17 × 107 mol cm−2 s−1, E = 576 ± 36 kJ mol−1 for magnesium, Jo = 3.81 × 106 mol cm−2 s−1, E = 551 ± 63 kJ mol−1 for silicon. These rates only apply to evaporation into vacuum whereas the actual Type B CAIs were almost certainly surrounded by a finite pressure of a hydrogen-dominated gas. A more general formulation for the evaporation kinetics of silicon and magnesium from a Type B CAI-like liquid that applies equally to vacuum and conditions of finite hydrogen pressure involves combining our determinations of the evaporation coefficients for these elements as a function of temperature (γ = γ0eE/RT with γ0 = 25.3, E = 92 ± 37 kJ mol−1 for γSi; γ0 = 143, E = 121 ± 53 kJ mol−1 for γMg) with a thermodynamic model for the saturation vapor pressures of Mg and SiO over the condensed phase. High-precision determinations of the magnesium isotopic composition of the evaporation residues from samples of different size and different evaporation temperature were made using a multicollector inductively coupled plasma mass spectrometer. The kinetic isotopic fractionation factors derived from this data set show that there is a distinct temperature effect, such that the isotopic fractionation for a given amount of magnesium evaporated is smaller at lower temperature. We did not find any significant change in the isotope fractionation factor related to sample size, which we interpret to mean that recondensation and finite chemical diffusion in the melt did not affect the isotopic fractionations. Extrapolating the magnesium kinetic isotope fractionations factors from the temperature range of our experiments to temperatures corresponding to partially molten Type B CAI compositions (1250-1400 °C) results in a value of αMg ≈ 0.991, which is significantly different from the commonly used value of .  相似文献   

7.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

8.
The study reported here is a part of an attempt to establish a comprehensive hydrochemical and isotopic baseline for a tropical wetland system as background data for a range of applications. Surface water samples of Vembanad Lake were collected from 20 stations in three seasons during the period 2007–2009. The analytical results were subjected to different chemical classification techniques to understand processes affecting the chemical concentration of waters. The Piper diagram classified the water samples as 100% alkali group in pre-monsoon followed by 15% in monsoon and 85% in post-monsoon, and for anions 100% samples were of strong acids followed by 90% in monsoon and 100% in post-monsoon season. The plot to decipher the mechanism controlling water chemistry placed the Vembanad Lake in the region of precipitation and rock dominance in the monsoon season and in the field of saline water dominance in pre-monsoon and post-monsoon season. The positive values for the chloro-alkaline indices in pre and post-monsoon season promoted cation exchange in the system. The stable isotopes of water samples ranged from ?20.21 to +17.0‰ and ?5.6 to +3.34‰ for δ 2H and δ 18O, respectively. The most depleted δ values observed in the monsoon are due to the amount effect. The high enrichment observed in pre-monsoon is primarily due to evaporation and salinity mixing. The variation of isotopes in the whole system point toward the fact that salinity mixing can be indicated by the δ 18O variation and δ 2H indicates the evaporation effect. The plot of δ 18O with chloride concentration showed precipitation dominance in the monsoon season, mixing of saline water and evaporation in pre-monsoon season, whereas the post-monsoon samples plot in both fresh and saline region.  相似文献   

9.
We have developed a new approach to quantitatively reconstruct past changes in evaporation based on compound-specific hydrogen isotope ratios of vascular plant and Sphagnum biomarkers in ombrotrophic peatland sediments. We show that the contrast in H isotopic ratios of water available to living Sphagnum (top 20 cm) and in the rooting zone of peatland vascular plants can be used to estimate “?”—the fraction of water remaining after evaporation. Vascular plant leaf waxes record H isotopic ratios of acrotelm water, which carries the D/H ratio signature of precipitation and is little affected by evaporation, whereas the Sphagnum biomarker, C23n-alkane, records H isotopic ratios of the water inside its cells and between its leaves, which is strongly affected by evaporation at the bog surface. Evaporation changes can then be deduced by comparing H isotopic ratios of the two types of biomarkers. We calibrated D/H ratios of C23n-alkane to source water with lab-grown Sphagnum. We also tested our isotopic model using modern surface samples from 18 ombrotrophic peatlands in the Midwestern United States. Finally, we generated a 3000-year downcore reconstruction from Minden Bog, Michigan, USA. Our new record is consistent with records of other parameters from the same peatland derived from different proxies and allows us to differentiate precipitation supply and evaporative loss.  相似文献   

10.
Stable isotopes of the water molecule (δ18O and δD) for groundwater, lake water, streams, and precipitation were coupled with physical flux measurements to investigate groundwater–lake interactions and to establish a water balance for a structurally complex lake. Georgetown Lake, a shallow high-latitude high-elevation lake, is located in southwestern Montana, USA. The lake is situated between two mountain ranges with highlands primarily to the east and south of the lake and a lower valley to the west. An annual water balance and (δ18O and δD) isotope balance were used to quantify annual groundwater inflows of 2.5?×?107 m3/year and lake leakage outflows of 1.6?×?107 m3/year. Roughly, 57% of total inflow to the lake is from groundwater, and 37% of total outflow at Georgetown Lake is groundwater. Stable isotopes of groundwater and springs around the lake and surrounding region show that the east side of the lake contains meteoric water recharged annually from higher mountain sources, and groundwater discharge to the lake occurs through this region. However, springs located in the lower western valley and some of the surrounding domestic wells west of the lake show isotopic enrichment indicative of strong to moderate evaporation similar to Georgetown Lake water. This indicates that some outflowing lake water recharges groundwater through the underlying west-dipping bedrock in the region.  相似文献   

11.
The isotopic composition of atmospheric O2 depends on the rates of oxygen cycling in photosynthesis, respiration, photochemical reactions in the stratosphere and on δ17O and δ18O of ocean and leaf water. While most of the factors affecting δ17O and δ18O of air O2 have been studied extensively in recent years, δ17O of leaf water—the substrate for all terrestrial photosynthesis—remained unknown. In order to understand the isotopic composition of atmospheric O2 at present and in fossil air in ice cores, we studied leaf water in field experiments in Israel and in a European survey. We measured the difference in δ17O and δ18O between stem and leaf water, which is the result of isotope enrichment during transpiration. We calculated the slopes of the lines linking the isotopic compositions of stem and leaf water. The obtained slopes in ln(δ17O + 1) vs. ln(δ18O + 1) plots are characterized by very high precision (∼0.001) despite of relatively large differences between duplicates in both δ17O and δ18O (0.02-0.05‰). This is so because the errors in δ18O and δ17O are mass-dependent. The slope of the leaf transpiration process varied between 0.5111 ± 0.0013 and 0.5204 ± 0.0005, which is considerably smaller than the slope linking liquid water and vapor at equilibrium (0.529). We further found that the slope of the transpiration process decreases with atmospheric relative humidity (h) as 0.522-0.008 × h, for h in the range 0.3-1. This slope is neither influenced by the plant species, nor by the environmental conditions where plants grow nor does it show strong variations along long leaves.  相似文献   

12.
Carbon isotopic fractionation during the air/sea exchange process is not fully understood at present. Information on the equilibrium and kinetic fractionation factors is an essential requirement, together with the value of the CO2 partial pressure, for understanding the carbon cycle in the atmosphere and marine environments. Using a specially designed countercurrent equilibrator system, the fractionation factors between gaseous CO2 and dissolved inorganic carbon in sea water were determined under both kinetic and equilibrium conditions. The following results were obtained: kinetic fractionation factor for air to sea (αas) is 0.998 at 288.2 K; kinetic fractionation factor for sea to air (αsa) is 0.990; equilibrium fractionation factor (αeq) is 0.991 at pH = 8.3 and 288.2 K. From these results, the carbon isotopic ratio of CO2 passed through the air/ sea interface is estimated to be about ?10 %. for air to sea and ?8 %. for sea to air when CO2 exchange takes place between air (δ13C = ?8 %.) and surface sea water (δ13C = 2 %.) at 288.2 K.  相似文献   

13.
The carbon stable isotopic value of dissolved inorganic carbon (δ13CDIC) was measured over several years at different depths in the water column in six carbonate-precipitating temperate lakes. δ13CDIC behavior in three of these lakes departed from the conventional model wherein epilimnetic waters are seasonally enriched relative to all hypolimnetic waters, and in general δ13CDIC values in the water column were not readily correlated to parameters such as lake stratification, algal productivity, hydraulic residence time, or water chemistry. Additionally, the processes implicated in generating the δ13CDIC values of individual lakes differ between lakes with similar δ13CDIC compositions. Each lake thus initially appears idiosyncratic, but when the effects of carbonate mineral equilibria, microbial activity, and lake residence time are viewed in terms of the magnitude of distinct DIC pools and fluxes in stratified lakes, generalizations can be made that allow lakes to be grouped by δ13CDIC behavior. We recognize three modes in the relationship between δ13CDIC values and DIC concentration ([DIC]) of individual lakes: (A) δ13CDIC values decreasing with increasing [DIC]; (B) δ13CDIC values increasing with increasing [DIC]; (C) δ13CDIC values decreasing with increasing [DIC] but increasing again at the highest [DIC]. This approach is useful both in understanding δ13CDIC dynamics in modern hardwater lakes and in reconstructing the environmental changes recorded by sedimentary δ13C components in the lacustrine paleorecord.  相似文献   

14.
The lithium isotopic composition of waters of the Mono Basin, California   总被引:2,自引:0,他引:2  
Mono Lake, a major closed-basin alkaline salt lake in eastern California, derives its water from a mixture of creeks and springs, with the former providing in excess of 75% of the total. The Li isotopic composition of lake water has not varied significantly over a 4 year meromictic period (δ7Li ∼ +19.5). Springs are isotopically distinct: groundwater springs and seeps carry water enriched in isotopically heavy Li whereas thermal springs supply isotopically light (δ7Li < lake), but 10 times more Li-rich, water. Isotopic fractionation during crystallization of carbonate tufa and evaporitic salt appears to be insignificant, and thus cannot be called on as a principal control of the isotopic balance of Li of the lake. Isotopic differences between the end-member source components permit a water budget to be calculated, suggesting (1) springs provide > 50% of the Li to the lake; (2) the Li budget is sensitively balanced on small thermal spring contributions, < 3% of the total spring inflow; and (3) the residence time of Li in the lake is 28 ka. Other Great Basin closed lakes have variable Li isotopic compositions (δ7Li from +16.7 to +23.7), all of which differ significantly from those of several major lakes and seawater (homogeneously ∼ +32).  相似文献   

15.
Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter F. M., Davis A. M., Ebel D. S., and Hashimoto A. (2002) Elemental and isotopic fractionation of Type B CAIs: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta66, 521-540; Richter F. M., Janney P. E., Mendybaev R. A., Davis A. M., and Wadhwa M. (2007a) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta71, 5544-5564.). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, αSi, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that αSi = 0.98985 ± 0.00044 (2σ) for 29Si/28Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 °C. This value is different from what has been reported for evaporation of liquid Mg2SiO4 (Davis A. M., Hashimoto A., Clayton R. N., and Mayeda T. K. (1990) Isotope mass fractionation during evaporation of Mg2SiO4. Nature347, 655-658.) and of a melt with CI chondritic proportions of the major elements (Wang J., Davis A. M., Clayton R. N., Mayeda T. K., and Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO2-CaO-Al2O3-TiO2-REE melt system. Geochim. Cosmochim. Acta65, 479-494.). There appears to be some compositional control on αSi, whereas no compositional effects have been reported for αMg. We use the values of αSi and αMg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.  相似文献   

16.
It is important to have qualitative as well as quantitative understanding of the hydraulic exchange between lake and groundwater for effective water resource management. Dal, a famous urban fresh water lake, plays a fundamental role in social, cultural and economic dynamics of the Kashmir Valley. In this paper geochemical, isotopic and hydrological mass balance approaches are used to constrain the lake water–groundwater interaction of Dal Lake and to identify the sources of lake water. Water samples of precipitation (n = 27), lake water (n = 18) and groundwater (n = 32) were collected across the lake and its catchment for the analysis of δ18O and δ2H. A total of 444 lake water samples and 440 groundwater samples (springs, tube wells and dug wells) were collected for the analysis of Ca2+, Mg2+, HCO3 ?, SO4 2?, Cl?, NO3 ?, Na+ and K+. Water table and lake water level were monitored at 40 observation locations in the catchment. Water table map including pH and EC values corroborate and verify the gaining nature of the Dal Lake. Stable isotopes of lake water in Boddal and Gagribal basins showed more deviation from the global meteoric water line than Hazratbal and Nigeen basins, indicating the evaporation of lake water. The isotopic and geochemical mass balance suggested that groundwater contributes a significant proportion (23–40%) to Dal Lake. The estimated average groundwater contribution to Dal Lake ranged from 31.2 × 103 to 674 × 103 m3 day?1 with an average of 276 × 103 m3 day?1. The study will be useful to delineate the possible sources of nutrients and pollutants entering the lake and for the management of lake water resources for sustainable development.  相似文献   

17.
We analyzed the deuterium composition of individual plant-waxes in lake sediments from 28 watersheds that span a range of precipitation D/H, vegetation types and climates. The apparent isotopic fractionation (εa) between plant-wax n-alkanes and precipitation differs with watershed ecosystem type and structure, and decreases with increasing regional aridity as measured by enrichment of 2H and 18O associated with evaporation of lake waters. The most negative εa values represent signatures least affected by aridity; these values were −125 ± 5‰ for tropical evergreen and dry forests, −130‰ for a temperate broadleaf forest, −120 ± 9‰ for the high-altitude tropical páramo (herbs, shrubs and grasses), and −98 ± 6‰ for North American montane gymnosperm forests. Minimum εa values reflect ecosystem-dependent differences in leaf water enrichment and soil evaporation. Slopes of lipid/lake water isotopic enrichments differ slightly with ecosystem structure (i.e. open shrublands versus forests) and overall are quite small (slopes = 0-2), indicating low sensitivity of lipid δD variations to aridity compared with coexisting lake waters. This finding provides an approach for reconstructing ancient precipitation signatures based on plant-wax δD measurements and independent proxies for lake water changes with regional aridity. To illustrate this approach, we employ paired plant-wax δD and carbonate-δ18O measurements on lake sediments to estimate the isotopic composition of Miocene precipitation on the Tibetan plateau.  相似文献   

18.
The distributions of n-alkanes and their hydrogen isotopic composition (δD) in surface and core sediments from the saline Qinghai Lake were measured to assess whether or not biological source information was recorded in the δD values of n-alkanes. The results indicate that the n-alkane distributions between shallow water surface and core sediments were similar, and closer to those of terrestrial herbaceous plants from the Qinghai Lake surrounding areas, rather than the aquatic plants living in the lake. The n-alkanes in the surface and core sediments had similar mean δD values, ranging from −185‰ to −133‰ and −163‰ to −142‰, respectively. The mean δD values of n-alkanes in the sediments showed that the even n-alkanes were heavier in D compared with the odd homologues.  相似文献   

19.
Three hundred and thirty new 13C analyses of diamonds are presented, indicating, in conjunction with earlier published work, a range of about 30%. in the carbon isotopic composition of diamonds. The frequency distribution of diamond δ13C analyses shows a very pronounced mode at ?5 to ?6%.vs PDB, a large negative skewness, and a sharp boundary at about ?1%.. Analyses of diamonds from the Premier and Dan Carl mines, South Africa, demonstrate that: (1) differences in 13C content that can be related to diamond color and shape are smaller than 1%.; (2) the mean 13C content of kimberlite carbonates is 1–2%. lower than that of associated diamonds; (3) significant differences in 13C content exist between the mean isotopic compositions of diamonds from these two pipes; (4) the variability in δ13C differs from one mine to the other.Computations were carried out evaluating the effect on the 13C content of diamonds of: (i) various precipitation processes; (ii) the abundance of the species H2, H2O, CH4, CO, CO2 and O2 in the vapor; (iii) the initial isotopic composition variability of the source carbon; (iv) variations of the carbon isotope effects resulting from changes in pressure and temperature and (v) reservoir effects (Rayleigh fractionation). Fifty-eight genetic models were investigated for compatibility with the 13C distribution in diamonds and associated carbonate. The modeling does not permit an unambiguous answer to the question whether or not a vapor participated in diamond formation, although the presence of methane during diamond formation is compatible with the carbon isotopic composition data, possible oxygen fugacities in the mantle and with the composition of gases liberated from diamonds. In all probability carbon isotope effects in the diamond formation process were small, and the very large range in δ13C observed was inherited from the source carbon.  相似文献   

20.
New carbon and oxygen isotopic compositions of carbonates from 14 carbonatite and 11 kimberlite occurrences are reported. A review of the available data on the carbon isotopic composition ranges of carbonatite and kimberlite carbonates shows that they are similar and overlap that of diamonds. The mean carbon isotopic composition of carbonates from 22 selected carbonatite complexes (?5.1%., s = ±l.4%.vsPDB) is indistinguishable from that of 13 kimberlite pipes (?4.7%. s = ±1.2%.) as well as that of 60 individual diamond analyses (?5.8%., s = 1.8%.). The oxygen isotopic compositions of kimberlite carbonates, however, are enriched in O18 by several permil with respect to those of carbonates from the subvolcanic type of carbonatite.The data suggest that not all carbonatite, kimberlite and diamond occurrences have the same average carbon isotopic composition and that significant differences exist between them. Carbon isotopic composition measurements available for the East African Rift system suggest geographic and/or tectonic groupings e.g. carbonate lavas, tuffs and intusive carbonatites associated with the Eastern Rift yield a range of δC13 values from ?5.8 to ?7.4%., similar to that of the carbonate rocks associated with the Western Rift volcanism (?5.8 to ?7.9%.). In contrast the interrift area encompassing Lakes Victoria, Malawi (Nyasa) and Chilwa, apparently are characterized by carbonatitic carbonates of higher C13 content (?2.4 to ?4.4%.).If carbonatite and kimberlite carbonates as well as diamonds represent deep seated carbon, the mean isotopic composition of this carbon is estimated as ?5.2%. and the range is ?2 to ?8%. The selection of any particular value within this range to be used as a criterion of deep-seated origin is at the moment not warranted. Indeed, the choice of any specific composition for such carbon may be meaningless, as the source of kimberlite, carbonatite and diamond carbon may not be isotopically uniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号