首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The solubility of fluorite in NaCl solutions increases with increasing temperature at all ionic strengths up to about 100°C. Above this temperature, the solubility passes through a maximum and possibly a minimum with increasing temperature at NaCl concentrations of 1.0M or less, and increases continuously with increasing temperature at NaCl concentrations above 1.0M. At any given temperature, the solubility of fluorite increases with increasing salt concentration in NaCl, KCl and CaCl2 solutions. The solubility follows Debye-Hückel theory for KCl solutions. In NaCl and CaCl2 solutions, the solubility of fluorite increases more rapidly than predicted by Debye-Hückel theory: the excess solubility is due to the presence of NaFc, CaF+, and possibly of Na2F+. The solubility of fluorite in NaCl-CaCl2 and in NaCl-CaCl2-MgCl2 solutions is controlled by the common ion effect and by the presence of NaFc, CaF+, and MgF+. The solubility of fluorite in NaCl-HCl solutions increases rapidly with increasing initial HCl concentration; the large solubility increase is due to the presence of HFc. It seems likely that complexes other than those identified in this study rarely play a major role in fluoride transport and fluorite deposition at temperatures below 300°C.  相似文献   

2.
Solubility curves were determined for a synthetic gibbsite and a natural gibbsite (Minas Gerais, Brazil) from pH 4 to 9, in 0.2% gibbsite suspensions in 0.01 M NaNO3 that were buffered by low concentrations of non-complexing buffer agents. Equilibrium solubility was approached from oversaturation (in suspensions spiked with Al(NO3)3 solution), and also from undersaturation in some synthetic gibbsite suspensions. Mononuclear Al ion concentrations and pH values were periodically determined. Within 1 month or less, data from over-and undersaturated suspensions of synthetic gibbsite converged to describe an equilibrium solubility curve. A downward shift of the solubility curve, beginning at pH 6.7, indicates that a phase more stable than gibbsite controls Al solubility in alkaline systems. Extrapolation of the initial portion of the high-pH side of the synthetic gibbsite solubility curve provides the first unified equilibrium experimental model of Al ion speciation in waters from pH 4 to 9.The significant mononuclear ion species at equilibrium with gibbsite are Al3+, AlOH2+, Al(OH)+2 and Al(OH)?4, and their ion activity products are 1K50 = 1.29 × 108, 1Ks1 = 1.33 × 103, 1Ks2 = 9.49 × 10?3 and 1Ks4 = 8.94 × 10?15. The calculated standard Gibbs free energies of formation (ΔG°f) for the synthetic gibbsite and the A1OH2+, Al(OH)+2 and Al(OH)?4 ions are ?276.0, ?166.9, ?216.5 and ?313.5 kcal mol?1, respectively. These ΔG°f values are based on the recently revised ΔG°f value for Al3+ (?117.0 ± 0.3 kcal mol?1) and carry the same uncertainty. The ΔG°f of the natural gibbsite is ?275.1 ± 0.4 kcal mol?, which suggests that a range of ΔG°f values can exist even for relatively simple natural minerals.  相似文献   

3.
From conductance measurements, the negative logarithm of the dissociation constant of the CaHCO3+ ion pair, pK(CaHCO3+), is 0.7, 1.0 and 1.35 within ±0.05 units at 0, 25 and 60°C, respectively. A revaluation of published and unpublished data yields pK(CaCO30) ≈ 3.2 at 25°C. Use of these pK's to compute the dissociation constant of calcite (Kc) from published calcite solubility measurements in pure water gives pKc values which increase markedly with ionic strength. However, if the ion pairs are ignored, computed pKc values are nearly constant with ionic strength. All reasonable attempts to eliminate the trend in pKc by adjusting ion activity coefficients, and/or values of K(CaCO30) failed, so the dilemma remains. Kc values computed from the most reliable published calcite solubility data are in good agreement with such values based on solubility data measured in this study at 5, 15, 35 and 50°C. Study results ignoring ion pairs are accurately represented by the equation log Kc = 13.870 — (3059/T) ?0.04035T, and correspond to ?8.35, ?8.42, and ?8.635 at 0, 25 and 50°C, respectively. The logarithmic expression leads to ΔHro = ?2420 ± 300 cal/mol, ΔCp = ?110 ± 2 cal/deg mol, and ΔSro = ?46.6 ± 1.0 cal/deg mol for the calcite dissociation reaction at 25°C. The dependence of Kc on temperature when CaCO30 and CaHCO3+ are assumed, is described by log Kc = 13.543 ? (3000/T) ? 0.0401T which yields ?8.39, ?8.47, and -8.70 at 0, 25 and 50°C. This gives ΔHro = ?2585 ± 300 cal/mol, ΔCp = ?109 ± 2 cal/deg mol, and ΔSr0 = ?47.4 ± 1.0 cal/deg mol at 25°C.  相似文献   

4.
The thermodynamic properties of monohydrocalcite, CaCO3 · H2O, have been obtained using a well-characterized natural specimen. Equilibration of the solid with water at 25°C under 0.97 atm CO2 led to an activity product [Ca2+][CO32?] = 10?7.60±0.03 and a free energy of formation ΔGfo = ?325,430 ± 270 calmol?. The enthalpy of solution of monohydrocalcite in 0.1 N HCl at 25°C led to a standard enthalpy of formation ΔHfo = ?358,100 ± 280 cal mol?1. Estimates of the variation of ΔGf with temperature and pressure showed monohydrocalcite to be metastable with respect to calcite and aragonite.  相似文献   

5.
The paper presents the results of the statistical and thermodynamic analysis of hydrogeochemical information on the genesis of F-bearing waters in the Carboniferous deposits of the Moscow artesian basin. The F concentration is demonstrated to increase with increasing salinity of the aqueous solution. As follows from the analysis of mineral equilibria, the saturation concentrations of the aqueous phase with respect to fluorite in association with calcite and gypsum is less than 2–3 mg of F/l. At the saturation of the aqueous phase with respect to fluorite in association with dolomite, the equilibrium concentration of F increases with increasing Mg concentration and decreasing equilibrium partial CO2 pressure and can reach 8–10 mg of F/l. The main reason for this enrichment of the aqueous phase in F is certain features of mineral equilibria in the system of aqueous solution with Ca and Mg carbonates. An increase in the Mg2+ concentration in the aqueous phase decreases the Ca2+ concentration in the solubility equilibrium of dolomite, and this, in turn, decreases the F? concentration in the solubility equilibrium of fluorite.  相似文献   

6.
Potential solubility controls on phosphorus in Yellowstone National Park geothermal waters were investigated using the analytical phosphate estimates of Stauffer and Thompson (1978), the computer program, WATEQF, and adopting the equilibrium constant: log K25° = ?61.4 for fluorapatite (FAP = Ca5(PO4)3F) dissolution. The near-boiling high-Cl geyser and spring effluents are at or near saturation with respect to (with) FAP. The sixteen representative springs in this category had FAP saturation indices (S.I. = log IAP/Kr) ranging from ? 3.2 to +4.9 and averaging +0.9. The strongly positive indices were all associated with the highly alkaline conditions resulting from adiabatic cooling in the near surface environment. Hot spring waters indicating extensive dilution (reduced Cl) by meteoric water have lower pH's, and despite PO4 and Ca concentrations an order of magnitude higher than the geysers, are still frequently undersaturated with FAP. The travertine-depositing “Mixed-water” springs are invariably supersaturated with FAP at ground surface and at or near saturation with hydroxylapatite. Supersaturation may result from kinetic inhibition of apatite crystallization by the elevated Mg2+, HCO3?, and lower temperatures in these springs. The phosphates may be residuals of the meteoric dilution water.Separately, if Strübel's temperature-dependent estimates of fluorite (CaF2) solubility are adopted, the high-Cl geysers and springs on “Geyser Hill” and at Norris are consistently undersaturated with CaF2 at the 90–100° orifice temperatures. The apparent disequilibrium may reflect fluorite equilibration at the much higher temperatures (> 200°C) in the deeper enthalpy reservoirs.  相似文献   

7.
The instability of transition metal dolomites [CaR2+(CO3)2 where R2+ is Fe, Co, Ni, Cu, or Zn] and the limited substitution of transition metal cations for Mg in the dolomite structure can be accounted for by the effect of octahedral distortion. For example, trigonal elongation of the Fe octahedron, due to the Jahn-Teller effect, observed in siderite and ankerite, results in elongation of the Ca octahedron which is sensitive to distortion because the radius of Ca2+ is close to the upper limit for octahedral coordination. Co, Ni, Cu, Zn octahedra are also thought to be deformed, relative to Mg octahedra, in carbonates.The free energy of formation (ΔGof) of R2+CO3 becomes more positive with increasing octahedral distortion. Estimated ΔGof(dolomite) as well as stabilities and solubility limits of R2+ in natural and synthetic dolomites suggest a series in order of decreasing stability: Mg >Mn >Zn >Fe >Co >Ni >Cu.ΔGof(est.) for the terminal Fe-dolomite solid solution [72 mol% CaFe(CO3)2] in the system CaCO3-MgCO3-FeCO3 may represent an empirical threshold value for dolomite stability which lies between ΔGof for Mn- and Zn-dolomites. While Zn-dolomite is probably not a stable phase, very extensive solid solution toward CaZn(CO3)2 is to be expected in the system CaCO3-MgCO3-ZnCO3. The tendency for transition metal dolomites to contain excess CaCO3 can also be accounted for in terms of octahedral distortion and AGof.  相似文献   

8.
The heat capacity of synthetic andradite garnet (Ca3Fe2Si3O12) was measured between 9.6 and 365.5 K by cryogenic adiabatic calorimetry and from 340 to 990 K by differential scanning calorimetry. At 298.15 K Cop,m and Som are 351.9 ± 0.7 and 316.4 ± 2.0 J/(mol·K), respectively.Andradite has a λ-peak in Cop,m with a maximum at 11.7 ± 0.2 K which is presumably associated with the antiferromagnetic ordering of the magnetic moments of the Fe3+ ions. The Gibbs free energy of formation, ΔfGom (298.15 K) of andradite is −5414.8 ± 5.5 kJ/mol and was obtained by combining our entropy and heat capacity data with the known breakdown of andradite to pseudowollastonite and hematite at ≈ 1410 to 1438 K. From a reexamination of the calcite + quartz = wollastonite equilibrium data we obtained ΔfHom (298.15 K) = − 1634.5 ± 1.8 kJ/mol for wollastonite.Between 300 and 1000 K the molar heat capacity of andradite can be represented by the equation Cop,m = 809.24 - 7.025 × 10−2T− 7.403 × 103T−0.5 − 6.789 × 105T−2. We have also used our thermochemical data for andradite to estimate the Gibbs free energy of formation of hedenbergite (CaFeSi2O6) for which we obtained ΔfGom (298.15 K) = −2674.3 ± 5.8 kJ/mol.  相似文献   

9.
The application of chemical and isotopic geothermometry to geothermal systems is reviewed, pointing out the uses and limitations of specific reactions in estimating deep temperatures from well, hot-spring and fumarole discharges.At present the most reliable indicators are: the silica-water equilibria; the Na/K ratio; the isotopic distributions Δ2H(H2“H2O), Δ2H(H2“CH4), Δ18O(H2O“HSO?4); and the gas reactions CO2 + 4H2 ? CH4 + 2H2O, and 2NH3 ? N2 + 3H2. Many other qualitative chemical indicators exist.  相似文献   

10.
Hydrochemical studies were carried out in Mulugu-Venkatapur Mandals of Warangal district, Telangana state, India to find out the causes of high fluorides in groundwater and surface water causing a widespread incidence of fluorosis in local population. The fluoride concentration in groundwater ranges from 0.28 to 5.48 mg/l with a mean of 1.26 mg/l in pre-monsoon and 0.21 to 4.43 mg/l with a mean 1.45 mg/l in post-monsoon. About 32% and 34% of samples in pre and post-monsoon containing fluoride concentrations that exceed the permissible limit. The Modified Piper diagram reflects that, water belong to Ca+2-Mg+2-HCO3 - to Na+-HCO3 - facies. Negative chloroalkali indices in both the seasons prove that ion exchange took place between Na+ & K+ with Ca+2 and Mg+2 in aquatic solution in host rock. Different plots for major ions and molar ratios suggest that weathering of silicate rocks and water-rock interaction is responsible for major ion chemistry of water. High fluoride content in groundwater attributed to continuous water-rock interaction during the process of percolation with fluorite bearing country rocks under arid, low precipitation, and high evaporation conditions. The low calcium content in rocks and soils, and the presence of high content of sodium bicarbonate in soils and waters are important factors favouring high levels of fluoride in waters. The basement rocks provide abundant mineral sources of fluoride in the form of amphibole, biotite, fluorite, mica and apatite.  相似文献   

11.
The standard thermodynamic properties at 25°C, 1 bar (ΔG fo, ΔH fo, S o, C Po, V o, ω) and the coefficients of the revised Helgeson–Kirkham–Flowers equations of state were evaluated for several aqueous complexes formed by dissolved metals and either arsenate or arsenite ions. The guidelines of Shock and Helgeson (Geochim Cosmochim Acta 52:2009–2036, 1988) and Sverjensky et al. (Geochim Cosmochim Acta 61:1359–1412, 1997) were followed and corroborated with alternative approaches, whenever possible. The SUPCRT92 computer code was used to generate the log K of the destruction reactions of these metal–arsenate and metal–arsenite aqueous complexes at pressures and temperatures required by the EQ3/6 software package, version 7.2b. Apart from the AlAsO4o and FeAsO4o complexes, our log K at 25°C, 1 bar are in fair agreement with those of Whiting (MS Thesis, Colorado School of Mines, Golden, CO, 1992). Moreover, the equilibrium constants evaluated in this study are in good to fair agreement with those determined experimentally for the Ca–dihydroarsenate and Ca–hydroarsenate complexes at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) and for Fe(III)–hydroarsenate complex at 25°C (Raposo et al., J Sol Chem 35:79–94, 2006), whereas the disagreement with the log K measured for the Ca–arsenate complex at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) might be due to uncertainties in this measured value. The implications of aqueous complexing between dissolved metals and arsenate/arsenite ions were investigated for seawater, high-temperature geothermal liquids and acid mine drainage and aqueous solutions deriving from mixing of acid mine waters and surface waters. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

12.
《Chemical Geology》2006,225(1-2):40-60
Fluorite is the most common fluoride mineral in magmatic silicic systems and its crystallization can moderate or buffer fluorine concentrations in these settings. We have experimentally determined fluorite solubility and speciation mechanisms in haplogranitic melts at 800–950 °C, 100 MPa and aqueous-fluid saturation. The starting haplogranite compositions: peraluminous (alumina saturation index, ASI = 1.2), subaluminous (ASI = 1.0) and peralkaline (ASI = 0.8) were variably doped with CaO or F2O−1 in the form of stoichiometric mineral or glass mixtures. The solubility of fluorite along the fluorite–hydrous haplogranite binaries is low: 1.054 ± 0.085 wt.% CaF2 (peralkaline), 0.822 ± 0.076 wt.% (subaluminous) and 1.92 ± 0.15 wt.% (peraluminous) at 800 °C, 100 MPa and 10 wt.% H2O, and exhibits a minimum at ASI  1. Fluorite saturation isotherms are strongly hyperbolic in the CaO–F2O−1 space, suggesting that fluorite saturation is controlled by the activity product of CaO and F2O−1, i.e., these components are partially decoupled in the melt structure. The form of fluorite liquidus isotherms implies distinct roles of fluorite crystallization: in Ca-dominant systems, fluorite crystallization is controlled by the fluorine concentration in the melt only and remains nearly independent of calcium contents; in F-rich systems, the crystallization of fluorite is determined by CaO contents and it does not buffer fluorine concentration in the melt. The apparent equilibrium constant, K, for the equilibrium CaO + cF2O−1 = CaF2 (+ associates) is log K=  (2.449 ± 0.085)·Al2O3exc + (4.902 ± 0.066); the reaction-stoichiometry parameter varies as follows: c=  (0.92 ± 0.11)·Al2O3exc + (1.042 ± 0.084) at 800 °C, 100 MPa and fluid saturation where Al2O3exc are molar percent alumina in excess over alkali oxides. The reaction stoichiometry, c, changes at subaluminous composition: in peralkaline melts, competition of other network modifiers for excess fluorine anions leads to the preferential alkali–F short-range order, whereas in peraluminous compositions, excess alumina associates with calcium cations to form calcioaluminate tetrahedra. The temperature dependence of fluorite solubility is described by the binary symmetric Margules parameter, W = 36.0 ± 1.4 kJ (peralkaline), 39.7 ± 0.5 kJ (subaluminous) and 32.8 ± 0.7 kJ (peraluminous). The strong positive deviations from ideal mixing imply the occurrence of CaF2–granite liquid–liquid immiscibility at temperatures above 1258 °C, which is consistent with previous experimental data. These experimental results suggest very low solubilities of fluorite in Ca-rich melts, consistent with the lack of fluorine enrichment in peralkaline rhyolites and calc-alkaline batholiths. On the other hand, high CaO concentrations necessary to crystallize fluorite in F-rich peraluminous melts are not observed in nature and thus magmatic crystallization of fluorite in topaz-bearing silicic suites is suppressed. A procedure for calculating fluorite solubility and the liquidus isotherms for a whole-rock composition and temperature of interest is provided.  相似文献   

13.
The deep water feeding wet-steam wells in four high-temperature geothermal areas in Iceland have highly variable salinity as reflected in the chlorine concentrations which vary from 20 to 19000 ppm. Using available values for equilibrium constants, the activities of 26 chemical species involving the major components of the reservoir water have been calculated and quantitative evaluations of solute/ solute, mineral/solute chemical equilibria in these geothermal systems have been made.The unflashed reservoir water is just saturated with calcite. The saline geothermal waters, which represent heated sea-water, are just saturated with anhydrite, but the dilute waters, which are of meteoric origin, are somewhat undersaturated with this mineral. The fluoride mobility is thought to be limited by an ionic exchange reaction where F? replaces some of the OH? in the layered silicates. The pH of the unflashed reservoir water is governed by ionic exchange equilibrium in which all the major cations participitate. At a given temperature it seems likely that the activity of one cation fixes the activities of all the other major cations and hydrogen ion. If this is so and we take all the other chemical equilibria which have been demonstrated to exist for granted, it turns out that the major element composition of the unflashed high-temperature geothermal waters is controlled by two independent variables only. These variables are the temperature and the supply to the water of the incompatible element chlorine, incompatible indicating that this element is not incorporated in the geothermal minerals.  相似文献   

14.
Long-term intake of high-fluoride groundwater causes endemic fluorosis. This study, for the first time, discovered that the salt lake water intrusion into neighboring shallow aquifers might result in elevation of fluoride content of the groundwater. Two cross-sections along the groundwater flow paths were selected to study the geochemical processes controlling fluoride concentration in Yuncheng basin, northern China. There are two major reasons for the observed elevation of fluoride content: one is the direct contribution of the saline water; the other is the undersaturation of the groundwater with respect to fluorite due to salt water intrusion, which appears to be more important reason. The processes of the fluorine activity reduction and the change of Na/Ca ratio in groundwater induced by the intrusion of saline water favor further dissolution of fluorine-bearing mineral, and it was modeled using PHREEQC. With the increase in Na concentration (by adding NaCl or Na2SO4 as Na source, calcium content kept invariable), the increase of NaF concentration was rapid at first and then became slower; and the concentrations of HF, HF2, CaF+, and MgF+ were continuously decreasing. The geochemical conditions in the study area are advantageous to the complexation of F with Na+ and the decline of saturation index of CaF2, regardless of the water type (Cl–Na or SO4–Na type water).  相似文献   

15.
The conversion of secondary lead orthophosphate [PbHPO4] into chloropyromorphite [Pb5(PO4)3Cl] in ca. 10?1 M NaCl solutions has been investigated at 25°C. From the composition of the supernatant solutions, the solubility product constant for Pb5(PO4)3Cl has been calculated to be 10?84.4±0.1, corresponding to ΔG?° of ?906.2 kcal mol?1. The solution equilibria and phase relationships in the system PbCl2-PbO-P2O8-H2O are discussed along with the geological implications.  相似文献   

16.
The enthalpies of formation of a number of crystalline silicates from the oxides at 986 K were determined by oxide melt solution calorimetry. The values of ΔH°f, 986, in kcal/mol, are as follows: MgCaSi2O6, ? 34.3 ± 0.4; CoCaSi2O6, ? 26.7 ± 0.5; NiCaSi2O6, ? 27.1 ± 0.5; MnSiO3, ? 6.3 ± 0.3; Mn2SiO4, ? 12.2 ± 0.3. In addition, for MnSiO3 (rhodonite)→ MnSiO3 (pyroxmangite), ΔH°986 = + 0.06 ± 0.33kcal/mol and for MgCaSi2O6 (diopside) = MgCaSi2O6 (glass), ΔH°986 = + 21.0 ± 0.3 kcal/ mol. For hedenbergite, FeCaSi2O6, ΔG°1350 = ?25.6 ± 1.5 kcal/mol. In terms of pyroxene phase equilibria and crystal chemistry, our thermochemical data support the generally accepted crystallographic arguments that (a) the C2/c clinopyroxene structure increases in stability with decreasing size of the ion occupying the Ml site in the MCaSi2O6 series, and (b) the energy (and enthalpy) differences between orthopyroxene, clinopyroxene, and pyroxenoid structures are generally quite small and often less than 500 cal/mol in magnitude.  相似文献   

17.
Measurements of the heats of solution (ΔHsoln) in molten Pb2B2O5 at 708°C of anhydrous magnesian cordierites, prepared with a range of structural states, show that the enthalpy effect associated with Al/Si ordering is substantial (? 9.76 ± 1.56 kcal mole?1). Differences in the state of order between synthetic cordierites used in phase equilibrium studies and cordierites in the natural environment could lead to significant errors in the estimation of palaeo-pressures and temperatures. A continuous change of ΔHsoln with annealing time supports the suggestion of putnis (1980) that the hexagonal → orthorhombic transformation in cordierite, which can occur via a modulated structure, is truly continuous under metastable conditions. In addition, a linear relation between ΔHsoln and the logarithm of annealing time has been found, which provides some insight into the nature of the ordering mechanisms at an atomic level. Al and Si exchanges occur continuously between neighbouring tetrahedral sites with a net drift towards increasing order. No kinetic or thermochemical distinction can be made between the development of long range and short range order.The enthalpy of vitrification (~ 12 kcal mole?1) for a metastable stuffed β-quartz polymorph of cordierite composition is similar to that for pure quartz (on a per two oxygen basis), while the heat of vitrification for even the most disordered cordierite seen in this study is more than a factor of three greater (~40 kcal mole?1). This is consistent with the view that cordierite glass resembles the quartz structure more closely than the crystalline cordierite structure, and that crystallisation of the glass below ~900°C is controlled by a tetrahedral framework.  相似文献   

18.
The concentrations of fluorine in groundwater of North Jordan range from 0.009 to 0.055 mg/l. Other chemical parameters, e.g. pH, EC, TDS, Cl, TH, HCO3, PO4, SO4, NO3, NH4, K, Ca, Mg, and NO3 have been studied and showed higher concentrations in HCO3 and NO3 of 307 and 51 mg/l, respectively. Thermodynamic considerations show that almost all the analyzed samples are undersaturated with respect to calcite and fluorite. This undersaturation is probably due to their low availability in the locations. Fluoride concentration shows a positive relation to pH and HCO3, whereas Cl, Mg, Ca, and Na initially increase and then decrease with increasing fluoride in the water. Saturation indexes of fluorite and calcite are estimated. The chemistry of the groundwater is controlled by the fluorite and calcite solubility. The topography of the area has exerted control on the aerial extent of fluoride concentration.  相似文献   

19.
《Ore Geology Reviews》2003,22(1-2):133-141
A mineralogical and geochemical (fluid inclusion, stable and radiogenic isotopes) study of the Berta F–(Pb–Zn) vein system has identified the source and temperature of the fluid reservoirs involved and proved the existence of two separate hydrothermal events at the mine scale, which reflect distinct periods of regional fluid circulation. Main stage minerals (fluorite I, sulphides, calcite I and barite I) precipitated by mixing between a polysaline H2S bearing (δ34S=11‰) brine (up to 23% NaCl eq salinity) and a more dilute fluid (δ18O from −3.2‰ to 0‰), at temperatures between 80 and 150°C. The progressive increase in 87Sr/86Sr ratio from the early precipitated minerals (0.71242 in calcite I) to the late ones (0.71894 in fluorite II) is mainly (but not exclusively) due to a difference in age separating the two hydrothermal events. The assumed genetic model for the main stage fluorite (I) is based on a convective circulation of surficial waters leaching the crystalline basement rocks acquiring a high salinity, high 87Sr/86Sr ratios and a high temperature. These fluids then mixed with low salinity–low temperature waters, having a low 87Sr/86Sr ratio. An at least Jurassic age is suggested for the main period of vein filling, contemporaneous with the extensional regime during the Mesozoic, when fluid circulation was probably enhanced by crustal thinning. During the early Burdigalian (lower Miocene), a new period of important extension in this area took place. Hydrothermal activity related to this new and younger extensional regime is geochemically different and produced a distinctive mineralogical record, developing a set of veinlets filled with green octahedral fluorite (fluorite II), calcite (II) and barite (II). The Sr isotope compositions of these late stage vein minerals are compatible with leaching the granodiorite host-rocks during recent times. The existence of successive hydrothermal events in the same area is not surprising as geothermal systems, like La Garriga–Samalus, are still active and currently precipitating fluorite.  相似文献   

20.
Vaterite is shown to be unstable with respect to calcite at 25°C by measurements of the enthalpies of solution in 0·1 N HCl under 0·97 atm CO2 and the solubilities in water under 0·97 atm CO2 of the two polymorphs. For a pure, synthetic vaterite ΔH (tr) = ?1036 ±16 cal mol?1 and ΔG(tr) = ?790 ± 25 cal mol?1 for the transition to calcite. For other vaterites aged longer during preparation ΔH(tr) is smaller and shows a linear relationship with the X-ray line broadening which extrapolates to ΔH(tr) = ?545 ± 30 cal mo?1 for zero broadening. The use of X-ray line broadening as a measure of crystal imperfection and stability is discussed for various synthetic and natural vaterites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号