首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
简要归纳了陆面露水资源独特的生态和气候效应,分析了开发利用陆面露水资源的理论依据,并重点从局地气候条件的选择和陆水凝结面的改进2个方面讨论了陆面露水资源开发利用的科学思路和技术措施。  相似文献   

2.
关于陆面降露水测量方法及其开发利用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张强  问晓梅  王胜  张杰 《高原气象》2010,29(4):1085-1092
在系统总结以往陆面降露水观测仪器和测量方法的基础上,比较全面地分析了目前一些常用降露水观测仪器的基本特点,归纳出了几种典型的降露水观测方法,并解释了这些方法和仪器的主要科学原理,比较了它们的优缺点和适用性。同时,还提出了进一步改进陆面降露水观测仪器和发展降露水观测方法的初步思路。最后,简要探讨了开发利用降露水的技术措施和科学建议。  相似文献   

3.
黄土高原陆面水分的凝结现象及收支特征试验研究   总被引:7,自引:2,他引:5  
张强  王胜  问晓梅  南玉合  曾剑 《气象学报》2012,70(1):128-135
中国黄土高原是全球独特的地理区域,其陆面水分过程比较特殊。利用黄土高原陆面过程试验研究(LOPEX)的陇中黄土高原定西陆面过程综合观测站的资料,分析了陆面水分凝结现象及其出现频率与局地微气象条件的关系,研究了露水(霜)量及其出现频率的季节分布特征以及受降水和天气阴、晴的影响规律。同时,对比分析了降水、露水、雾水和土壤吸附水对陆面水分的贡献率,讨论了涡动相关法、蒸渗计和蒸发皿观测的陆面蒸发量的差别及其与陆面水分来源的年平衡关系,给出了半干旱区陆面水分平衡的日循环特征。发现露水对风速、大气湿度、近地层温度梯度的依赖很强,一般在风速为1.5 m/s、相对湿度大于80%和逆温强度为0.25℃的情况下露水(霜)量最大;刚降水后的晴天露水量比较大;实际蒸散量与蒸发力的差距十分明显,陆面水分平衡特征表现为一个"呼吸"过程。  相似文献   

4.
陆面过程是影响大气环流和气候变化的基本物理、生化过程之一。沙漠陆面过程及相应的小气候效应已经成为当前沙漠气象研究的热门问题。近年来,在沙漠陆面过程野外观测、陆面过程特征及参数化、陆面过程模拟、小气候及陆面过程对小气候影响等方面已取得重大进展。本文对于沙漠小气候、沙漠陆面过程及沙漠陆面过程参数化进行了简要概述,重点总结了国内外在沙漠地区气候考察、沙漠边界层高度、沙漠热力环流、绿洲效应、塔克拉玛干沙漠气候特征、沙漠陆面过程野外观测试验及结果、沙漠陆面过程对气候的影响、沙漠陆面过程参数化方案方面的成果,回顾了近年来利用地面观测设备和数值模式等对气候效应和陆面过程直接观测和数值模拟所获得的观测事实和模拟试验,并讨论了其陆面过程参数化对模拟的影响,在总结前人研究成果的基础上对未来的研究方向进行了讨论。  相似文献   

5.
简评陆面过程模式   总被引:23,自引:1,他引:22  
张强 《气象科学》1998,18(3):295-304
在这篇文章中,阐述了陆面过程对天气,气候和大气环流的影响以及陆面过程模式在大气数值模拟中的重要性;回顾了陆面过程模式的发展历史;分析了一些陆面过程模式之间的主要结构差别;讨论了目前陆面过程模式的发展水平和未来的发展方向;简述了大气中尺度模式与陆面过程耦合的必要性以及当今耦合模式的研究现状。  相似文献   

6.
干旱区天气、气候数值模拟的研究进展   总被引:5,自引:0,他引:5  
干旱区的气候模拟有着很强特殊性。气候模式是研究和探讨干旱区形成物理机制的有效手段和工具。介绍了近年来国内外干旱气候数值模拟和试验的研究与进展.总结和评述了陆面过程中地表反照率、土壤湿度、植被状况的参数化和对气候的影响.讨论和阐述陆面过程在气候模拟中的重要性。对干旱区的气候和天气灾害的数值模式模拟研究作了一些评述,并对干旱区数值模拟的有关问题进行了讨论和展望。指出干旱区陆面过程的深入研究和干旱区陆面参数的标定,是改进干旱区气候模拟的重要途径。  相似文献   

7.
利用ERA-Interim再分析资料作为边界条件,基于耦合陆面模式Noah-MP的区域气候模式WRF在东亚区域进行了动力降尺度模拟(简称WRF2),对比格点观测资料,评估了动力降尺度对青藏高原极端气温指数的模拟能力,在此控制试验基础上,分别将WRF的陆面模式替换为Noah LSM,边界条件替换为CCSM4,进行了两组敏感性试验(分别是WRF1和WRF3),通过与控制试验的比较,分析了边界条件和陆面模式对极端气温指数模拟的影响。结果表明,WRF2能较好地模拟青藏高原极端气温指数气候态的空间分布,但存在一定的冷偏差;受边界条件影响WRF3模拟的极端气温指数的气候倾向率存在负偏差。同时,尽管采用不同的边界条件,耦合相同陆面过程的两次数值试验对极端气温空间分布的模拟能力相似,相比WRF2,WRF1表现出更强的冷偏差;但边界条件对极端气温指数气候倾向率的影响大于陆面模式,WRF3模拟的极端气温指数气候倾向率与观测结果更为接近。  相似文献   

8.
利用ERA-Interim再分析资料作为边界条件,基于耦合陆面模式Noah-MP的区域气候模式WRF在东亚区域进行了动力降尺度模拟(简称WRF2),对比格点观测资料,评估了动力降尺度对青藏高原极端气温指数的模拟能力,在此控制试验基础上,分别将WRF的陆面模式替换为Noah LSM,边界条件替换为CCSM4,进行了两组敏感性试验(分别是WRF1和WRF3),通过与控制试验的比较,分析了边界条件和陆面模式对极端气温指数模拟的影响。结果表明,WRF2能较好地模拟青藏高原极端气温指数气候态的空间分布,但存在一定的冷偏差;受边界条件影响WRF3模拟的极端气温指数的气候倾向率存在负偏差。同时,尽管采用不同的边界条件,耦合相同陆面过程的两次数值试验对极端气温空间分布的模拟能力相似,相比WRF2,WRF1表现出更强的冷偏差;但边界条件对极端气温指数气候倾向率的影响大于陆面模式,WRF3模拟的极端气温指数气候倾向率与观测结果更为接近。  相似文献   

9.
张强  王胜  黄荣辉 《干旱气象》2011,(2):133-136
陆面过程和大气边界层是气候系统的重要环节,对大气和气候有明显影响.本文在总结以往研究过程的基础上,归纳了我国西北干旱区陆面过程和大气边界层在4个方面的独特性,分析了这些独特性对天气过程和气候特征的6个方面影响.并且,讨论了陆面过程和大气边界层科学未来需要重点关注的4个重要问题,对如何继续发展做了一些初步思考.  相似文献   

10.
夏露  张强  岳平  刘君圣 《气象科学》2017,37(3):339-347
本文利用兰州大学半干旱气候与环境观测站(SACOL站)2006—2012年陆面过程观测资料以及榆中站气象资料,分析了陆面各辐射收支分量对于气候波动的响应,并且研究了地表反照率年际波动变化,讨论了各陆面过程参数对于黄土高原气候背景年际波动的反馈。并且根据黄土高原降水类型将全年分为冬夏半年讨论,以得到更为显著的年际变化特征和相关关系。结果显示,2006—2012年气温降水的趋势与近年来黄土高原暖干化总趋势相吻合。地表浅层土壤湿度和温度都与气温、降水呈现很好的响应。气候因素的综合影响是地表反照率变化波动的原因。通过冬夏半年资料区分探究得到,长波辐射分量与气候要素的相关较短波辐射分量与气候要素的相关性更强。但总体而言,陆面过程对于该地区气候背景波动的响应机制是较为复杂的。  相似文献   

11.
Canopy-level humidity is often less at night during fine weather in a mid-latitude city, compared to its rural surroundings. This feature has been attributed, in part, to reduced urban dew, but links are largely unproven, because urban dew data are rare. In this study, surface moisture (i.e., dew + guttation by blotting) and dewfall (by mini-lysimeter) were measured at rural and urban residential sites in Vancouver, Canada, during the summer of 1996. Air temperature and humidity were measured at both sites, and on rural-to-urban vehicle traverses. Weather and location effects were evident. Humidity data suggested the small (< 1 g m–3) urban moisture excess observed on fine nights was linked to reduced urban dew. For grass, the frequency of moisture events, and surface moisture amounts, were similar for both sites. However, on grass, rural dewfall (mean=0.10 mm per night) was more than urban dewfall (mean=0.07 mm per night). On the other hand, data for a roof lysimeter (mean dewfall=0.12 mm per night) showed that an urban roof could rival rural grass as a favoured location for dewfall in Vancouver.  相似文献   

12.
Effects of global irrigation on the near-surface climate   总被引:3,自引:0,他引:3  
Irrigation delivers about 2,600 km3 of water to the land surface each year, or about 2% of annual precipitation over land. We investigated how this redistribution of water affects the global climate, focusing on its effects on near-surface temperatures. Using the Community Atmosphere Model (CAM) coupled to the Community Land Model (CLM), we compared global simulations with and without irrigation. To approximate actual irrigation amounts and locations as closely as possible, we used national-level census data of agricultural water withdrawals, disaggregated with maps of croplands, areas equipped for irrigation, and climatic water deficits. We further investigated the sensitivity of our results to the timing and spatial extent of irrigation. We found that irrigation alters climate significantly in some regions, but has a negligible effect on global-average near-surface temperatures. Irrigation cooled the northern mid-latitudes; the central and southeast United States, portions of southeast China and portions of southern and southeast Asia cooled by ~0.5 K averaged over the year. Much of northern Canada, on the other hand, warmed by ~1 K. The cooling effect of irrigation seemed to be dominated by indirect effects like an increase in cloud cover, rather than by direct evaporative cooling. The regional effects of irrigation were as large as those seen in previous studies of land cover change, showing that changes in land management can be as important as changes in land cover in terms of their climatic effects. Our results were sensitive to the area of irrigation, but were insensitive to the details of irrigation timing and delivery.  相似文献   

13.
On the contribution of atmospheric moisture to dew formation   总被引:4,自引:0,他引:4  
The relative contributions of dewfall (a flux of water vapour from air to surface) and distillation (a flux of water vapour from soil to canopy) to dew formation on closed canopy and bare soil surfaces are assessed, and the dependence of dew amount upon wind speed, absolute temperature, atmospheric stability, relative humidity, soil characteristics and cloudiness, all of which are significant factors, is evaluated. Some of these evaluations provide refinements to similar ones given in Monteith (1961). High dewfall rates are usually 0.06 mm hr–1 over canopy or bare soil, though upon a canopy under soil-saturated and air-saturated conditions, rates of dew formation may reach 0.07–0.09 mm hr–1 with contributions from distillation. Various sets of observations are reanalyzed to illustrate the importance of the horizontal advection of moisture in the nocturnal boundary layer (NBL) to observed high rates of dew formation arising from the atmospheric contribution of water vapour (dewfall). These locally observed high dewfall rates must be the result of small-scale or mesoscale horizontal advection of moisture in the NBL, since the humidity changes within the typically shallow NBL required to balance the loss of water at the surface are not observed. Over extensive areas of uniform surface (horizontal scales 10 km), such continuously high dewfall rates could only be balanced by a local supply of atmospheric moisture since advection of moisture would necessarily be small.  相似文献   

14.
Roy Darwin 《Climatic change》1999,41(3-4):371-411
During the past few years two new methods, each based on the analogous region concept, have been developed to account for farmer adaptation in response to global climatic change. The first, called 'Ricardian' by Mendelsohn, Nordhaus, and Shaw (1994), econometrically estimates the impact of climatic and other variables on the value of farm real estate. Under some conditions, estimates of climate-induced changes in farm real estate capture first-round adaptations by farmers and represent the economic value of climatic change on agriculture. The second method, promulgated by Darwin et al. (1994) in the Future Agricultural Resources Model (FARM), uses a geographic information system to empirically link climatically derived land classes with other inputs and agricultural outputs in an economic model of the world. FARM provides estimates of economic impacts that fully account for all responses by economic agents under global climate change as well as estimates of Ricardian rents. The primary objective of this analysis is to evaluate how well changes in Ricardian rents measure agricultural or other effects of climatic change after all economic agents around the world have responded. Results indicate that changes in Ricardian rents on agricultural land are poor quantitative, but good qualitative, measures of how global climatic change is likely to affect the welfare of agricultural landowners, if one recognizes that increases in Ricardian rents actually indicate losses in landowner welfare and vice versa. Results also indicate that regional changes in Ricardian rents on all land are good qualitative measures of changes in regional welfare. They are poor quantitative welfare measures because they systematically overestimate both benefits and losses and are on average upwardly biased because inflated benefits are larger than exaggerated losses. Results also indicate that, when based on existing land-use patterns, changes in Ricardian rents on all the world's land are poor quantitative and qualitative measures of changes in world welfare. Despite these shortcomings, changes in Ricardian rents can provide useful information when other measures are not available. In this analysis, for example, estimated changes in Ricardian rents on all land indicate that climatic change would likely have detrimental effects in Latin America and Africa, beneficial effects in the former Soviet Union, and either detrimental or beneficial impacts in eastern and northern Europe and western and southern Asia. This is consistent with previous studies showing that climatic change would likely have detrimental, beneficial, and mixed effects on economic welfare in, respectively, equatorial, high latitude, and temperate areas. Estimated changes in Ricardian rents also indicate that aggregating Africa, Latin America, the former Soviet Union, eastern and northern Europe, and western and southern Asia into one region causes FARM's economic model to generate upwardly biased changes in world welfare. Modified results from scenarios with moderately flexible land-use change and which account for current land-use patterns indicate that world welfare may increase if the average surface land temperature does not increase by more than 1.0 or 2.0°C. If the average surface land temperature increases by 3.0°C or more, however, then world welfare may decline.  相似文献   

15.
In this study, a groundwater exploitation scheme is incorporated into the regional climate model, RegCM4, and the climatic responses to anthropogenic alteration of groundwater are then investigated over the Haihe River Basin in Northern China where groundwater resources are overexploited. The scheme models anthropogenic groundwater exploitation and water consumption, which are further divided into agricultural irrigation, industrial use and domestic use. Four 30-year on-line exploitation simulations and one control test without exploitation are conducted using the developed model with different water demands estimated from relevant socioeconomic data. The results reveal that the groundwater exploitation and water consumption cause increasing wetting and cooling effects on the local land surface and in the lower troposphere, along with a rapidly declining groundwater table in the basin. The cooling and wetting effects also extended outside the basin, especially in the regions downwind of the prevailing westerly wind, where increased precipitation occurs. The changes in the four exploitation simulations positively relate to their different water demands and are highly non-linear. The largest changes in climatic variables usually appear in spring and summer, the time of crop growth. To gain further insights into the direct changes in land-surface variables due to groundwater exploitation regardless of the atmospheric feedbacks, three off-line simulations using the land surface model Community Land Model version 3.5 are also conducted to distinguish these direct changes on the land surface of the basin. The results indicate that the direct changes of land-surface variables respond linearly to water demand if the climatic feedbacks are not considered, while non-linear climatic feedbacks enhance the differences in the on-line exploitation simulations.  相似文献   

16.
Understanding changes in land surface processes over the past several decades requires knowledge of trends and interannual variability in surface energy fluxes in response to climate change. In our study, the Community Land Model version 3.5 (CLM3.5), driven by the latest updated hybrid reanalysis-observational surface climate data from Princeton University, is used to obtain global distributions of surface energy fluxes during 1948 to 2000. Based on the climate data and simulation results, long-term trends and interannual variability (IAV) of both climatic variables and surface energy fluxes for this span of 50+ years are derived and analyzed. Regions with strong long-term trends and large IAV for both climatic variables and surface energy fluxes are identified. These analyses reveal seasonal variations in the spatial patterns of climate and surface fluxes; however, spatial patterns in trends and IAV for surface energy fluxes over the past ~50 years do not fully correspond to those for climatic variables, indicating complex responses of land surfaces to changes in the climatic forcings.  相似文献   

17.
垦荒的若干小气候效应   总被引:4,自引:2,他引:4  
马玉堂  姚文权  徐兆生 《气象学报》1982,40(3):353-360,326
本文应用呼伦贝尔草原开垦地和未垦地连续两年的野外观测资料,分析了垦荒后春夏之交(5—6月)土壤热、水状况,贴地层大气动力、热力状况及地表热量平衡特征等发生的变化。指出,垦荒的小气候效应是多方面的和明显的,特别各种热力效应尤为显著。因而,垦荒这一人类活动对气象状况的影响是值得重视的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号