首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Polar Bear Pass is a large High Arctic low‐gradient wetland (100 km2) bordered by low‐lying hills which are notched by a series of v‐shaped valleys. The spring and summer hydrology of two High Arctic hillslope‐wetland catchments, a first‐order stream, 0·2 km2 Landing Strip Creek (LSC) and a larger second‐order basin, 4·2 km2 Windy Creek (WC), is described here. A water balance framework was employed in 2008 to examine the movement of water from upland reaches into the low‐lying wetland. Snowcover was low in both basins (<50 mm in water equivalent units), but they both exhibited nival‐type regimes. After the main snowmelt season ended, runoff ceased in the smaller catchment (LSC), but not at the larger basin (WC) which continued to flow throughout the summer. Both basins responded to summer rains in different ways. At LSC, late‐summer continuous streamflow occurred only when rainfall satisfied the large soil moisture deficit in the upper bowl‐shaped zone of the basin. At WC, the presence of thinly thawed, ice‐rich polygonal terrain within the stream channel and in the upper reaches of the catchment likely limited infiltration in these near‐stream zones and enhanced runoff in response to both moderate and high rainfall. Subsequently, seasonal runoff ratios differed between the two sites (0·19 vs 0·68) as did the seasonal storage + residual (+16 vs ?50 mm). This suggests that the post‐snowmelt season runoff response to summer precipitation is very much modified by the unique basin characteristics (soil‐type, vegetation, ground ice) and their location within each stream order type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A key issue in the study of the carbon cycle is constraining the stocks and fluxes in and between C‐reservoirs. Among these, the role and importance of fossil organic carbon (FOC) release by weathering of outcropping sedimentary rocks on continental surfaces is still debated and remains poorly constrained. Our work focuses on FOC fluxes due to chemical and mechanical weathering of marls in two experimental watersheds with typical badlands geomorphology (Draix watersheds, Laval and Moulin, Alpes de Haute Provence, France). Organic matter from bedrock, soil litter and riverine particles are characterized by Rock‐Eval 6 pyrolysis. FOC fluxes due to mechanical weathering are then estimated by monitoring the annual particulate solid exports at the outlets of the watersheds (1985–2005 period). FOC fluxes from chemical weathering were calculated using Ca2+ concentrations in dissolved loads (year 2002) to assess the amount of FOC released by the dissolution of the carbonate matrix. Results show that FOC delivery is mainly driven by mechanical weathering, with a yield ranging from 30 to 59 t km‐2 yr‐1 in the Moulin (0.08 km2) and Laval (0.86 km2) catchments, respectively, (1985–2005 average). The release of FOC attributed to chemical weathering was 2.2 to 4.2 t km‐2 for the year 2002. These high FOC fluxes from badlands are similar to those observed in tectonically active mountain catchments. At a regional scale, badland outcropping within the Durance watershed does not exceed 0.25% in area of the Rhône catchment, but could annually deliver 12 000 t yr‐1 of FOC. This flux could correspond to 27% of the total particulate organic carbon (POC) load exported by the Rhône River to the Mediterranean Sea. At a global scale, our findings suggest that erosion of badlands may contribute significantly to the transfer of FOC from continental surfaces to depositional environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Landscapes evolve in response to external forces, such as tectonics and climate, that influence surface processes of erosion and weathering. Internal feedbacks between erosion and weathering also play an integral role in regulating the landscapes response. Our understanding of these internal and external feedbacks is limited to a handful of field‐based studies, only a few of which have explicitly examined saprolite weathering. Here, we report rates of erosion and weathering in saprolite and soil to quantify how climate influences denudation, by focusing on an elevation transect in the western Sierra Nevada Mountains, California. We use an adapted mass balance approach and couple soil‐production rates from the cosmogenic radionuclide (CRN) 10Be with zirconium concentrations in rock, saprolite and soil. Our approach includes deep saprolite weathering and suggests that previous studies may have underestimated denudation rates across similar landscapes. Along the studied climate gradient, chemical weathering rates peak at middle elevations (1200–2000 m), averaging 112·3 ± 9·7 t km–2 y–1 compared to high and low elevation sites (46·8 ± 5·2 t km?2 y?1). Measured weathering rates follow similar patterns with climate as those of predicted silica fluxes, modeled using an Arrhenius temperature relationship and a linear relationship between flux and precipitation. Furthermore, chemical weathering and erosion are tightly correlated across our sites, and physical erosion rates increase with both saprolite weathering rates and intensity. Unexpectedly, saprolite and soil weathering intensities are inversely related, such that more weathered saprolites are overlain by weakly weathered soils. These data quantify exciting links between climate, weathering and erosion, and together suggest that climate controls chemical weathering via temperature and moisture control on chemical reaction rates. Our results also suggest that saprolite weathering reduces bedrock coherence, leading to faster rates of soil transport that, in turn, decrease material residence times in the soil column and limit soil weathering. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Dissolved major ions, Sr concentrations and 87Sr/86Sr ratios of 10 coastal lakes from the Larsemann Hills, East Antarctica have been studied to constrain their solute sources, transport and glacial weathering patterns in their catchments. In absence of perennial river/streams, lakes serve as only reliable archive to study land surface processes in these low-temperature regions. The lake water chemistry is mostly Na-Cl type and it does not show any significant depth variations. Sr isotope compositions of these lakes vary from 0.7110 to 0.7211 with an average value of 0.7145, which is higher than modern seawater value. In addition to oceanic sources, major ions and Sr isotopic data show appreciable amount of solute supply from chemical weathering of silicate rocks in lake catchments and dissolution of Ca-Mg rich salts produced during the freezing of seawaters. The role of sulphide oxidation and carbonate weathering are found to be minimal on lake hydro-chemistry in this part of Antarctica. Inverse model calculations using this chemical dataset provide first-order estimates of dissolved cations and Sr; they are mostly derived from oceanic (seawater + snow) sources (cations approximately 76%) and (Sr approximately 92%) with minimal supplies from weathering of silicates (cations approximately 15%); (Sr approximately 2%) and Ca-rich minerals (cations approximately 9%); (Sr approximately 7%). The silicate weathering rate and its corresponding atmospheric CO2 consumption rate estimates for Scandrett lake catchment (3.6 ± 0.3 tons/km2/year and 0.5 × 105 moles/km2/year), are lower than that of reported values for the average global river basins (5.4 tons/km2/year and 0.9 × 105 tons/km2/year) respectively. The present study provides a comprehensive report of chemical weathering intensity and its role in atmospheric CO2 consumption in low-temperature pristine environment of Antarctica. These estimates underscore the importance of Antarctica weathering on atmospheric CO2 budget, particularly during the past warmer periods when the large area was exposed and available for intense chemical weathering.  相似文献   

5.
Characteristic badlands are incised into Plio‐Pleistocene clays in Basilicata, southern Italy, creating steep, scarp slopes with knife‐edge ridges (calanchi) and small dome‐shaped forms (biancane). Erosion pin data for the period 1997–2003 give mean annual erosion rates for dome‐shaped biancane in the range 9–19 mm a?1, while rates for the calanchi scarps are lower, at 7–10 mm a?1. The erosion pin data also show a non‐linear relationship with slope angle. Maximum erosion rates coincide with a slope angle of 35°, within an envelope defined by combining the theoretical effects of both rainsplash and surface weathering. Monitoring of surface changes and erosion rates for two 0·5 m2 cleared swathes on biancane forms reveals a complex relationship between weathering and erosion. Characteristic forms can develop from large blocks of intact clay bedrock over a time period of less than 30 a. The implications of the measured erosion rates for the landform association of mountain front/pediment/domed inselberg are explored. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The variability of rainfall in space and time is an essential driver of many processes in nature but little is known about its extent on the sub‐kilometre scale, despite many agricultural and environmental experiments on this scale. A network of 13 tipping‐bucket rain gauges was operated on a 1·4 km2 test site in southern Germany for four years to quantify spatial trends in rainfall depth, intensity, erosivity, and predicted runoff. The random measuring error ranged from 10% to 0·1% in case of 1 mm and 100 mm rainfall, respectively. The wind effects could be well described by the mean slope of the horizon at the stations. Except for one station, which was excluded from further analysis, the relative differences due to wind were in maximum ±5%. Gradients in rainfall depth representing the 1‐km2 scale derived by linear regressions were much larger and ranged from 1·0 to 15·7 mm km?1 with a mean of 4·2 mm km?1 (median 3·3 mm km?1). They mainly developed during short bursts of rain and thus gradients were even larger for rain intensities and caused a variation in rain erosivity of up to 255% for an individual event. The trends did not have a single primary direction and thus level out on the long term, but for short‐time periods or for single events the assumption of spatially uniform rainfall is invalid on the sub‐kilometre scale. The strength of the spatial trend increased with rain intensity. This has important implications for any hydrological or geomorphologic process sensitive to maximum rain intensities, especially when focusing on large, rare events. These sub‐kilometre scale differences are hence highly relevant for environmental processes acting on short‐time scales like flooding or erosion. They should be considered during establishing, validating and application of any event‐based runoff or erosion model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Sustainable management and exploitation policies as well as suitable conservation and mitigation strategies are mandatory to preserve cultural heritage and to reduce threats, weathering phenomena, and human actions that may produce significant deterioration and alteration of cultural heritage and “its environment”. In this context, remote sensing technologies can offer useful data to timely update information and documentation and set up reliable tools for systematic monitoring of cultural properties. In this study, multi-temporal and multi-sensor satellite data from Corona, Landsat, Spot, Quickbird, and Sentinel-2A have been exploited along with spatial analysis to investigate the area of the Theban temples at west Luxor (Egypt), severely threatened by uncontrolled urban sprawl. The results from our analyses showed that the urban expansion continuously occurred during the whole investigated period causing an increasing in urban areas around (1) 1.316 km2 from 1967 to 1984, (2) 1.705 km2 from 1984 to 2000, (3) 0.978 km2 from 2000 to 2003, (4) 2.314 km2 from 2003 to 2011, and (5) 1.377 km2 from 2011 to 2017. The random urban expansion caused bad sewage networks and high groundwater depth which in turn affected the archaeological areas directly (as evident on a landscape view) and indirectly by causing changes (growing) in the level of ground water depth and increasing and accelerating weathering phenomena. The quantification and mapping of urban sprawl enabled us not only to quantify and spatially characterize urban sprawl but also to create a model to mitigate the impact and provide some operational recommendations to protect the archaeological site. Outcomes from our analysis pointed out that today the tremendous availability of advanced remote sensing data has opened new prospectives unthinkable several years ago.  相似文献   

8.
This paper demonstrates that four large sector collapses have affected the NW flank of the Stromboli volcano in the past 13 ka, alternating with growth phases, in order to contribute to the evaluation of the critical conditions which trigger lateral collapses, a reconstruction of the geometry of each collapse of the volcano edifice in the four stages that preceded the relative collapse events is also presented, and a computation of the landslide volume. This reconstruction is based on new field data plotted in three dimensions. Prior to the initial 13-ka collapse, the volcano was 1125±100 m high above sea level. The collapse had a volume of 2.23±0.87 km3, whereas the pre-collapse volcano volume was 218.8±7.7 km3. The next edifice that failed was 900±70 m high a.s.l. The collapse volume was 1±0.54 km3, with a precollapse volcano volume of 201.4±5.4 km3. The edifice then grew to 1000±60 m a.s.l. The third collapse had a volume of 1.08±0.39 km3 and occurred within a volcano with a volume of 209.1±4.6 km3. This was followed by a new growth phase followed by the last collapse with a volume of 0.73±0.22 km3. The volcano volume was about the same as the present one. The present active crater zone is at 780 m a.s.l. in the first three collapses, sliding surfaces cut the main magma conduit. In the last collapse, the upper scarp coincided with the conduit location. Dyking along a main NE-trending weakness zone across the volcano summit exerted a lateral force for collapse inception. The decrease of the landslide volumes with the age, and the concentric scarps of the four collapses, suggest that the younger sliding planes tended to become more superficial and to decrease the areal extent. This is interpreted as due to: (a) successively weaker eruptive products from dominantly lavas to dominantly pyroclastics; and (b) the feedback effects between collapses and dykes that injected along the lateral segments of the first collapse slide plane.  相似文献   

9.
The summer discharge pattern of the Skeldal River, which drains a 560 km2 partly glacierized catchment in north‐east Greenland, is dominated by diurnal oscillations reflecting variations in the melt rate of snow and ice in the basin. Superimposed on this diurnal pattern are numerous short‐lived discharge fluctuations of irregular periodicity and magnitude. The larger fluctuations are described and attributed to both rainfall events and periodic collapse of the glacier margin damming flow from beneath the Skelbrae glacier. Other minor fluctuations are less readily explained but are associated with changes in the channelized and distributed reservoirs and possibly temporary blockage of subglacial conduits caused by ice melt with subsequent damming. Fluctuations in suspended sediment concentration (SSC) are normally associated with discharge fluctuations, although examples of ‘transient flushes’ were observed where marked increases in SSC occurred in the absence of corresponding discharge variations. A strong relationship between the event discharge increase and event SSC increase for rainfall‐induced events was established, but no such relationship existed for non‐rainfall‐induced events. There is some evidence for an exhaustion effect in the SSC patterns both at the event time‐scale and as the month proceeds. A mean suspended sediment load of 1765 ± 0·26 t day?1 was estimated for the study period, which would be equivalent to a suspended sediment yield of 732 ± 4 t km?2 year?1. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Continental weathering plays a dominant role in regulating the global carbon cycle, soil chemistry and nutrient supply to oceans. The CO2-mediated silicate weathering acts as a major CO2 sink, whereas sulphuric acid-mediated carbonate dissolution releases CO2 to the atmosphere–ocean system. In this study, dissolved major ions and silica concentrations of two tropical (Damodar and Subarnarekha) river systems from India have been measured to constrain the type and rate of chemical weathering for these basins. The total dissolved solids (TDS) of these rivers, a measure of total solute supply from all possible sources, are about 2–3 times higher than that of the global average for rivers. Mass balance calculations involving inverse modelling estimate that 63 ± 11% of total cations are derived from rock weathering, of which 27 ± 7% of cations are supplied through silicate weathering. The sulphide-S concentrations are estimated by comparing the water chemistry of these two rivers with that of a nearby river (Brahmani) with similar lithology but no signatures of sulphide oxidation. The outflows of Damodar and Subarnarekha rivers receive 17% and 55% of SO4 through sulphide oxidation, respectively. The sulphide oxidation fluxes from the ore mining areas, such as upper Damodar (0.52 × 109 mol/yr) and lower Subarnarekha (0.66 × 109 mol/yr) basins, are disproportionally (~9 times) higher compared to their fractional areal coverage to the global drainage area. The corresponding CO2 release rate (2.84 × 104 mol/km2/yr) for the Damodar basin is lower by five times than its CO2 uptake rate (1.38 × 105 mol/km2/yr). The outcomes of this study underscore the dominance of sulphide oxidation in controlling the dissolved chemical (cationic and sulphur) fluxes.  相似文献   

11.
Jun Xiao  Fei Zhang  Zhangdong Jin 《水文研究》2016,30(25):4855-4869
Hydrochemistry methods were used to decipher the weathering and geochemical processes controlling solute acquisition of river waters in the dry season in the middle Loess Plateau (MLP), one of the most severely eroded areas and turbid riverine systems in the world. River waters were neutral to slightly alkaline with pH varying from 7.6 to 9.6. The total dissolved solids decreased from northwest to southeast with a mean value of 804 mg/l, much higher than the global average and other large rivers in China. Ternary diagram showed that river waters were dominated by Na+, HCO3?, and Cl? with the main water‐type of HCO3?–Cl?–Na+. Saturation index values, Mg2+, Ca2+, and HCO3? analyses indicated the preferential Ca2+ removal by calcite precipitation. Gibbs plots and stoichiometry plots indicated that the dissolved solutes were mainly derived from rock weathering with minor anthropogenic and atmospheric inputs. Samples in the northwestern basin are also influenced by evaporation. A forward model of mass budget calculation showed that, owing to high soluble characteristics, evaporite dissolution was a major feature of river waters and contributed 41% to the total dissolved cations on average, while carbonate and silicate weathering contributed 28%,and 25% on average, respectively. Besides evaporite dissolution, cation exchange is also responsible for the high concentrations of Na+ in river water. Spatial variations showed that evaporite dissolution and silicate weathering were higher in the northern basin, whereas carbonate weathering was higher in the southern basin. Different from most rivers in the world, the physical erosion rates (varying from 117.7 to 4116.6 t/km2y) are much higher than the chemical weathering rates (varying from 3.54 to 6.76 t/km2y) in the MLP because of the loose structure of loess and poor vegetation in the basin. In the future, studies on comparison of water geochemistry in different seasons and on influence of different types of land use and soil salinization on water geochemistry, denudation rates, and water quality should be strengthened in the MLP. These results shed some lights on processes responsible for modern loess weathering and also indicate the importance of time‐series sampling strategy for river water chemistry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
An innovative approach for regionalizing the 3‐D effective porosity field is presented and applied to two large, overexploited, and deeply weathered crystalline aquifers located in southern India. The method derives from earlier work on regionalizing a 2‐D effective porosity field in that part of an aquifer where the water table fluctuates, which is now extended over the entire aquifer using a 3‐D approach. A method based on geological and geophysical surveys has also been developed for mapping the weathering profile layers (saprolite and fractured layers). The method for regionalizing 3‐D effective porosity combines water table fluctuation and groundwater budget techniques at various cell sizes with the use of satellite‐based data (for groundwater abstraction), the structure of the weathering profile, and geostatistical techniques. The approach is presented in detail for the Kudaliar watershed (983 km2) and tested on the 730 km2 Anantapur watershed. At watershed scale, the effective porosity of the aquifer ranges from 0.5% to 2% in Kudaliar and between 0.3% and 1% in Anantapur, which agrees with earlier works. Results show that (a) depending on the geology and on the structure of the weathering profile, the vertical distribution of effective porosity can be very different and that the fractured layers in crystalline aquifers are not necessarily characterized by a rapid decrease in effective porosity and (b) that the lateral variations in effective porosity can be larger than the vertical ones. These variations suggest that within a same weathering profile, the density of open fractures and/or degree of weathering in the fractured zone may significantly vary from a place to another. The proposed method provides information on the spatial distribution of effective porosity that is of prime interest in terms of flux and contaminant transport in crystalline aquifers. Implications for mapping groundwater storage and scarcity are also discussed, which should help in improving groundwater resource management strategies.  相似文献   

13.
The Australian Nullarbor Plain, one of the world's largest limestone platforms (~200 000 km2), has few distinctive surface karst features for its size, but is known for its enigmatic ‘blowholes’, which can display strong barometric draughts. Thousands of these vertical tubes with decimetre–metre (dm–m) scale diameter puncture the largely featureless terrain. The cause and distribution of these has remained unclear, but they have been thought to originate from downward dissolution and/or salt weathering. To elucidate blowhole distribution and mode of formation we (i) correlated existing location data with Shuttle Radar Topography Mission (SRTM) data, which distinguishes the subtle undulations (< 10 m per km) of the landscape, (ii) surveyed blowhole morphology and (iii) determined their rock surface hardness. Over a sampled area of 4200 km2, the distribution of 615 known blowholes is not correlated with present topography. Blowholes are often connected to small or, in some cases extensive, but typically shallow cavities, which exhibit numerous ‘cupolas’ (dome‐shaped pockets) in their ceilings. Statistical arguments suggest that cavities with cupolas are common, but in only a few cases do these puncture the surface. Hardness measurements indicate that salt weathering is not their main cause. Our observations suggest that blowholes do not develop downwards, but occur where a cupola breaks through the surface. Lowering of the land surface is suggested to be the main cause for this breakthrough. Although cupolas may undergo some modification under the current climate, they, as well as the shallow caves they are formed in, are likely to be palaeokarst features formed under a shallower water table and wetter conditions in the past. The findings presented have implications for theories of dissolutional forms development in caves worldwide. The environmental history of the Nullarbor platform allows testing of such theories, because many other factors, which complicate karst evolution elsewhere, have not interfered with landform evolution here. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
River deltas are the major repositories of terrestrial sediment flux into the world's oceans. Reduction in riverine inputs into the deltas due to upstream damming might lead to a relative dominance of waves, tides and currents that are especially exacerbated by coastal subsidence and sea‐level rise ultimately affecting the delta environment. Analysis of multi‐date satellite imagery and maps covering the Krishna and Godavari deltas along the east coast of India revealed a net erosion of 76 km2 area along the entire 336‐km‐long twin delta coast during the past 43 years (1965–2008) with a progressively increasing rate from 1·39 km2 yr?1 between 1965 and 1990, to 2·32 km2 yr?1 during 1990–2000 and more or less sustained at 2·25 km2 yr?1 during 2000–2008. At present the Krishna has almost become a closed basin with decreased water discharges into the delta from 61·88 km3 during 1951–1959 to 11·82 km3 by 2000–2008; and the suspended sediment loads from 9 million tons during 1966–1969 to as low as 0·4 million tons by 2000–2005. In the case of the Godavari delta, although the water discharge data do not show any major change, there was almost a three‐fold reduction in its suspended sediment loads from 150·2 million tons during 1970–1979 to 57·2 million tons by 2000–2006. A comparison of data on annual sediment loads recorded along the Krishna and Godavari Rivers showed consistently lower sediment quantities at the locations downstream of dams than at their upstream counterparts. Reports based on bathymetric surveys revealed considerable reduction in the storage capacities of reservoirs behind such dams. Apparently sediment retention at the dams is the main reason for the pronounced coastal erosion along the Krishna and Godavari deltas during the past four decades, which is coeval to the hectic dam construction activity in these river basins. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

15.
The Mont-Dore Massif (500 km2), the youngest stratovolcano of the French Massif Central, consists of two volcanic edifices: the Guéry and the Sancy. To improve our knowledge of the oldest explosive stages of the Mont-Dore Massif, we studied 40Ar/39Ar-dated (through single-grain laser and step-heating experiments) 11 pyroclastic units from the Guéry stratovolcano. We demonstrate that the explosive history of the Guéry can be divided into four cycles of explosive eruption activity between 3.09 and 1.46 Ma (G.I to G.IV). We have also ascertained that deposits associated with the 3.1–3.0-Ma rhyolitic activity, which includes the 5-km3 “Grande Nappe” ignimbrite, are not recorded in the central part of the Mont-Dore Massif. All the pyroclastites found in the left bank of the Dordogne River belong to a later explosive phase (2.86–2.58 Ma, G.II) and were channelled down into valleys or topographic lows where they are currently nested. This later activity also gave rise to most of the volcanic products in the Perrier Plateau (30 km east of the Mont-Dore Massif); three quarters of the volcano-sedimentary sequence (up to 100 m thick) was emplaced within less than 20 ky, associated with several flank collapses in the northeastern part of the Guéry. The age of the “Fournet flora” (2.69?±?0.01 Ma) found within an ash bed belonging to G.II suggests that temperate forests already existed in the French Massif Central before the Pliocene/Pleistocene boundary. The Guéry’s third explosive eruption activity cycle (G.III) lasted between 2.36 and 1.91 Ma. It encompassed the Guéry Lake and Morangie pumice and ash deposits, as well as seven other important events recorded as centimetric ash beds some 60 to 100 km southeast of the Massif in the Velay region. We propose a general tephrochronology for the Mont-Dore stratovolcano covering the last 3.1 My. This chronology is based on 44 40Ar/39Ar-dated events belonging to eight explosive eruption cycles each lasting between 100 and 200 ky. The occurrence of only one pumice deposit in the 800-ky period between 1.9 and 1.1 Ma suggests that volcanic explosive activity was strongly reduced or quiescent.  相似文献   

16.
Snowmelt‐fed springs and small (0.5 km2) upland catchments in alpine areas of the western United States contribute significantly to the quantity and inorganic chemistry of water delivered to downstream basins but have not been studied extensively. Mineral weathering, transit time, and hydrologic mixing control the solute chemistry of waters that drain the upland zone of Niwot Ridge, Colorado Front Range, and adjacent areas in the granitic core of the Southern Rocky Mountains. Water in 37 springs sampled in this study flows in generally short steep paths (~0.3 km) through shallow regolith with mean transit times (MTT) of weeks to months, producing solutions dominated by Si, Ca2+, Na+, and HCO3?, locally SO42?. Rock type is a significant control on spring, surface, and shallow groundwater chemistry, and plagioclase (oligoclase) is the major source of dissolved Na+ and Si. Concentrations of Ca2+ exceed stoichiometric predictions of oligoclase weathering by ~3.5×; excess Ca2+ likely represents weathering of aeolian material, vein calcite, or trace minerals. Concentrations of base cations and Si increase slowly with estimated MTT of 0.2 years for Niwot Ridge spring waters, and several years for shallow groundwater sampled by wells. Chemical weathering of silicate minerals is slow with estimated rates of ~2.0 and 0.2 pmol·m?2·s?1 for oligoclase and microcline, respectively; the most mineralized spring waters are saturated only with respect to kaolinite and montmorillonite. More than 50% of the dissolved base cations + Si measured in Boulder Creek at Orodell (~25 km downstream) accumulate before water emerges from alpine springs on Niwot Ridge. Warming global temperatures are shifting more high‐elevation precipitation to rain, potentially changing run‐off patterns, transit time, and solute loads. Acquisition of solutes by alpine waters thus has implications far beyond small upland catchments.  相似文献   

17.
太湖的泥沙与演变   总被引:2,自引:2,他引:0  
吴小根 《湖泊科学》1992,4(3):54-60
历史时期,太湖是不断扩展的,其平均扩展速率为0.37km~2/a。据沙量平衡分析与计算表明。因湖岸崩塌和太湖水系的输沙作用,近期太湖的泥沙淤积量为9.28×10~5t/a.泥沙数量虽然不大,但经过长期的积累,对太湖演变具有深刻影响。就自然演变趋势而言,近期太湖面积仍以0.168km~2/a的速率扩大,容积则以3.95×10~5m~3/a的速率减小,太湖正进一步向浅平方向演变。然而,因围湖造田,建国以来,太湖的面积则以4.58km~2/a的速率在减小。  相似文献   

18.
Spatially discontinuous permafrost conditions frequently occur in the European Alps. How soils under such conditions have evolved and how they may react to climate warming is largely unknown. This study focuses on the comparison of nearby soils that are characterised by the presence or absence of permafrost (active‐layer thickness: 2–3 m) in the alpine (tundra) and subalpine (forest) range of the Eastern Swiss Alps using a multi‐method (geochemical and mineralogical) approach. Moreover, a new non‐steady‐state concept was applied to determine rates of chemical weathering, soil erosion, soil formation, soil denudation, and soil production. Long‐term chemical weathering rates, soil formation and erosion rates were assessed by using immobile elements, fine‐earth stocks and meteoric 10Be. In addition, the weathering index (K + Ca)/Ti, the amount of Fe‐ and Al‐oxyhydroxides and clay minerals characteristics were considered. All methods indicated that the differences between permafrost‐affected and non‐permafrost‐affected soils were small. Furthermore, the soils did not uniformly differ in their weathering behaviour. A tendency towards less intense weathering in soils that were affected by permafrost was noted: at most sites, weathering rates, the proportion of oxyhydroxides and the weathering stage of clay minerals were lower in permafrost soils. In part, erosion rates were higher at the permafrost sites and accounted for 79–97% of the denudation rates. In general, soil formation rates (8.8–86.7 t/km2/yr) were in the expected range for Alpine soils. Independent of permafrost conditions, it seems that the local microenvironment (particularly vegetation and subsequently soil organic matter) has strongly influenced denudation rates. As the climate has varied since the beginning of soil evolution, the conditions for soil formation and weathering were not stable over time. Soil evolution in high Alpine settings is complex owing to, among others, spatio‐temporal variations of permafrost conditions and thus climate. This makes predictions of future behaviour very difficult. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Peridotites exposed in the Yugu area in the Gyeonggi Massif, South Korea, near the boundary with the Okcheon Belt, exhibit mylonitic to strongly porphyroclastic textures, and are mostly spinel lherzolites. Subordinate dunites, harzburgites, and websterites are associated with the lherzolites. Amphiboles, often zoned from hornblende in the core to tremolite in the rim, are found only as neoblasts. Porphyroclasts have recorded equilibrium temperatures of about 1000°C, whereas neoblasts denote lower temperatures, about 800°C. Olivines are Fo90–91 in lherzolites and Fo91 in a dunite and a harzburgite. The Cr# (= Cr/(Cr + Al) atomic ratio) of spinels varies together with the Fo of olivines, being from 0.1 to 0.3 in lherzolites and around 0.5 in the dunite and harzburgite. The Na2O content of clinopyroxene porphyroclasts is relatively low, around 0.3 to 0.5 wt% in the most fertile lherzolite. The Yugu peridotites are similar in porphyroclast mineral chemistry not to continental spinel peridotites but to sub‐arc or abyssal peridotites. Textural and mineralogical characteristics indicate the successive cooling with hydration from the upper mantle to crustal conditions for the Yugu peridotites. Almost all clinopyroxenes and amphiboles show the same U‐shaped rare earth element (REE) patterns although the level is up to ten times higher for the latter. The hydration was associated with enrichment in light REE, resulting from either a slab‐derived fluid or a fluid circulating in the crust. The mantle‐wedge or abyssal peridotites were emplaced into the continental crust as the Yugu peridotite body during collision of continents to form a high‐pressure metamorphic belt in the Gyeonggi Massif. The peridotites from the Gyeonggi Massif exhibit lower‐pressure equilibration than peridotites, with or without garnets, from the Dabie–Sulu Collision Belt, China, which is possibly a westward extension of the Gyeonggi Massif.  相似文献   

20.
Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old‐growth redwood forests has not been evaluated to date. Old‐growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km‐2 and soil organic carbon can reach 46 800 Mg km‐2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old‐growth redwood forests. Carbon content, determined through loss‐on‐ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km‐2 yr‐1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km‐2 yr‐1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km‐2 yr‐1. Because the current extent of old‐growth redwood stands is less than 5% of its pre‐European‐settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号