首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《国际泥沙研究》2019,34(6):537-549
Dam removal can generate geomorphic disturbances, including channel bed and bank erosion and associated abrupt/pulsed release and downstream transfer of reservoir sediment, but the type and rate of geomorphic response often are hard to predict. The situation gets even more complex in systems which have been impacted by multiple dams and a long and complex engineering history. In previous studies one-dimensional (1-D) models were used to predict aspects of post-removal channel change. However, these models do not consider two-dimensional (2-D) effects of dam removal such as bank erosion processes and lateral migration. In the current study the impacts of multiple dams and their removal on channel evolution and sediment delivery were modeled by using a 2-D landscape evolution model (CAESAR-Lisflood) focusing on the following aspects: patterns, rates, and processes of geomorphic change and associated sediment delivery on annual to decadal timescales. The current modeling study revealed that geomorphic response to dam removal (i.e., channel evolution and associated rates of sediment delivery) in multiple dam settings is variable and complex in space and time. Complexity in geomorphic system response is related to differences in dam size, the proximity of upstream dams, related buffering effects and associated rates of upstream sediment supply, and emerging feedback processes as well as to the presence of channel stabilization measures. Modeled types and rates of geomorphic adjustment, using the 2-D landscape evolution model CAESAR-Lisflood, are similar to those reported in previous studies. Moreover, the use of a 2-D method showed some advantages compared to 1-D models, generating spatially varying patterns of erosion and deposition before and after dam removal that provide morphologies that are more readily comparable to field data as well as features like the lateral re-working of past reservoir deposits which further enables the maintenance of sediment delivery downstream.  相似文献   

2.
This study assessed the effect of the largest flood since dam regulation on geomorphic and large wood (LW) trends using LW distributions at three time periods on the 150 km long Garrison Reach of the Missouri River. In 2011, a flood exceeded 4390 m3/s for a two‐week period (705% above mean flow; 500 year flood). LW was measured using high resolution satellite imagery in summer 2010 and 2012. Ancillary data including forest character, vegetation cover, lateral bank retreat, and channel capacity. Lateral bank erosion removed approximately 7400 standing trees during the flood. Other mechanisms, that could account for the other two‐thirds of the measured in‐channel LW, include overland flow through floodplains and islands. LW transport was commonly near or over 100 km as indicated by longitudinal forest and bank loss and post‐flood LW distribution. LW concentrations shift at several locations along the river, both pre‐ and post‐flood, and correspond to geomorphic river regions created by the interaction of the Garrison Dam upstream and the Oahe Dam downstream. Areas near the upstream dam experienced proportionally higher rates of bank erosion and forest loss but in‐channel LW decreased, likely due to scouring. A large amount of LW moved during this flood, the chief anchoring mechanism was not bridges or narrow channel reaches but the channel complexity of the river delta created by the downstream reservoir. Areas near the downstream dam experienced bank accretion and large amounts of LW deposition. This study confirms the results of similar work in the Reach: despite a historic flood longitudinal LW and channel trends remain the same. Dam regulation has created a geomorphic and LW pattern that is largely uninterrupted by an unprecedented dam regulation era flood. River managers may require other tools than infrequent high intensity floods to restore geomorphic and LW patterns. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
Dam removals with unmanaged sediment releases are good opportunities to learn about channel response to abruptly increased bed material supply. Understanding these events is important because they affect aquatic habitats and human uses of floodplains. A longstanding paradigm in geomorphology holds that response rates to landscape disturbance exponentially decay through time. However, a previous study of the Merrimack Village Dam (MVD) removal on the Souhegan River in New Hampshire, USA, showed that an exponential function poorly described the early geomorphic response. Erosion of impounded sediments there was two‐phased. We had an opportunity to quantitatively test the two‐phase response model proposed for MVD by extending the record there and comparing it with data from the Simkins Dam removal on the Patapsco River in Maryland, USA. The watershed sizes are the same order of magnitude (102 km2), and at both sites low‐head dams were removed (~3–4 m) and ~65 000 m3 of sand‐sized sediments were discharged to low‐gradient reaches. Analyzing four years of repeat morphometry and sediment surveys at the Simkins site, as well as continuous discharge and turbidity data, we observed the two‐phase erosion response described for MVD. In the early phase, approximately 50% of the impounded sediment at Simkins was eroded rapidly during modest flows. After incision to base level and widening, a second phase began when further erosion depended on floods large enough to go over bank and access impounded sediments more distant from the newly‐formed channel. Fitting functional forms to the data for both sites, we found that two‐phase exponential models with changing decay constants fit the erosion data better than single‐phase models. Valley width influences the two‐phase erosion responses upstream, but downstream responses appear more closely related to local gradient, sediment re‐supply from the upstream impoundments, and base flows. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
1 INTRODUCTION The construction of more than 75,000 dams and reservoirs on rivers in the United States (Graf, 1999) has resulted in alteration of the hydrology, geometry, and sediment flow in many of the river channels downstream of dams. Additionally, hydrologic and geomorphic impacts lead to changes in the physical habitat affecting both the flora and fauna of the riparian and aquatic environments. Legislation for protection of endangered species as well as heightened interest in ma…  相似文献   

5.
1 INTRODUCTION 1. 1 Dam Removal The aging of the more than 75,000 dams in the U.S., coupled with the increasing awareness of their environmental costs, has made dam decommissioning and removal a topic of current interest to the scientific community, management agencies, and the general public. It is estimated that 85% of the dams in the U.S. will be near the end of their operational lives by the year 2020 (FEMA, 1999), necessitating thorough consideration of dam removal or repair for…  相似文献   

6.
《国际泥沙研究》2022,37(5):687-700
Globally, between 1950 and 2011 nearly 80,000 debris flow fatalities occurred in densely populated regions in mountainous terrain. Mitigation of these hazards includes the construction of check dams, which limit coarse sediment transport and in the European Alps number in the 100,000s. Check dam functionality depends on periodic, costly maintenance, but maintenance is not always possible and check dams often fail. As such, there is a need to quantify the long-term (10–100 years) geomorphic response of rivers to check dam failures. Here, for the first time, a landscape evolution model (CAESAR-Lisflood) driven by a weather generator is used to replicate check dam failures due to the lack of maintenance, check dam age, and flood occurrence. The model is applied to the Guerbe River, Switzerland, a pre-Alpine catchment containing 73 check dams that undergo simulated failure. Also presented is a novel method to calibrate CAESAR-Lisflood's hydrological component on this ungauged catchment. Using 100-year scenarios of check dam failure, the model indicates that check dam failures can produce 8 m of channel erosion and a 322% increase in sediment yield. The model suggests that after check dam failure, channel erosion is the remobilization of deposits accumulated behind check dams, and, after a single check dam failure channel equilibrium occurs in five years, but after many check dam failures channel equilibrium may not occur until 15 years. Overall, these findings support the continued maintenance of check dams.  相似文献   

7.
鱼类过坝后的上溯行为对鱼类寻找适宜的产卵、索饵等功能性栖息地至关重要。现阶段我国大多数研究聚焦于鱼类上溯通过鱼道的游泳行为量化,而过坝后的上溯行为分析鲜有报道。本研究在金沙江下游支流黑水河松新坝址处利用PIT(passive integrated transponder)遥测技术对松新电站过鱼对象短须裂腹鱼(Schizothorax wangchiachii)过坝后的上溯行为开展监测,考虑监测过程中水文情势变化对过坝后上溯行为的影响,采用生存分析方法,构建了耦合多因素(流量、水温、河道涨落水率、昼夜节律、肥满度等)的Cox风险比例回归模型,利用AIC模型准则筛选出最优模型参数,识别了影响鱼类过坝后上溯成功率的关键因素。结果表明:(1)短须裂腹鱼在松新鱼道的上溯效果显著优于河道;(2)水温及河道涨落率是影响短须裂腹鱼过坝后上溯效果的关键因素;(3)水温与短须裂腹鱼过坝后河道上溯成功率呈负相关,当水温超过短须裂腹鱼最适温度后,河道上溯成功率随着温度的上升呈递减趋势;河道涨落水率与短须裂腹鱼过坝后河道上溯成功率呈正相关,其中涨水情势下短须裂腹鱼河道成功上溯的概率高于落水,河道上溯成功率随着涨...  相似文献   

8.
Landslide dams are a common phenomenon. They form when a landslide reaches the bottom of a river valley causing a blockage. The first effect of such a dam is the infilling of a lake that inundates the areas upstream, while the possibility of a sudden dam collapse, with a rapid release of the impounded waters, poses a higher flood risk to the downstream areas. The results of the main inventories carried out to date on landslide dams, have been examined to determine criteria for forecasting landslide dam evolution with particular emphasis on the assessment of dam stability. Not all landslides result in the blockage of a river channel. This only occurs with ones that can move a large amount of material with moderate or high‐velocities. In most cases, these landslides are triggered by rainfall events or high magnitude earthquakes. A relationship also exists between the volume of the displaced material and the landslide dam stability. Several authors have proposed that landslide dam behaviour can be forecast by defining various geomorphological indexes, that result from the combination of variables identifying both the dam and the dammed river channel. Further developments of this geomorphological approach are presented in this paper by the definition of a dimensionless blockage index. Starting with an analysis of 84 episodes selected worldwide, it proved to be a useful tool for making accurate predictions concerning the fate of a landslide dam. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
When studying the evolution of landscape, it is difficult to discriminate the influence of anthropogenic from natural causes, or recognise changes caused by different sources of human action. This is especially challenging when the influence of certain sources is overprinted. For instance, although dam closure is the most common method of altering river courses, dam construction is often preceded by hydro‐technical works such as channel straightening, embankment construction or sediment mining. Both dam construction and the hydro‐technical works that precede dam closure can result in changes in the balance between sediment supply and transport capacity, and often, changes in river planform. The main objective of this study was to verify whether the works preceding dam closure are an important driver of river planform changes on the lower Drava River (Hungary). The case study is based on geological and geophysical surveys, as well as the analysis of historical maps covering an anabranching, 23 km long valley section. We show that channel straightening conducted prior to dam closure resulted in a transition from a meandering to sinuous planform with channel bars. Dam construction itself then caused enhanced incision, exposure of bar surfaces, vegetation encroachment and the formation of an anabranching planform. Based on this study, we developed models of alluvial island and channel planform evolution downstream of dams. Dam construction enhances channel incision, narrowing, and the reduction of flow caused by earlier hydro‐technical works. Many rivers downstream of dams experience episodes of anabranching or wandering, with a multi‐thread pattern replacing sinuous, braided and meandering courses. When incision continues, river patterns evolve from anabranching to sinuous via the attachment of alluvial islands to floodplains. However, the timing and sequence of these changes depend on hydrological and sediment supply regimes, geomorphic settings and anthropogenic actions accompanying dam construction. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
The Tongariro Power Development Scheme (TPDS) is used to regulate flow in the headwaters of the largest catchment on the North Island of New Zealand (the Waikato). Two small dams, the Rangipo Dam and the Poutu Intake Dam, were constructed in 1973 and 1983. The flow regime of the river is managed to divert freshes into the power scheme, but allows flows larger than 100 m3 s?1 to be released, to rework and transport sediment through the catchment. Analysis of aerial photos and maps spanning 1928 to 2007, alongside field measurements, show that there have been few hydrogeomorphic adjustments since dam construction. This includes limited changes to channel geometry, channel planform and bed material organization immediately downstream of the dams. In addition, offsite effects are minimal, both 500 m downstream of each dam, and in the more sensitive, less confined reaches in the lower catchment (11 km downstream of the Poutu Intake dam). The limited changes can be attributed to the locations of the dams within reaches characterised by bedrock gorges and confined within terraces. These locations act to flush sediments and impose margins that allow minimal adjustment of the channel. Bed material within this reach is characterised by the presence of a boulder lag. This is sourced from long-term incision into lahar deposits, and acts to limit the rate of incision, creating a steep and stable base upon which active fractions are transported. Just as importantly, significant storage in the low-relief volcanic plateau located in the upper catchment acts to disconnect and store the high sediment yields generated by active volcanic cones in the western sub-catchment upstream of the dams. This limits the rate of sediment supply to regulated reaches. Findings from this study show that analysis of reach-scale controls is essential in framing dam site locations in relation to the distribution of reaches and landscape units across the catchment. In this instance, tributary inputs downstream of the dams do not replenish the sediment and flow removed at the dam locations, as has been observed in other regulated systems. Rather, the river itself is resilient to change and flow variability is well managed allowing geomorphically effective floods to occur. Landscape setting is a key consideration in determining the hydrogeomorphic impact of flow regulation.  相似文献   

11.
Where dam construction eliminates natural barriers to fish movement between previously disconnected catchments then this presents an opportunity for the movement of species between previously discrete assemblages. Here, the movement of a non-native armoured catfish, Loricariichthys platymetopon, is detailed from its natural range in the lower Paraná River basin, Brazil, into its invasive range in the upper basin following construction of the Itaipu Dam. Its upstream dispersal into a major tributary, the Paranapanema River, is outlined, with focus on its establishment within hydroelectric dams. This case study thus provides further evidence of how river regulation can increase opportunities for biological invasions.  相似文献   

12.
Hydrological regimes strongly influence the biotic diversity of river ecosystems by structuring physical habitat within river channels and on floodplains. Modification of hydrological regimes by dam construction can have important consequences for river ecosystems. This study examines the impacts of the construction of two dams, the Gezhouba Dam and the Three Gorges Dam, on the hydrological regime of the Yangtze River in China. Analysis of hydrological change before and after dam construction is investigated by evaluating changes in the medians and ranges of variability of 33 hydrological parameters. Results show that the hydrological impact of the Gezhouba Dam is relatively small, affecting mainly the medians and variability of low flows, the rate of rise, and the number of hydrological reversals. The closure of the Three Gorges Dam has substantially altered the downstream flow regime, affecting the seasonal distribution of flows, the variability of flows, the magnitude of minimum flows, low‐flow pulses, the rate of rise, and hydrological reversals. These changes in flow regime have greatly influenced the aquatic biodiversity and fish community structure within the Yangtze River. In particular, populations of migratory fish have been negatively impacted. The results help to identify the magnitudes of hydrological alteration associated with the construction of dams on this important large river and also provide useful information to guide strategies aimed at restoration of the river's ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
紫坪铺水库蓄水前天然地震活动   总被引:8,自引:0,他引:8  
紫坪铺水库位于龙门山断裂带。了解和掌握水库蓄水前库坝区及其周围天然地震活动背景水平,可对水库诱发地震的危险性进行前期评价,可为蓄水后的诱发地震活动监测提供可靠的鉴别依据。紫坪铺水库地震台网在水库蓄水前运行逾1年,本文用这批资料提供表征库区及附近和库坝区蓄水前天然地震活动水平确切实用的各项指标。用全国和四川台网地震资料,给出含库区的较大区域地震活动背景和对库区的影响。  相似文献   

14.
Sediment causes a serious problem in relation to dam function. A cooperative sediment sluicing operation has been under way since 2017 to prevent sediment from accumulating in dams in the Mimi River,Miyazaki, Japan. To achieve a smooth and stable operation, it is very important to determine the sediment source and a sediment transport system to maintain the dam’s function. In the current study, the source and transport of sediment from the Mimi River basin have been analyzed with X-ray diffracti...  相似文献   

15.
We investigated dam behaviours during high-flow events and their robustness against perturbations in meteorological conditions using the H08 global hydrological model. Differences in these behaviours were examined by comparing simulation runs, with and without dams and using multiple meteorological datasets, at a case-study site, Fort Peck Dam on the Missouri River, USA. The results demonstrated that dam-regulated river flow reduced temporal variability over large time periods and also dampened inter-forcing discrepancies in river discharge (smoothing effects). However, during wet years, differences in peak flow were accentuated downstream of the dam, resulting in divergence in simulated peak flow across the meteorological forcing (pulsing effect). The pulsing effect was detected at other major dams in global simulations. Depending upon the meteorological forcing, the dams act as a selective filter against high-flow events. Synergy between a generic dam scheme and differences in meteorological forcing data might introduce additional uncertainties in global hydrological simulations.  相似文献   

16.
In Mediterranean semi‐arid conditions, the availability of studies monitoring channel adjustments as a response to reforestation and check dams over representative observation periods, could help develop new management strategies. This investigation is an integrated approach assessing the adjustments of channel morphology in a typical torrent of southern Italy after land‐use changes and check dam construction across a period of about 60 years. A statistical analysis of historical rainfall records, an analysis of land‐use changes in the catchment area and a geomorphological mapping of channel adjustments were carried out and combined with field surveys of bed surface grain‐size over a 5‐km reach including 14 check dams. The analysis of the historical rainfall records showed a slight decrease in the amount and erosivity of precipitation. Mapping of land‐use changes highlighted a general increase of vegetal coverage on the slopes adjacent to the monitored reaches. Together with the check dam network installation, this increase could have induced a reduction in water and sediment supply. The different erosional and depositional forms and adjustments showed a general narrowing between consecutive check dams together with local modifications detected upstream (bed aggradation and cross‐section expansion together with low‐flow realignments) and downstream (local incision) of the installed check dams. Changes in the torrent bends were also detected as a response to erosional and depositional processes with different intensities. The study highlighted: the efficiency of check dams against the disrupting power of intense floods by stabilizing the active channel and the influence of reforestation in increasing hillslope protection from erosion and disconnectivity of water and sediment flows towards the active channel. Only slight management interventions (for instance, the conversion of the existing check dams into open structures) are suggested, in order to mobilize the residual sediment avoiding further generalized incision of the active channel and coast line erosion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
《国际泥沙研究》2016,(4):299-310
The failure of the Barlin Dam in Taiwan, China offers an important case study for evaluating concepts in modeling the rapid erosion and channel recovery following intentional and unplanned dam removals. We present a modeling effort that applied a 1D and quasi-2D uncoupled hydraulics and sediment model (NETSTARS) to evaluate how discretization and parameterization influence thefitofbed elevationpredic-tions to observations following dam failure. Our analysis evaluated the model sensitivity to sediment transport function, active layer thickness, and number of stream tubes used to define the cross-section. Results indicate that a) the model is more sensitive to active layer thickness and sediment transport function than to the number of stream tubes, b) development of dam removal models are likely to benefit from varying the active layer thickness in time, and c) increased lateral discretization does not appear to improve model fit in the steep and rapidly changing river environment at our site. We conclude with discussion on differences between, identifying the need for, and general use of 1D, quasi-2D, and fully 2D models in dam removal and failure analysis.  相似文献   

18.
River reaches downstream of dams with constant residual discharge often lack sediment supply and periodic high flows due to dam sediment retention and flow regulation, respectively. To test a novel multi-deposit methodology for defining environmental flows for activating the dynamics of the river morphology downstream of dams, a flood was released from Rossens Dam in Switzerland. This event was combined for the first time with a multi-deposit configuration of sediment replenishment consisting of four artificial deposits allocated as alternate bars along the riverbanks as a restoration measure. To validate the sediment transport behaviour observed in laboratory tests, stones were equipped with radiofrequency identification (RFID) passive integrated transponder (PIT) tags, a fixed antenna was installed at the river bed and a mobile antenna was used to enable the investigation of the erosion, transport and deposition of replenished sediments. The duration of the erosion period was determined for the tracked stones, and average transport velocities were found to be on the order of 10–3 m/s. To estimate the erosion efficiency of the flood, defined as the eroded tagged stones compared with the released water volume, the hydrograph was divided into different periods: rising limb, constant peak discharge, decreasing limb. During the rising limb of the flood, which lasted for 20% of the total flood duration, more than 40% of the PIT tags were transported. The defined erosion efficiency is a measure to support the hydrographic design of artificial flood releases from dams. The deposition of tagged stones resulted in a repeating cluster formation, as expected from previous laboratory experiments, creating an increase in hydraulic habitat diversity. Comparison of the results obtained in the field and from laboratory experiments confirmed the robustness of the multi-deposit sediment replenishment method. Combined with the knowledge gained on the erosion efficiency, these results could motivate further applications and research into multi-deposit sediment replenishment techniques as a habitat-oriented river restoration measure. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
This work deals with the impacts of dams on large gravel -bed rivers in terms of altering coarse transport regimes and the relationship with river morphodynamics. Using data collected by a tracer -based monitoring programme carried out in a 4 -km -long study sector of the Parma River (Italy), located downstream from a relatively recently established dam, we applied a virtual velocity approach to estimate the coarse bed material load at four river cross -sections. Monitoring and calculation results provided new insights into the impacts of the dam on streambed material mobility and the sediment regime over the 17 -month calculation period. A longitudinal gradient of effects was observed along the study sector. Sections located closer to the dam are characterized by more evident impacts due to deficits in coarse sediment input from upstream. Sediment mobility here is strongly altered, especially in the highly armoured main channel, and the overall bed material load is extremely low. A partial recovery of sediment dynamics was observed at the sections located further from the dam, where estimates indicate higher sediment yield. The observed longitudinal trend in the coarse sediment transport regime matches the morphology, as the river shifts downstream from a sinuous configuration with alternate bars to a wandering one. The novel insights into alteration of coarse sediment dynamics and the relationship with river morphodynamics are potentially applicable to many other fluvial contexts affected by similar impoundments. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
This paper summarizes the latest developments, future prospects, and proposed countermeasures of reservoir sedimentation and channel scour downstream of the Three Gorges Reservoir (TGR) on the Yangtze River in China. Three key results have been found.(1) The incoming sediment load to the TGR has been significantly lower than expected.(2) The accumulated volume of sediment deposition in the TGR is smaller than expected because the overall sediment delivery ratio is relatively low, and the deposition in the near-dam area of the TGR is still developing.(3) River bed scour in the river reaches downstream of the Gezhouba Dam is still occurring and channel scour has extended to reaches as far downstream as the Hukou reach. Significantly, sedimentation of the TGR is less problematic than expected since the start of operation of the TGR on the one hand;on the other hand, the possible increases in sediment risks from dependence on upstream sediment control, deposition in the reservoir, and scour along middle Yangtze River should be paid more attention.(1) Sediment trapped by dams built along the upper Yangtze River and billion tons of loose materials on unstable slopes produced by the Wenchuan Earthquake could be new sediment sources for the upper Yangtze River. More seriously, possible release of this sediment into the upper Yangtze River due to new earthquakes or extreme climate events could overwhelm the river system, and produce catastrophic consequences.(2) Increasing sediment deposition in the TGR is harmful to the safety and efficiency of project operation and navigation.(3) The drastic scour along the middle Yangtze River has intensified the down-cutting of the riverbed and erosion of revetment, it has already led to increasing risk to flood control structures and ecological safety. It is suggested to continue the Field Observation Program, to initiate research programs and to focus on risks of sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号