首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The role of biomechanical effects of trees (BETs) in ecosystem and landscape dynamics is poorly understood. In this study, we aim to (i) describe a widely applicable methodology for quantifying the main BETs in soil, and (ii) analyze the actual frequencies, areas and soil volumes associated with these effects in a mountain temperate old‐growth forest. The research took place in the Boubínský Primeval Forest in the Czech Republic; this forest reserve, predominated by Fagus sylvatica L. and Picea abies (L.) Karst., is among the oldest protected areas in Europe. We evaluated the effects of 4000 standing and lying trees in an area of 10.2 ha from the viewpoint of the following features: tree uprooting, root mounding, bioprotection, trunk baumsteins (rock fragments displaced by trunk growth), root baumsteins, stump hole infilling, trunk and root systems displacements, depressions formed after trunk fall, stemwash, and trunkwash. BETs were recorded in 59% of standing and 51% of lying dead trees (excluding the pervasive soil displacement by thickening trunks and roots and the infilling of decayed stumps). Approximately one tenth of the trees showed simultaneous bioprotective and bioerosion effects. Different tree species and size categories exhibited significantly different biomechanical effects. A bioprotective function was the most frequent phenomenon observed, while treethrows prevailed from the viewpoint of areas and soil volumes affected. The total area influenced by the BETs was 342 m2 ha?1. An additional 774 m2 ha?1 were occupied by older treethrow pit‐mounds with already decayed uprooted trunks. The total volume of soil associated with the studied phenomena was 322 m3 ha?1, and apart from treethrows, volumes of the living and decaying root systems and bioprotective functions predominated. Other processes were not so frequent but still significant for biogeomorphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
In December 2008, 694 trees uprooted within a 108 ha (1·08 km2) watershed in central Massachusetts due to a severe ice storm, resulting in the displacement of ~1300 m3 of root material, unconsolidated sediment, and fractured bedrock. Overall, we find that uprooting and tree throw is often grouped in clusters and cascades; conifers displace more material than deciduous trees; areas with abundant mature hemlock and steep slopes are more susceptible to tree throw, with clusters as dense as 125 per hectare; and failure is predominantly downhill, suggesting that ice storms promote efficient downslope hillslope sediment transport in northern hardwood forests. Combining the recurrence interval of severe storms in New England (20–75 years) with the forest response presented here, we calculate a sediment transport rate of 2–5 × 10?5 m3 m?1 a?1 averaged over the entire watershed. Forest susceptibility to tree throw differed based on location in the watershed; some areas experienced up to ~30× higher than average sediment transport rates, while others experienced no tree throw. Two severe storms following the 2008 ice storm (hurricane in 2011; snow storm in October 2012) did not result in significant tree throw within the study area, highlighting that the coupling of storm severity and forest susceptibility controls the amount of tree throw during a given forest disturbance. In addition to recent tree throw from the 2008 ice storm, widespread pit and mound microtopography in the study area indicates that tree throw is a recurrent process in this landscape. Two factors emerge that will influence future ice storms related hillslope sediment transport in the steep forested hillslopes of New England: regional climate gradients and changing climate determine the size, intensity and recurrence of ice storms; forest management practices and health control the tree age and type. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In the last decade advances in surveying technology have opened up the possibility of representing topography and monitoring surface changes over experimental plots (<10 m2) in high resolution (~103 points m‐1). Yet the representativeness of these small plots is limited. With ‘Structure‐from‐Motion’ (SfM) and ‘Multi‐View Stereo’ (MVS) techniques now becoming part of the geomorphologist's toolkit, there is potential to expand further the scale at which we characterise topography and monitor geomorphic change morphometrically. Moving beyond previous plot‐scale work using Terrestrial Laser Scanning (TLS) surveys, this paper validates robustly a number of SfM‐MVS surveys against total station and extensive TLS data at three nested scales: plots (<30 m2) within a small catchment (4710 m2) within an eroding marl badland landscape (~1 km2). SfM surveys from a number of platforms are evaluated based on: (i) topography; (ii) sub‐grid roughness; and (iii) change‐detection capabilities at an annual scale. Oblique ground‐based images can provide a high‐quality surface equivalent to TLS at the plot scale, but become unreliable over larger areas of complex terrain. Degradation of surface quality with range is observed clearly for SfM models derived from aerial imagery. Recently modelled ‘doming’ effects from the use of vertical imagery are proven empirically as a piloted gyrocopter survey at 50m altitude with convergent off‐nadir imagery provided higher quality data than an Unmanned Aerial Vehicle (UAV) flying at the same height and collecting vertical imagery. For soil erosion monitoring, SfM can provide data comparable with TLS only from small survey ranges (~5 m) and is best limited to survey ranges ~10–20 m. Synthesis of these results with existing validation studies shows a clear degradation of root‐mean squared error (RMSE) with survey range, with a median ratio between RMSE and survey range of 1:639, and highlights the effect of the validation method (e.g. point‐cloud or raster‐based) on the estimated quality. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Saturated floodplains in Arctic deltas provide conditions favourable for frost mound growth. Little work has been reported from these settings to determine the origin of frost mounds and the controls on their distribution, to assess the longevity of individual mounds, or to quantify variation of mound distribution over time. A case study is presented on low mounds in low‐centred syngenetic ice‐wedge polygons of Big Lake Delta Plain, outer Mackenzie Delta. In 2008 and 2009, 12 mounds were examined by drilling to describe their morphologic variations and to investigate their growth processes. The mounds, containing a core of ice 15 to 58 cm thick, were less than 1 m high and 3 · 7 to 8 · 5 m in diameter; other mounds were over 10 m long. Organic inclusions in the ice, bubble densities, electrical conductivity profiles, and ice‐crystal structure indicated that the mounds were hydrostatic frost blisters. Up to six frost blisters were found within individual polygons due to the relatively small volume of water needed to create each mound. Frost‐blister densities, of greater than 1700 km–2, increased toward the wet centres of alluvial islands down gentle topographic gradients. The frost blisters were perennial, with individuals remaining identifiable on aerial photographs and satellite images for up to 10 years. Frost blisters collapsed along dilation cracks opened by hydrostatic uplift and by thawing from their sides caused by snow drifting and water ponding. Cyclical growth and decay of the mounds may degrade the visible polygonal network over time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The spatial pattern of medium‐term (a few months) dry aeolian dust accumulation in rocky deserts is predicted using short‐term deposition and erosion experiments in a wind tunnel. The predictions are tested in a field experiment set up in the northern Negev Desert of Israel. The results show that superimposing wind tunnel deposition and erosion maps usually leads to correct predictions of medium‐term dust accumulation. The predictions are somewhat less confident near the inflection lines of windward hillslopes, where small‐scale irregularities in the local topography make it difficult to locate the exact position of the areas of little accumulation. Elsewhere in the topography predictions are good, and the method works satisfactorily. Highest accumulation occurs on concave windward slopes and, to a lesser extent, on slopes parallel to the wind. Little accumulation occurs on the convex windward slopes and in dust separation bubbles. The smallest accumulation rates are observed immediately upwind of the top of pronounced hills and on leeslopes. The rate of dry dust accumulation measured during the field experiment varied from 17 to 93 g m−2 a−1, depending on the topographic position of the accumulation plots. For most plots, it was of the order of 30–60 g m−2 a−1. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Floods are an important geomorphic agent that accelerate sediment supply from bank failures. The quantitative proportions supplied by lateral inputs and the transport conditions of the channel can create local or extended accumulation zones within the channel reaches. These accumulation zones play an important role in the geomorphic regime of the stream. Knowledge of long‐term history of sediment supply is necessary to determine how these input and deposition forms developed. This study introduces a new approach for the quantification of past sediment supply via lateral erosion (incised banks and individual bank failures), using a case study of the confluence of three partial tributaries in the accumulation zone in the Outer Western Carpathians. For each tributary, as well as the channel reach downstream of the confluence zone, we calculated the mean of the largest bed particles and the unit stream power as indicators of transport capacity. We found that two of the tributaries supply significant amounts of sediment to the accumulation zone because of their higher unit stream power related to their higher transport potential, and observed coarser bed sediment. Seventy‐three bank failures with a total volume 395.5 m3 were mapped, and the sediment supply volume was dated using dendrogeomorphic analysis of 114 scarred tree roots (246 samples). The total volume of the dated sediment supply in the individual tributaries was 193.9 m3, whereas the volume of erosion in the accumulation zone was only 4.9 m3 for a period of approximately 30 years. The period represented by the dated tree roots included 12 years in which erosion events occurred and impacted the total sediment budget in the study area. Although sediment supply was greater than erosion in the accumulation zone, there are no present‐day signs of accretion. The rupture of a dam in an old pond (which is situated approximately 50 m below the accumulation zone) probably increased the transport conditions in the accumulation zone so that it balanced the high sediment supply from individual tributaries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Glacial‐lake outburst floods (GLOFs) on 3 September 1977 and 4 August 1985 dramatically modified channels and valleys in the Mount Everest region of Nepal by eroding, transporting, and depositing large quantities of sediment for tens of kilometres along the flood routes. The GLOF discharges were 7 to 60 times greater than normal floods derived from snowmelt runoff, glacier meltwater, and monsoonal precipitation (referred to as seasonal high flow floods, SHFFs). Specific stream power values ranged from as low as 1900 W m?2 in wide, low‐gradient valley segments to as high as 51 700 W m?2 in narrow, high‐gradient valley segments bounded by bedrock. Along the upper 16 km of the GLOF routes, the reach‐averaged specific stream power of the GLOFs was 3·2 to 8·0 times greater than the reach‐averaged specific stream power of the SHFFs. The greatest geomorphic change occurred along the upper 10 to 16 km of the GLOF routes, where the ratio between the GLOF specific stream power and the SHFF specific stream power was the greatest, there was an abundant supply of sediment, and channel/valley boundaries consisted primarily of unconsolidated sediment. Below 11 to 16 km from the source area, the geomorphic effects of the GLOFs were reduced because of the lower specific stream power ratio between the GLOFs and SHFFs, more resistant bedrock flow boundaries, reduced sediment supply, and the occurrence of past GLOFs. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The arid Qaidam Basin is the largest (~3.88 × 104 km2) basin on the north‐eastern Tibetan Plateau. Wind erosion in the area has been regarded as an important trigger for intra‐basin tectonic balance upheaval, geomorphologic development and as a major supplier of dust to the Chinese Loess Plateau downwind. An initial estimate of the rate of wind erosion (Kapp et al., 2011) based on geological cross‐sections has suggested up to 3.2 × 104 km3 of sediments has been deflated over the past 2.8 Ma, lowering the landscape by an average of 0.29 mm/yr. In this paper we re‐evaluate this estimate by dating surface crusts present on three playas within the basin. Understanding the development of these playas is crucial to assessing the overall role of the wind in shaping the regional landscape because they are typically capped with a thick salt crust which effectively protects them from wind erosion. Optically stimulated luminescence (OSL) and U‐series dating from a pit section and from the top of a deep drill core, together with results from magnetostratigraphy and a climate proxy record correlated to the marine oxygen isotope record, are used here to determine the age of the playa plains and suggest that the salt crusts have an age of c. 0.1 Ma. This young age and the wide distribution of resistant thick salt crusts of the playa plains indicate a much lower degree of wind erosion than previously suggested. The crusts protect the surface from significant surface erosion (including sediment exhumation and unloading) and whilst some wind erosion does occur, it is unlikely to be sufficient to trigger tectonic uplift of the basin or to be a major dust source for the Loess Plateau as previously suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In much of western United States destructive floods after wildfire are frequently caused by localized, short‐duration convective thunderstorms; however, little is known about post‐fire flooding from longer‐duration, low‐intensity mesoscale storms. In this study we estimate and compare peak flows from convective and mesoscale floods following the 2012 High Park Fire in the ungaged 15.5 km2 Skin Gulch basin in the northcentral Colorado Front Range. The convective storm on 6 July 2012 came just days after the wildfire was contained. Radar data indicated that the total rainfall was 20–47 mm, and the maximum rainfall intensities (upwards of 50 mm h?1) were concentrated over portions of the watershed that burned at high severity. The mesoscale storm on 9–15 September 2013 produced 220–240 mm of rain but had maximum 15‐min intensities of only 25–32 mm h?1. Peak flows for each flood were estimated using three independent techniques. Our best estimate using a 2D hydraulic model was 28 m3 s?1 km?2 for the flood following the convective storm, placing it among the largest rainfall‐runoff floods per unit area in the United States. In contrast, the flood associated with the mesoscale flood was only 6 m3 s?1 km?2, but the long‐duration flood caused extensive channel incision and widening, indicating that this storm was much more geomorphically effective. The peak flow estimates for the 2013 flood had a higher relative uncertainty and this stemmed from whether we used pre‐ or post‐flood channel topography. The results document the extent to which a high and moderate severity forest fire can greatly increase peak flows and alter channel morphology, illustrate how indirect peak flow estimates have larger errors than is generally assumed, and indicate that the magnitude of post‐fire floods and geomorphic change can be affected by the timing, magnitude, duration, and sequence of rainstorms. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Pikes Peak Highway is a partially paved road between Cascade, Colorado and the summit of Pikes Peak. Significant gully erosion is occurring on the hillslopes due to the concentration of surface runoff, the rearrangement of drainage pathways along the road surface and adjacent drainage ditches, and the high erodibility of weathered Pikes Peak granite that underlies the area. As a result, large quantities of sediment are transported to surrounding valley networks causing significant damage to water quality and aquatic, wetland, and riparian ecosystems. This study establishes the slope/drainage area threshold for gullying along Pikes Peak Highway and a cesium‐137 based sediment budget highlighting rates of gully erosion and subsequent valley deposition for a small headwater basin. The threshold for gullying along the road is Scr = 0 · 21A–0·45 and the road surface reduces the critical slope requirement for gullying compared to natural drainages in the area. Total gully volume for the 20 gullies along the road is estimated at 5974 m3, with an erosion rate of 64 m3 yr–1 to 101 m3 yr–1. Net valley deposition is estimated at 162 m3 yr–1 with 120 m3 yr–1 unaccounted for by gullying. The hillslope–channel interface is decoupled with minimal downstream sediment transport which results in significant local gully‐derived sedimentation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The contribution of bioturbation to downslope soil transport is significant in many situations, particularly in the context of soil formation, erosion and creep. This study explored the direct flux of soil caused by Aphaenogaster ant mounding, vertebrate scraping and tree‐throw on a wildfire‐affected hillslope in south‐east Australia. This included the development of methods previously applied to Californian gopher bioturbation, and an evaluation of methods for estimating the volume of soil displaced by tree‐throw events. All three bioturbation types resulted in a net downslope flux, but any influence of hillslope angle on flux rates appeared to be overshadowed by environmental controls over the spatial extent of bioturbation. As a result, the highest flux rates occurred on the footslope and lower slope. The overall contribution of vertebrate scraping (57.0 ± 89.4 g m?1 yr?1) exceeded that of ant mounding (36.4 ± 66.0 g m?1 yr?1), although mean rates were subject to considerable uncertainty. Tree‐throw events, which individually cause major disturbance, were limited in their importance by their scarcity relative to faunalturbation. However, tree‐throw might be the dominant mechanism of biotic soil flux on the mid‐slope provided that it occurs at a frequency of at least 2–3 events ha?1 yr?1. Although direct biotic soil flux appears to be geomorphologically significant on this hillslope, such transport processes are probably subordinate to other impacts of bioturbation at this site such as the enhancement of infiltration following wildfire. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The vector physics of wind‐driven rain (WDR) differs from that of wind‐free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the interrill component of the WEPP model for WDR events. The interrill delivery rates were measured in the wind tunnel facility of the International Center for Eremology (ICE), Ghent University, Belgium with an experimental setup to study different raindrop impact velocity vectors. Synchronized wind and rain simulations with wind velocities of 6, 10 and 14 m s–1 were applied to a test surface placed on windward and leeward slopes of 7, 15 and 20%. Since both rainfall intensity and raindrop impact velocity varied greatly depending on differences in the horizontal wind velocity under WDRs, the resultant kinetic energy flux (KEr, in J m–2 s–1) was initially used in place of the WEPP model intensity term in order to incorporate the effect of wind on impact velocity and frequency of raindrops. However, our results showed only minor improvement in the model predictions. For all research data, the model Coefficients of Determination (r2) were 0·63 and 0·71, when using the WEPP and the KEr approaches, respectively. Alternately, integrating the angle of rain incidence into the model by vectorally partitioning normal kinetic energy flux (KErn, in J m–2 s–1) from the KEr greatly improved the model's ability to estimate the interrill sediment delivery rates (r2 = 0·91). This finding suggested that along with the fall trajectory of wind‐driven raindrops with a given frequency, raindrop velocity and direction at the point of impact onto the soil surface provided sufficient physical information to improve WEPP sediment delivery rate predictions under WDR. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The understanding of nutrient uptake in streams is impeded by a limited understanding of how geomorphic setting and flow regime interact with biogeochemical processing. This study investigated these interactions as they relate to transient storage and nitrate uptake in small agricultural and urban streams. Sites were selected across a gradient of channel conditions and management modifications and included three 180‐m long geomorphically distinct reaches on each of two streams in north‐central Colorado. The agricultural stream has been subject to historically variable cattle‐grazing practices, and the urban stream exhibits various levels of stabilisation and planform alteration. Reach‐scale geomorphic complexity was characterised using highly detailed surveys of channel morphology, substrate, hydraulics and habitat units. Breakthrough‐curve modelling of conservative bromide (Br?) and nonconservative nitrate (NO3?) tracer injections characterised transient storage and nitrate uptake along each reach. Longitudinal roughness and flow depth were positively associated with transient storage, which was related to nitrate uptake, thus underscoring the importance of geomorphic influences on stream biogeochemical processes. In addition, changes in geomorphic characteristics due to temporal discharge variation led to complex responses in nitrate uptake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This paper documents application of an established geostatistical methodology to detect significant changes in a foredune–transgressive dune complex where Parks Canada Agency (PCA) implemented a dynamic restoration program to remove invasive marram grasses (Ammophila spp.) and enhance dynamic dune habitat for an endangered species. Detailed topographic surveys of a 10 320 m2 site in the Wickaninnish Dunes in Pacific Rim National Park, British Columbia, Canada for the first year post‐treatment are compared to a pre‐restoration LiDAR baseline survey. The method incorporates inherent spatial structure in measured elevation datasets at the sub‐landscape scale and models statistically significant change surfaces within distinct, linked geomorphic units (beach, foredune, transgressive dune complex). Seasonal and annual responses within the complex are discussed and interpreted. All geomorphic units experienced positive sediment budgets following restoration treatment. The beach experienced the highest differential volumetric change (+1656 m3) and net sediment influx (+834 m3, 0 · 19 m3 m–2) mostly from supply to the supratidal beach and incipient dune. This sediment influx occurred independent of the restoration effort and was available as a buffer against wave erosion and as supply to the landward dunes. The foredune received +200 m3 (0 · 13 m3 m‐2) and its seaward profile returned to a similar pre‐restoration form following erosion at the crest from vegetation removal and scarping by high water events. Sediment bypassing and minimal change was evident at the mid‐stoss slope with appreciable extension of depositional lobes in the lee. The transgressive dune complex experienced high accretion following restoration activity (+201 m3) and over the year (+284 m3, 0 · 07 m3 m–2) mostly from depositional lobes from the foredune, precipitation ridge growth along the downwind boundary, and growth of existing lobes within the complex. Further integration of this methodology to detect significant geomorphic changes is recommended, particularly for applications where sampling densities are limited or logistically defined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Rock veneers stabilize hillslope surfaces, occur especially in areas of immature soil, and form through a variety of process sets that includes root throw. Near Westcliffe, Colorado, USA, data were collected from a 20 × 500 m transect on the east slope of the Sangre de Cristo Mountains. Ages of pit/mound complexes with rock fragments exposed at the surface by root throw ranged from recent (freshly toppled tree) to unknown (complete tree decay). Calculations based on dimensions of the pit/mound complexes, estimated time of tree toppling, sizes of exposed rock fragments, and percentage rock covers at pit/mound complexes, as well as within the transect area, indicate that recent rates of root throw have resulted in only partial rock veneering since late Pleistocene deglaciation. Weathering of rock fragments prevents development of an extensive rock veneer and causes a balance, achieved within an estimated 700 years, between the rates of rock‐fragment exposure by root throw and clast disintegration by chemical reduction. The estimated rate of rock‐fragment reduction accounts for part of the fluvial sediment yields observed for forested subalpine areas of western North America. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Floodplains comprise geomorphologically important sources and sinks for sediments and associated pollutants, yet the sedimentology of large dryland floodplains is not well understood. Processes occurring on such floodplains are often difficult to observe, and techniques used to investigate smaller perennial floodplains are often not practical in these environments. This study assesses the utility of 137Cs inventory and depth‐profile techniques for determining relative amounts of floodplain sedimentation in the Fitzroy River, northeastern Australia; a 143 000 km2 semi‐arid river system. Caesium‐137 inventories were calculated for floodplain and reference location bulk soil cores collected from four sites. Depth profiles of 137Cs concentration from each floodplain site and a reference location were recorded. The areal density of 137Cs at reference locations ranged from 13 to 978 Bq m–2 (0–1367 Bq m–2 at the 95% confidence interval), and the mean value ± 2 (standard error of the mean) was 436 ± 264 Bq m–2, similar to published data from other Southern Hemisphere locations. Floodplain inventories ranged from 68 to 1142 Bq m–2 (0–1692 Bq m–2 at the 95% confidence interval), essentially falling within the range of reference inventory values, thus preventing calculation of erosion or deposition. Depth‐profiles of 137Cs concentration indicate erosion at one site and over 66 cm of deposition at another since 1954. Analysis of 239+240Pu concentrations in a depositional core substantiated the interpretation made from 137Cs data, and depict a more tightly constrained peak in concentration. Average annual deposition rates range from 0 to 15 mm. The similarity between floodplain and reference bulk inventories does not necessarily indicate a lack of erosion or deposition, due to low 137Cs fallout in the region and associated high measurement uncertainties, and a likely influence of gully and bank eroded sediments with no or limited adsorbed 137Cs. In this low‐fallout environment, detailed depth‐profile data are necessary for investigating sedimentation using 137Cs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Channel bars and banks strongly affect the morphology of both braided and meandering rivers. Accordingly, bar formation and bank erosion processes have been greatly explored. There is, however, a lack of investigations addressing the interactions between bed and bank morphodynamics, especially over short timescales. One major implication of this gap is that the processes leading to the repeated accretion of mid‐channel bars and associated widenings remain unsolved. In a restored section of the Drau River, a gravel‐bed river in Austria, mid‐channel bars have developed in a widening channel. During mean flow conditions, the bars divert the flow towards the banks. One channel section exhibited both an actively retreating bank and an expanding mid‐channel bar, and was selected to investigate the morphodynamic processes involved in bar accretion and channel widening at the intra‐event timescale. We repeatedly surveyed riverbed and riverbank topography, monitored riverbank hydrology and mounted a time‐lapse camera for continuous observation of riverbank erosion processes during four flow events. The mid‐channel bar was shown to accrete when it was submerged during flood events, which at the subsequent flow diversion during lower discharges narrowed the branch along the bank and increased the water surface elevation upstream from the riffle, which constituted the inlet into the branch. These changes of bed topography accelerated the flow along the bank and triggered bank failures up to 20 days after the flood events. Four analysed flow events exhibited a total bar expansion from initially 126 m2 to 295 m2, while bank retreat was 6 m at the apex of the branch. The results revealed the forcing role of bar accretion in channel widening and highlighted the importance of intra‐event scale bed morphodynamics for bank erosion, which were summarized in a conceptual model of the observed bar–bank interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Threlkeld Knotts (c. 500 m above sea level) in the English Lake District has hitherto been considered to be a glacially‐modified intrusion of microgranite. However, its surface features are incompatible with glacial modification; neither can these nor the subsurface structures revealed by ground‐penetrating radar (GPR) be explained by post‐glacial subaerial processes acting on a glacially‐modified microgranite intrusion. Here we re‐interpret Threlkeld Knotts as a very large post‐glacial landslide involving the microgranite, with an estimated volume of about 4 × 107 m3. This interpretation is tested against published and recent information on the geology of the site, the glacial geomorphic history of the area and newly‐acquired GPR data. More than 60 large post‐Last Glacial Maximum (LGM) rock–slope failures have significantly modified the glaciated landscape of the Lake District; this is one of the largest. Recognition of this major landslide deposit in such a well‐studied environment highlights the need to continuously re‐examine landscapes in the light of increasing knowledge of geomorphic processes and with available technology in currently active or de‐glaciating environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper provides comprehensive evidence that sediment routing around pools is a key mechanism for pool‐riffle maintenance in sinuous upland gravel‐bed streams. The findings suggest that pools do not require a reversal in energy for them to scour out any accumulated sediments, if little or no sediments are fed into them. A combination of clast tracing using passive integrated transponder (PIT) tagging and bedload traps (positioned along the thalweg on the upstream riffle, pool entrance, pool exit and downstream riffle) are used to provide information on clast pathways and sediment sorting through a single pool‐riffle unit. Computational fluid dynamics (CFD) is also used to explore hydraulic variability and flow pathways. Clast tracing results provide a strong indication that clasts are not fed through pools, rather they are transported across point bar surfaces, or around bar edges (depending upon previous clast position, clast size, and event magnitude). Spatial variations in bedload transport were found throughout the pool‐riffle unit. The pool entrance bedload trap was often found to be empty, when the others had filled, further supporting the notion that little or no sediment was fed into the pool. The pool exit slope trap would occasionally fill with sediment, thought to be sourced from the eroding outer bank. CFD results demonstrate higher pool shear stresses (τ ≈ 140 N m–2) in a localized zone adjacent to an eroding outer bank, compared to the upstream and downstream riffles (τ ≈ 60 N m–2) at flows of 6 · 2 m3 s–1 (≈ 60% of the bankfull discharge) and above. There was marginal evidence for near‐bed velocity reversal. Near‐bed streamlines, produced from velocity vectors indicate that flow paths are diverted over the bar top rather than being fed through the thalweg. Some streamlines appear to brush the outer edge of the pool for the 4 · 9 m3 s–1 to 7 · 8 m3 s–1 (between 50 and 80% of the bankfull discharge) simulations, however complete avoidance was found for discharges greater than this. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号