首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electromagnetic experiments were conducted in 1995 as part of a multidisciplinary research project to investigate the deep structure of the Chyulu Hills volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM) and broadband (120–0.0001 Hz) magnetotelluric (MT) soundings were made at eight stations along a seismic survey line and the data were processed using standard techniques. The TEM data provided effective correction for static shifts in MT data. The MT data were inverted for the structure in the upper 20 km of the crust using a 2-D inversion scheme and a variety of starting models. The resulting 2-D models show interesting features but the wide spacing between the MT stations limited model resolution to a large extent. These models suggest that there are significant differences in the physical state of the crust between the northern and southern parts of the Chyulu Hills volcanic field. North of the Chyulu Hills, the resistivity structure consists of a 10–12-km-thick resistive (up to 4000 Ω m) upper crustal layer, ca. 10-km-thick mid-crustal layer of moderate resistivity (50 Ω m), and a conductive substratum. The resistive upper crustal unit is considerably thinner over the main ridge (where it is ca. 2 km thick) and further south (where it may be up to 5 km thick). Below this cover unit, steep zones of low resistivity (0.01–10 Ω m) occur underneath the main ridge and at its NW and SE margins (near survey positions 100 and 150–210 km on seismic line F of Novak et al. [Novak, O., Prodehl, C., Jacob, A.W.B., Okoth, W., 1997. Crustal structure of the southern flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B., Prodehl, C. (Eds.), Structure and Dynamic Processes in the Lithosphere of the Afro-Arabian Rift System. Tectonophysics, vol. 278, 171–186]). These conductors appear to be best developed in upper crustal (1–8 km) and middle crustal (9–18 km) zones in the areas affected by volcanism. The low-resistivity anomalies are interpreted as possible magmatic features and may be related to the low-velocity zones recently detected at greater depth in the same geographic locations. The MT results, thus, provide a necessary upper crustal constraint on the anomalous zone in Chyulu Hills, and we suggest that MT is a logical compliment to seismics for the exploration of the deep crust in this volcanic-covered basement terrain. A detailed 3-D field study is recommended to gain a better understanding of the deep structure of the volcanic field.  相似文献   

2.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

3.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   

4.
Subsidence mechanisms that may have controlled the evolution of the eastern Black Sea have been studied and simulated using a numerical model that integrates structural, thermal, isostatic and surface processes in both two- (2-D) and three-dimensions (3-D). The model enables the forward modelling of extensional basin evolution followed by deformation due to subsequent extensional and compressional events. Seismic data show that the eastern Black Sea has evolved via a sequence of interrelated tectonic events that began with early Tertiary rifting followed by several phases of compression, mainly confined to the edges of the basin. A large magnitude (approximately 12 km) of regional subsidence also occurred in the central basin throughout the Tertiary. Models that simulate the magnitude of observed fault controlled extension (β=1.13) do not reproduce the total depth of the basin. Similarly, the modelling of compressional deformation around the edges of the basin does little to enhance subsidence in the central basin. A modelling approach that quantifies lithosphere extension according to the amount of observed crustal thinning and thickening across the basin provides the closest match to overall subsidence. The modelling also shows that deep crustal and mantle–lithosphere processes can significantly influence the rate and magnitude of syn- to post-rift subsidence and shows that such mechanisms may have played an important role in forming the anomalously thin syn-rift and thick Miocene–Quaternary sequences observed in the basin. It is also suggested that extension of a 40–45 km thick pre-rift crust is required to generate the observed magnitude of total subsidence when considering a realistic bathymetry.  相似文献   

5.
《地学前缘(英文版)》2020,11(5):1743-1754
Broad-band and long-period magnetotelluric(MT) data were acquired along an east-west trending traverse of nearly 200 km across the Kachchh,Cambay rift basins,and Aravalli-Delhi fold belt(ADFB),western India.The regional strike analysis of MT data indicated an approximate N59°E geoelectric strike direction under the traverse and it is in fair agreement with the predominant geological strike in the study area.The decomposed transverse electric(TE)-and transverse magnetic(TM)-data modes were inverted using a nonlinear conjugate gradient algorithm to image the electrical lithospheric structure across the Cambay rift basin and its surrounding regions.These studies show a thick(~1-5 km) layer of conductive Tertiary-Mesozoic sediments beneath the Kachchh and Cambay rift basins.The resistive blocks indicate presence of basic/ultrabasic volcanic intrusives,depleted mantle lithosphere,and different Precambrian structural units.The crustal conductor delineated within the ADFB indicates the presence of fluids within the fault zones,sulfide mineralization within polyphase metamorphic rocks,and/or Aravalli-Delhi sediments/metasediments.The observed conductive anomalies beneath the Cambay rift basin indicate the presence of basaltic underplating,volatile(CO_2,H_2 O) enriched melts and channelization of melt fractions/fluids into crustal depths that occurred due to plume-lithosphere interactions.The variations in electrical resistivity observed across the profile indicate that the impact of Reunion plume on lithospheric structures of the Cambay rift basin is more dominant at western continental margin of India(WCMI) and thus support the hypothesis proposed by Campbell Griffiths about the plume-lithosphere interactions.  相似文献   

6.
The crustal structure of the central Eromanga Basin in the northern part of the Australian Tasman Geosyncline, revealed by coincident seismic reflection and refraction shooting, contrasts with some neighbouring regions of the continent. The depth to the crust-mantle boundary (Moho) of 36–41 km is much less than that under the North Australian Craton to the northwest (50–55 km) and the Lachlan Fold Belt to the southeast (43–51 km) but is similar to that under the Drummond and Bowen Basins to the east.The seismic velocity boundaries within the crust are sharp compared with the transitional nature of the boundaries under the North Australian and Lachlan provinces. In particular, there is a sharp velocity increase at mid-crustal depths (21–24 km) which has not been observed with such clarity elsewhere in Australia (the Conrad discontinuity?).In the lower crust, the many discontinuous sub-horizontal reflections are in marked contrast to lack of reflecting horizons in the upper crust, further emphasising the differences between the upper and lower crust. The crust-mantle boundary (Moho) is characterised by an increase in velocity from 7.1–7.7 km/s to a value of 8.15 + 0.04 km/s. The depth to the Moho under the Canaway Ridge, a prominent basement high, is shallower by about 5 km than the regional Moho depth; there is also no mid-crustal horizon under the Canaway Ridge but there is a very sharp velocity increase at the Moho depth of 34 km. The Ridge could be interpreted as a horst structure extending to at least Moho depths but it could also have a different intra-crustal structure from the surrounding area.The sub-crustal lithosphere has features which have been interpreted, from limited data, as being caused by a velocity gradient at 56–57 km depth with a low velocity zone above it.Because of the contrasting crustal thicknesses and velocity gradients, the lithosphere of the central Eromanga Basin cannot be considered as an extension of the exposed Lachlan Fold Belt or the North Australian Craton. The lack of seismic reflections from the upper crust indicates no coherent accoustic impedance pattern at wavelengths greater than 100 m, consistent with an upper crustal basement of tightly folded meta-sedimentary and meta-volcanic rocks. The crustal structure is consistent with a pericratonic or arc/back-arc basin being cratonised in an episode of convergent tectonics in the Early Palaeozoic. The seismic reflections from the lower crust indicate that it could have developed in a different tectonic environment.  相似文献   

7.
K. Kitamura  M. Ishikawa  M. Arima   《Tectonophysics》2003,371(1-4):213-221
Ultrasonic compressional wave velocities (Vp) and shear wave velocities (Vs) were measured with varying pressure up to 1.0 GPa in a temperature range from 25 to 400 °C for a suite of tonalitic–gabbroic rocks of the Miocene Tanzawa plutonic complex, central Japan, which has been interpreted as uplifted and exposed deep crust of the northern Izu–Bonin–Mariana (IBM) arc. The Vp values of the tonalitic–gabbroic rocks increase rapidly at low pressures from 0.1 to 0.4 GPa, and then become nearly constant at higher pressures above 0.4 GPa. The Vp values at 1.0 GPa and 25 °C are 6.3–6.6 km/s for tonalites (56.4–71.1 wt.% SiO2), 6.8 km/s for a quartz gabbro (53.8 wt.% SiO2), and 7.1–7.3 km/s for a hornblende gabbro (43.2–47.7 wt.% SiO2). Combining the present data with the P wave velocity profile of the northern IBM arc, we infer that 6-km-thick tonalitic crust exists at mid-crustal depth (6.1–6.3 km/s Vp) overlying 2-km-thick hornblende gabbroic crust (6.8 km/s Vp). Our model shows large differences in acoustic impedance between the tonalite and hornblende gabbro layers, being consistent with the strong reflector observed at 12-km-depth in the IBM arc. The measured Vp of Tanzawa hornblende-bearing gabbroic rocks (7.1–7.3 km/s) is significantly lower than that Vp modeled for the lowermost crustal layer of the northern IBM arc (7.3–7.7 km/s at 15–22 km depth). We propose that the IBM arc consists of a thick tonalitic middle crust and a mafic lower crust.  相似文献   

8.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

9.
Ultrasonic laboratory measurements of P-wave velocity (Vp) were carried out up to 1.0 GPa in a temperature range of 25–400 °C for crustal and mantle xenoliths of Ichino-megata, northeast Japan. The rocks used in the present study cover a nearly entire range of lithological variation of the Ichino-megata xenoliths and are considered as representative rock samples of the lower crust and upper mantle of the back arc side of the northeast (NE) Honshu arc. The Vp values measured at 25 °C and 1.0 GPa are 6.7–7.2 km/s for the hornblende gabbros (38.6–46.9 wt.% SiO2), 7.2 km/s for the hornblende-pyroxene gabbro (43.8 wt.% SiO2), 6.9–7.3 km/s for the amphibolites (36.1–44.3 wt.% SiO2), 8.0–8.1 km/s for the spinel lherzolites (46.2–47.2 wt.% SiO2) and 6.30 km/s for the biotite granite (72.1 wt.% SiO2). Combining the present data with the Vp profile of the NE Honshu arc [Iwasaki, T., Kato, W., Moriya, T., Hasemi, A., Umino, N., Okada, T., Miyashita, K., Mizogami, T., Takeda, T., Sekine, S., Matsushima, T., Tashiro, K., Miyamachi, H. 2001. Extensional structure in northern Honshu Arc as inferred from seismic refraction/wide-angle reflection profiling. Geophys. Res. Lett. 28 (12), 2329–2332], we infer that the 15 km thick lower crust of the NE Honshu arc is composed of amphibolite and/or hornblende (±pyroxene) gabbro with ultrabasic composition. The present study suggests that the Vp range of the lower crustal layer (6.6–7.0 km/s) in the NE Honshu arc, which is significantly lower than that obtained from various seismic measurements (e.g. the northern Izu-Bonin-Mariana arc: 7.1–7.3 km/s), is due to the thick hydrous lower crustal layer where hornblende, plagioclase and magnetite are dominant.  相似文献   

10.
We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings reside in three east–west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass, and Secret Pass latitudes). One short cross-line was also taken to assess an east–west structure to the north of the northern profile. Model resistivity cross-sections were derived from the MT data using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity–thickness product) from east to west. These increases are attributed to graphitization caused by Elko–Sevier era compressional shear deformation and possibly by intrusive heating. The resistive crystalline central massifs adjoin the host stratigraphy across crustal-scale, steeply dipping fault zones. The zones provide pathways to the lower crust for heterogeneous, upper crustal induced, electric current flow. Resistive core complex crust appears steeply bounded under the middle of the neighboring grabens and not to deepen at a shallow angle to arbitrary distances to the west. The numerous crustal breaks imaged with MT may contribute to the low effective elastic thickness (Te) estimated regionally for the Great Basin and exemplify the mid-crustal, steeply dipping slip zones in which major earthquakes nucleate. An east–west oriented conductor in the crystalline upper crust spans the East Humboldt Range and northern Ruby Mountains. The conductor may be related to nearby graphitic metasediments, with possible alteration by middle Tertiary magmatism. Lower crustal resistivity everywhere under the profiles is low and appears quasi one-dimensional. It is consistent with a low rock porosity (<1 vol.%) containing hypersaline brines and possible water-undersaturated crustal melts, residual to the mostly Miocene regional extension. The resistivity expression of the southern Carlin Trend (CT) in the Pinon Range is not a simple lineament but rather a family of structures attributed to Eocene intrusion, stratal deformation, and alteration/graphitization. Substantial reactivation or overprinting by core complex uplift or Basin–Range extensional events seems likely. We concur with others that the Carlin Trend may result in part from overlap of the large Eocene Northeast Nevada Volcanic Field with Precambrian–Paleozoic deep-water clastic source rocks thickening abruptly to the west of the Pinon Range, and projecting to the north–northwest.  相似文献   

11.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   

12.
The Central Metasedimentary Belt boundary tectonic zone (CMBbtz) is a 10–20-km-wide zone of intense structural deformation within the 1.3–1.0 Ga Grenville orogen of southeastern Canada. The crustal structure of the exposed CMBbtz has been well studied, but its sub-Phanerozoic location and geometry beneath the urban development and nuclear stations of the Toronto region are not well known. A new 75-km Lithoprobe reflection profile acquired close to Toronto provides a clear image of the CMBbtz as a panel of southeast-dipping reflections that extends with moderate dip (<25°) to mid-crustal depth (25 km). These dipping reflections truncate and (or) overprint a subhorizontal band of reflectivity at 21 km depth. The seismic line is oblique to the major structural trends; cross-dip analysis shows that the southeast-dipping reflections have a strike and dip of N13°E and 25°, whereas the “subhorizontal” reflections strike and dip at N65°E and 20°, respectively. Both of these bands of reflectivity can be correlated to magnetic anomalies in the CMBbtz or its immediate footwall. Magnetic anomalies with similar strike directions are well expressed within a distinct rhomboid-shaped region (106×109 km) in the subsurface of western Lake Ontario, herein named Mississauga domain. Taken together, the seismic and magnetic data are inconsistent with existing models, in which the CMBbtz is extrapolated beneath Lake Ontario along a linear magnetic anomaly. We propose a revised subsurface trace of the CMBbtz along the western edge of the Mississauga domain. Small earthquakes in western Lake Ontario appear to cluster along trends co-linear with ENE magnetic anomalies, suggesting a possible degree of basement tectonic control on local intraplate seismicity.  相似文献   

13.
Crustal structure across the passive continental margin of the northeastern South China Sea (SCS) is presented based on a deep seismic survey cooperated between Taiwan and China in August 2001. Reflection data collected from a 48-hydrophone streamer and the vertical component of refraction/reflection data recorded at 11 ocean-bottom seismometers along a NW–SE profile are integrated to image the upper (1.6–2.4 km/s), lower (2.5–2.9 km/s), and compacted (3–4.5 km/s) sediment, the upper (4.5–5.5 km/s), middle (5.5–6.5 km/s) and lower (6.5–7.5 km/s) crystalline crust successively. The velocity model shows that the thickness (0.5–3 km) and the basement of the compacted sediment are strongly varied due to intrusion of the magma and igneous rocks after seafloor spreading of the SCS. Furthermore, several volcanoes and igneous rocks in the upper/middle crust (7–10 km thick) and a high velocity layer (0–5 km thick) in the lower crust of the model are identified as the ocean–continent transition (OCT) below the lower slope in the northeastern margin of the SCS. A thin continent NW of the OCT and a thick oceanic crust SE of the OCT in the continental margin of the northeastern SCS are also imaged, but these transitional crusts cannot be classified as the OCT due to their crustal thickness and the limited amount of the volcano, the magma and the high velocity layer. The extended continent, next to the gravity low and a sag zone extended from the SW Taiwan Basin, may have resulted from subduction of the Eurasian Plate beneath the Manila Trench whereas the thick oceanic crust may have been due to the excess volcanism and the late magmatic underplating in the oceanic crust after seafloor spreading of the SCS.  相似文献   

14.
Wide-angle seismic and gravity data across the Narmada-Son lineament (NSL) in central India are analyzed to determine crustal structure, velocity inhomogeneities and hence constrain the tectonics of the lineament. We present the 2-D crustal velocity structure from deep wide-angle reflection data by using a ray-trace inverse approach. The main result of the study is the delineation of fault-bounded horst raised to a subsurface depth (1.5 km) and the Moho upwarp beneath the NSL. The crust below the basement consists of three layers with velocities of 6.45–6.7, 6.2–6.5 and 6.7–6.95 km/s and interface depths of about 5.5–8.7, 14–17 and 18–23 km along the profile. The low-velocity (6.2–6.5 km/s) layer goes up to a depth of 5 km and becomes the thickest part (13 km), while the overlying high-velocity (6.45–6.7 km/s) layer becomes the thinnest (3 km) and upper boundary lies at a depth of 1.5 km beneath the NSL. The overall uncertainties of various velocity and boundary nodes are of the order of ±0.12 km/s and ±1.40 km, respectively. The up-lifted crustal block and the up-warping Moho beneath the NSL indicate that the north and south faults bounding the NSL are deeply penetrated through which mafic materials from upper mantle have been intruded into the upper crust. Gravity modeling was also undertaken to assess the seismically derived crustal features and to fill the seismic data gap. The lateral and vertical heterogeneous nature of the structure and velocity inhomogeneities in the crust cause instability to the crustal blocks and played an important role in reactivation of the Narmada south fault during the 1997 Jabalpur earthquake.  相似文献   

15.
Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling–Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian–Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.  相似文献   

16.
Crustal structure of mainland China from deep seismic sounding data   总被引:18,自引:0,他引:18  
Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity–depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north–south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30–45 km, and a western region, with a thickness of 45–75 km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1–7.4 km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1 km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2 km/s, and may display azimuthal anisotropy.  相似文献   

17.
New gravity data from the Adamawa Uplift region of Cameroon have been integrated with existing gravity data from central and western Africa to examine variations in crustal structure throughout the region. The new data reveal steep northeast-trending gradients in the Bouguer gravity anomalies that coincide with the Sanaga Fault Zone and the Foumban Shear Zone, both part of the Central African Shear Zone lying between the Adamawa Plateau and the Congo Craton. Four major density discontinuities in the lithosphere have been determined within the lithosphere beneath the Adamawa Uplift in central Cameroon using spectral analysis of gravity data: (1) 7–13 km; (2) 19–25 km; (3) 30–37 km; and (4) 75–149 km. The deepest density discontinuities determined at 75–149 km depth range agree with the presence of an anomalous low velocity upper mantle structure at these depths deduced from earlier teleseismic delay time studies and gravity forward modelling. The 30–37 km depths agree with the Moho depth of 33 km obtained from a seismic refraction experiment in the region. The intermediate depth of 20 km obtained within region D may correspond to shallower Moho depth beneath parts of the Benue and Yola Rifts where seismic refraction data indicate a crustal thickness of 23 km. The 19–20 km depths and 8–12 km depths estimated in boxes encompassing the Adamawa Plateau and Cameroon Volcanic Line may may correspond to mid-crustal density contrasts associated with volcanic intrusions, as these depths are less than depths of 25 and 13 km, respectively, in the stable Congo Craton to the south.  相似文献   

18.
The Mesozoic Liaonan metamorphic core complex (mcc) of the southeastern Liaoning province, North China, is an asymmetric Cordilleran-style complex with a west-rooting master detachment fault, the Jinzhou fault. A thick sequence of lower plate, fault-related mylonitic and gneissic rocks derived from Archean and Early Cretaceous crystalline protoliths has been transported ESE-ward from mid-crustal depths. U–Pb ages of lower plate syntectonic plutons (ca. 130–120 Ma), 40Ar–39Ar cooling ages in the mylonitic and gneissic sequence (ca. 120–110 Ma), and a Cretaceous supradetachment basin attest to the Early Cretaceous age of this extensional complex. The recent discovery of the coeval and similarly west-rooting Waziyu mcc in western Liaoning [Darby, B.J., Davis, G.A., Zhang, X., Wu, F., Wilde, S., Yang, J., 2004. The newly discovered Waziyu metamorphic core complex, Yiwulushan, western Liaoning Province, North China. Earth Science Frontiers 11, 145–155] indicates that the Gulf of Liaoning, which lies between the two complexes, was the center of a region of major crustal extension.Clockwise crustal rotation of a large region including eastern Liaoning province and the Korean Peninsula with respect to a non-rotated North China block has been conclusively documented by paleomagnetic studies over the past decade. The timing of this rotation and the reasons for it are controversial. Lin et al. [Lin, W., Chen, Y., Faure, M., Wang, Q., 2003. Tectonic implication of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China. Journal of Geophysical Research 108 (B-6) (EPM 5-1 to 5-17)] proposed that a clockwise rotation of 22.5° ± 10.2° was largely post-Early Cretaceous in age, and was the consequence of extension within a crustal domain that tapers southwards towards the Bohai Sea (of which the Gulf of Liaoning is the northernmost part). Paleomagnetic studies of Early Cretaceous strata (ca 134–120 Ma) in the Yixian–Fuxin supradetachment basin of the Waziyu mcc indicate the non-rotation of North China and the basin [Zhu, R.X., Shao, J.A., Pan, Y.X., Shi, R.P., Shi, G.H., Li, D.M., 2002. Paleomagnetic data from Early Cretaceous volcanic rocks of West Liaoning: evidence for intracontinental rotation. Chinese Science Bulletin 47, 1832–1837]. Such upper-plate non-rotation supports our conclusion that the lower plates of the Waziyu and Liaonan metamorphic core complexes were displaced ESE-ward in an absolute sense away from the stable North China block, thus contributing to the rotation of Korea and contiguous areas. Rotation is inferred to have affected only the upper crust above mid-crustal levels into which we believe the Jinzhou and Waziyu detachment fault zones flattened. If this is the case, the regional Tan Lu fault that lies between the two core complexes was truncated at mid-crustal depth, since in areas to the south it forms the boundary between the North and South China lithospheric blocks. It is noteworthy that the two extensional complexes lie not far north of the Bohai Bay, the area proposed by Lin et al. [Lin, W., Chen, Y., Faure, M., Wang, Q., 2003. Tectonic implication of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China. Journal of Geophysical Research 108 (B-6) (EPM 5-1 to 5-17)] as the site of the pole of rotation for Korea's clockwise displacement.Lin et al. [Lin, W., Chen, Y., Faure, M., Wang, Q., 2003. Tectonic implication of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China. Journal of Geophysical Research 108 (B-6) (EPM 5-1 to 5-17)] were unaware of the Liaonan and Waziyu mcc's and argued that most of the regional block rotation was post-Early Cretaceous and, in part, early Cenozoic. However, the ca. 130–120 Ma ages of the two Liaoning mcc's and a Songliao basin mcc (Xujiaweizi), the latter discovered only by recent drilling through its younger stratigraphic cover, support our and some Korean coworkers' conclusions that most of the clockwise rotation was Early Cretaceous.  相似文献   

19.
The dominantly passive volcanic Vøring and Møre Margins, NE Atlantic, are separated by the 200 km long Vøring Transform Margin (VTM). The southern Vøring Basin and the VTM have been studied by use of four regional Ocean Bottom Seismograph (OBS) profiles, combined by gravity modelling. The models demonstrate a complex pattern of magmatism along the transform margin. The distribution of magmatism seems to be related to the existence and trend of a lower crustal 8+ km/s body, interpreted as eclogitized rocks, present in the southern Vøring Basin. Early Tertiary breakup related magmatic ‘leakage’ across the Continent–Ocean-Transition (COT) appears to be facilitated where this layer is absent. These results support earlier workers who have concluded that the Jan Mayen Fracture Zone originated from a Caledonian zone of weakness. We propose that partly eclogitized rocks were uplifted into the lower crust close to this zone during the Caledonian orogeny and that this body acted as a barrier to magma emplacement during the Late Cretaceous–Early Eocene phase of rifting/breakup. The eclogitized terrain also appears to have caused northeastward channeling of the Late Cretaceous–Early Tertiary intrusions within the Vøring Basin. An up to 10 km thick pre-Cretaceous sedimentary basin in the southern Vøring Basin may be genetically related to the NS-trending Late Paleozoic and Mesozoic rift basins in North-East Greenland.  相似文献   

20.
With the super-wide band magnetotelluric sounding data of the Jilong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) which was completed in 2004,we obtained the strike direction of each MT station by strike analysis,then traced profiles that were perpendicular to the main strike direction,and finally obtained the resistivity model of each profile by nonlinear conjugate gradients (NLCG) inversion. With these two models,we described the resistivity structure features of the crust and the upper mantle of the center-southern Tibetan plateau and its relationship with Yalung Tsangpo suture: the upper crust of the research area is a resistive layer with resistivity value range of 200-3 000 ?·m. The depth of its bottom surface is about 15-20 km generally,but the bottom surface of resistive layer is deeper in the middle of these two profiles. At line 900,it is about 30 km deep,and even at line 800,it is about 38 km deep. There is a gradient belt of resistivity at the depth of 15-45 km,and a conductive layer is beneath it with resistivity even less than 5 ?·m. This conductive layer is composed of individual conductive bodies,and at the south of the Yalung Tsangpo suture,the conductive bodies are smaller with thickness about 10 km and lean to the north slightly. However,at the north of the Yalung Tsangpo suture,the conductive bodies are larger with thickness about 30 km and also lean to the north slightly. Relatively,the conductive bodies of line 900 are thinner than those of line 800,and the depth of the bottom surface of line 900 is also shallower. At last,after analyzing the effect factors to the resistivity of rocks,it was concluded that the very conductive layer was caused by partial melt or connective water in rocks. It suggests that the middle and lower crust of the center-southern Tibetan plateau is very thick,hot,flabby,and waxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号