首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The paper presents the results of a research study concerning the seismic response and design of r/c frames with overstrength discontinuities in elevation. The discontinuities are obtained assigning overstrengths either to the beams or to the columns of a “regular frame” (assumed as reference). Two “regular frames” are designed: one according to the Eurocode 8 (EC8) medium ductility class (DCM) rules and the other one according to the EC8 high ductility class (DCH) rules. For all frames the criteria of vertical strength irregularity of many international seismic codes are applied. Non linear static and dynamic analyses are performed; mechanical non linearity is concentrated at the element ends. These analyses are carried out according to EC8 provisions: for non linear static analysis the N2 method is applied; in the case of non linear time-history analyses, seven real earthquakes, selected in order to fit on average the elastic design spectrum, are used as input. The seismic response of frames characterised by the assigned overstrength is not very different with respect to the “regular frame” one; furthermore all the frames satisfy the Ultimate Limit State, verified by the application of non linear static and dynamic analyses. This demonstrates that the sensitivity of frames, designed according to EC8 medium and high ductility classes, to overstrength vertical variations is low. Consequently, international code provisions on vertical strength regularity should be reviewed.  相似文献   

2.
According to the most modern trend, performance‐based seismic design is aimed at the evaluation of the seismic structural reliability defined as the mean annual frequency (MAF) of exceeding a threshold level of damage, i.e. a limit state. The methodology for the evaluation of the MAF of exceeding a limit state is herein applied with reference to concentrically ‘V’‐braced steel frames designed according to different criteria. In particular, two design approaches are examined. The first approach corresponds to the provisions suggested by Eurocode 8 (prEN 1998—Eurocode 8: design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings), while the second approach is based on a rigorous application of capacity design criteria aiming at the control of the failure mode (J. Earthquake Eng. 2008; 12 :1246–1266; J. Earthquake Eng. 2008; 12 :728–759). The aim of the presented work is to focus on the seismic reliability obtained through these design methodologies. The probabilistic performance evaluation is based on an appropriate combination of probabilistic seismic hazard analysis, probabilistic seismic demand analysis (PSDA) and probabilistic seismic capacity analysis. Regarding PSDA, nonlinear dynamic analyses have been carried out in order to obtain the parameters describing the probability distribution laws of demand, conditioned to given values of the earthquake intensity measure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Performance-Based Seismic Design is now widely recognized as the pre-eminent seismic design and assessment methodology for building structures. In recognition of this, seismic codes may require that buildings achieve multiple performance objectives such as withstanding moderate, yet frequently occurring earthquakes with minimal structural and non-structural damage, while withstanding severe, but rare earthquakes without collapse and loss of life. These objectives are presumed to be satisfied by some codes if the force-based design procedures are followed. This paper investigates the efficacy of the Eurocode 8 force-based design provisions with respect to RC frame building design and expected seismic performance. Four, eight, and 16-storey moment frame buildings were designed and analyzed using the code modal response spectrum analysis provisions. Non-linear time-history analyses were subsequently performed to determine the simulated seismic response of the structures and to validate the Eurocode 8 force-based designs. The results indicate the design of flexural members in medium-to-long period structures is not significantly influenced by the choice of effective member stiffness; however, calculated interstorey drift demands are significantly affected. This finding was primarily attributed to the code’s enforcement of a minimum spectral ordinate on the design spectrum. Furthermore, design storey forces and interstorey drift demand estimates (and therefore damage), obtained by application of the code force-based design procedure varied substantially from those found through non-linear time-history analysis. Overall, the results suggest that though the Eurocode 8 may yield life-safe designs, the seismic performance of frame buildings of the same type and ductility class can be highly non-uniform.  相似文献   

4.
In the paper the seismic response of different variants of the three-story reinforced concrete frame structure SPEAR is compared. The basic structure is representative of building practice before the adoption of seismic codes. This structure has been compared with four modified variants, which were designed partly or completely in accordance with the Eurocode family of standards. For seismic assessment the practice-oriented nonlinear N2 method was used. The results demonstrate the low seismic resistance of buildings designed for gravity loads only. On the other hand, the advantages of new standards are clearly apparent. By taking into account the requirements of Eurocode 8 it is possible to ensure adequate strength, stiffness and ductility. By means of capacity design it is possible to ensure a global plastic mechanism. All these characteristics contribute to the high seismic resistance of structures designed according to Eurocode 8 and to their satisfactory behaviour during earthquakes.  相似文献   

5.
A rational and efficient seismic design methodology for regular space steel frames using an advanced time domain finite element method of analysis that takes into account geometrical and material nonlinearities is presented. Seismic loads are applied in the form of Eurocode 8 spectrum compatible real accelerograms along the two horizontal directions of the frame. The iterative design procedure starts with assumed member sections, continues with the response checks for the damage, ultimate and service limit states and ends with the adjustment of member sizes so as all the response checks to be satisfied for all limit states. Thus, the proposed design method deals with nonlinearities and member interactions at the global level and consequently separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor of Eurocode 8 are not required. Two numerical examples dealing with the design of (a) a space three storey steel frame with one bay in both horizontal directions and (b) a space seven storey steel frame with two and three bays along its two horizontal directions are presented to illustrate the method and demonstrate its advantages.  相似文献   

6.
The paper aims to evaluate the way Eurocode 8 treats the consideration of asynchronous earthquake ground motion during the seismic design of bridges, and to discuss alternative solutions for cases wherein existing provisions do not lead to satisfactory results. The evaluation of EC8-2 new provisions and simplified methods is performed through comparison with a more refined approach whereas an effort is made to quantitatively assess the relative importance of various design and analysis assumptions that have to be made when spatial variability of ground motion is taken into consideration, based on the study of the dynamic response of 27 different bridges. It is concluded that, despite the complexity of the problem, there are specific cases where EC8 provisions can be safely and easily applied in practice, while in other cases ignoring the effect of asynchronous excitation or performing simplified calculations can significantly underestimate the actual seismic demand.  相似文献   

7.
The seismic evaluation of existing buildings is a more difficult task than the seismic design of new buildings. Non-linear methods are needed if realistic results are to be obtained. However, the application to real complex structures of various evaluation procedures, which have usually been tested on highly idealized structural models, is by no means straightforward. In the paper, a practice-oriented procedure for the seismic evaluation of building structures, based on the N2 method, is presented, together with the application of this method to an existing multi-storey reinforced concrete building. This building, which is asymmetric in plan and irregular in elevation, consists of structural walls and frames. It was designed in 1962 for gravity loads and a minimum horizontal loading (2% of the total weight). The main results presented in terms of the global and local seismic demands are compared with the results of non-linear dynamic response-history analyses. As expected, the structure would fail if subjected to the design seismic action according to Eurocode 8. The shear capacity of the structural walls is the most critical. If the shear capacity of these elements was adequate, the structure would be able to survive the design ground motion according to Eurocode 8, in spite of the very low level of design horizontal forces. The applied approach proved to be a feasible tool for the seismic evaluation of complex structures. However, due to the large randomness and uncertainty which are involved in the determination of both the seismic demand and the seismic capacity, only rough estimates of the seismic behaviour of such structures can be obtained.  相似文献   

8.
Traditional seismic design, like the one adopted in Eurocode 8 (EC8), is force‐based and examining a single level of seismic action. In order to provide improved control of structural damage for different levels of seismic action, the new fib Model Code 2010 (MC2010) includes a fully fledged displacement‐based and performance‐based seismic design methodology. However, the level of complexity and computational effort of the MC2010 methodology is significantly increased. Hence, the use of automated optimization techniques for obtaining cost‐effective design solutions becomes appealing if not necessary. This study employs genetic algorithms to derive and compare optimum seismic design solutions of reinforced concrete frames according to EC8 and MC2010. This is important because MC2010 is meant to serve as a basis for future seismic design codes. It is found that MC2010 drives to more cost‐effective solutions than EC8 for regions of low seismicity and better or similar costs for regions of moderate seismicity. For high‐seismicity regions, MC2010 may yield similar or increased structural costs. This depends strongly on the provisions adopted for selecting the set of ground motions. In all cases, MC2010 provides enhanced control of structural damage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Structural engineering problems are always affected by many sources of uncertainty, such as aleatory of material properties, applied loads and earthquake intensity, therefore, seismic assessment of structures should be based on probabilistic methods. Since PBSD (Performance‐based Seismic Design) philosophy was formulated, many researches have been conducted in this field in order to develop simple and accurate procedures for evaluating structural reliability. An important contribution has been provided by Jalayer and Cornell, who have developed a closed‐form expression to evaluate the mean annual frequency of exceeding a defined limit state. In this paper, by assuming the record‐to‐record variability as the only source of uncertainty, the seismic reliability of concentrically braced frames designed according to traditional and innovative methodologies is investigated, and a comparison between their performances is presented. In particular, two design methodologies have been applied: Eurocode 8 provisions and a new design methodology based on a rigorous application of ‘capacity design’ criteria. The innovative reduced section solution strategy, based on the reduction of cross sections at bracing member ends, has also been analysed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Among the resisting systems suitable for the design of ductile steel structures, Eurocode 8 proposes MRFs and EBFs. The formers are considered more efficient in terms of ductility, but they suffer a strong weakness in the lateral stiffness, with following cumbersome design procedures to avoid excessive lateral displacements maintaining a quite high ductile behaviour under seismic actions. Often, the design process leads to not optimized structural members, oversized with respect to the minimum seismic requirements due to lateral deformation limitations. EBFs combine high lateral stiffness, due to bracing elements, and high dissipative capacities, provided by the plastic hinges developed in links. Eurocode 8 proposes a design procedure for EBF structures in which iterative checks are required to design links with a defined level resistance dependent on all the other links’ strength. The present paper investigates the seismic behaviour of EBFs using Incremental Dynamic Analyses (IDA) to explore their mechanical response under increasing seismic action. IDAs are executed considering the influence of variability of steel mechanical properties on the behaviour of EBFs, using seven artificial accelerograms according to Eurocode 8. The aims of IDAs are the probabilistic assessment of the response of the system with respect to the variability of the material properties, the analysis of structural safety and the ability of the structures to internally redistribute plastic phenomena during the earthquake. Structural safety conditions will be defined according to a multi-level performance approach. The paper presents also some final suggestions for possible improvements and design simplifications.  相似文献   

11.
Cross concentrically braced frames (X-CBFs) are commonly used as primary seismic resisting system, owing to their large lateral stiffness, simplicity of design, and relatively low constructional cost. Current EN 1998-1 provides design rules theoretically aiming at developing ductile global plastic mechanism, namely enforcing plastic deformations in the diagonal members, while the remaining structural members and connections should elastically behave. However, as widely demonstrated by many existing studies, the design and the corresponding seismic performance of EC8-compliant X-CBFs are generally affected by several criticisms, eg, difficulties in sizing of diagonal members, massive and non-economical structures, and poor seismic behavior. In light of these considerations, the research activity presented in this paper is addressed to revise the design rules and requirements given EN 1998-1 for X-CBFs to simplify the design process and to improve the ductility and the dissipative capacity of this structural system. Hence, design rules are proposed for the next version of EN 1998-1 and numerically validated by means of nonlinear dynamic analyses.  相似文献   

12.
Nonstructural components (NSCs) should be subjected to a careful and rational seismic design, in order to reduce the economic loss and to avoid threats to the life safety, as well as what concerns structural elements. The design of NSCs is based on the evaluation of the maximum inertia force, which is related to the floor spectral accelerations. The question arises as to whether Eurocode 8 is able to predict actual floor response spectral accelerations occurring in structures designed according to Eurocode 8. A parametric study is conducted on five RC frame structures in order to evaluate the floor response spectra. The structures, designed according to Eurocode 8, are subjected to a set of earthquakes, compatible with the design response spectrum. Time-history analyses are performed both on elastic and inelastic models of the considered structures. Eurocode formulation for the evaluation of the seismic demand on NSCs does not well fit the numerical results. Some comments on the target spectrum provided by AC 156 for the seismic qualification of NSC are also included.  相似文献   

13.
14.
15.
浅谈欧洲规范Eurocode 8-结构抗震设计   总被引:2,自引:0,他引:2  
简单介绍了欧洲规范(Eurocodes)的基本情况,概括给出了欧洲规范8-结构抗震设计的基本内容和特点,进而在抗震设计基本要求、建筑抗震概念设计基本原则两个方面与我国建筑抗震设计规范(GB50011-2001)进行了比较和评述,然后在场地类别、地震作用和结构抗震验算等几个方面对两规范进行了简单的对比和评述。  相似文献   

16.
For earthquake action the new design provisions of Eurocode 8 are in the process of replacing the European national earthquake codes. The paper treats the design and behaviour of multi-storey structural walls in view of the new provisions. For structural walls the provisions of the Eurocode 8 are compared with those of a national code which it is going to replace. As the national code the current Swiss earthquake standard SIA 160 is chosen. Basic design rules of both codes are introduced and compared by means of examples comprising buildings which are regular in plan and elevation and which use structural walls for lateral resistance. The height of the buildings is varied from a from four to eight storeys. In the example, both the SIA and the Eurocode design provisions are based on the static equivalent force method, and a triangular distribution of the lateral force. However, most other design provisions differ between the two codes. The structures designed are modelled numerically and subjected to non-linear time-history analysis. At first, both the SIA and Eurocode designed structures are subjected to ground motions compatible to the design spectra in the respective codes. Then all structures are subjected to a recorded ground motion. The results are discussed in view of assumptions made at the design phase. Conclusions and recommendations are provided. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Seismic ground motions induce torsional responses in buildings that can be difficult to predict. To compensate for this, most modern building codes require the consideration of accidental torsion when computing design earthquake forces. This study evaluates the influence of ASCE/SEI 7 accidental torsion seismic design requirements on the performance of 230 archetypical buildings that are designed with and without accidental torsion design provisions, taking building collapse capacity as the performance metric. The test case archetypes include a broad range of heights, gravity load levels, and plan configurations. Results show that the ASCE/SEI 7 accidental torsion provisions lead to significant changes in collapse capacity for buildings that are very torsionally flexible or asymmetric. However, only inconsequential changes in collapse capacity are observed in the buildings that are both torsionally stiff and regular in plan. Therefore, the study concludes that accidental torsion provisions are not necessary for seismic design of buildings without excessive torsional flexibility or asymmetry. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
For the first time after the finalisation of the European Norm for seismic design of buildings (Eurocode 8 – EC8),the performance of RC buildings designed with this code is evaluated through systematic nonlinear analyses. Regular 4-, 8- or 12-storey RC frames are designed for a PGA of 0.2 or 0.4 g and to one of the three alternative ductility classes in EC8. As the Eurocodes are meant to replace soon existing national codes, design and performance is also compared to that of similar frames designed with the 2000 Greek national codes. The performance of alternative designs under the life-safety (475 years) and the damage limitation (95 years) earthquakes is evaluated through nonlinear seismic response analyses. The large difference in material quantities and detailing of the alternative designs does not translate into large differences in performance. Design for either Ductility Class High (H) or Medium (M) of EC8 is much more cost-effective than design for Ductility Class Low (L), even in moderate seismicity. It is also much more cost-effective than design to the 2000 Greek national codes.  相似文献   

19.
Buckling restrained braces (BRBs) are very effective in dissipating energy through stable tension–compression hysteretic cycles and have been successfully experimented in the seismic protection of buildings. Their behavior has been studied extensively in the last decades and today the level of performance guaranteed by these devices and the technological constrains that have to be fulfilled to optimize their behavior are well known. Furthermore, several companies in the world have developed their own BRBs and are now producing them. In spite of this, many seismic codes (for instance, the EuroCode 8) do not stipulate provisions for the design and construction of earthquake‐resistant structures equipped with BRBs. This discourages the structural engineering community from using these devices and seriously limits their use in structural applications. In this paper a procedure for the seismic design of steel frames equipped with BRBs is proposed. Furthermore, the paper presents a numerical investigation aimed at validating this design procedure and proposing the value of the behavior factor q that should be used for this structural type. To this end, a set of frames with BRBs is first designed by means of several values of q. Then, the obtained frames are subjected to a set of accelerograms compatible with the elastic response spectrum considered in design. The seismic response of the frames is determined by nonlinear dynamic analysis and represented in terms of the ductility demand of BRBs and the internal force demand of nondissipative members (beams and columns). Finally, the largest value of q that leads to acceptable seismic performance of the analyzed frames is assumed as adequate. The value of q is given in the paper as a continuous function of the assumed ductility capacity of the BRBs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper examines the distribution of seismic drift demands in multi-storey steel moment frames designed to the provisions of Eurocode 8, with due account of the frequency content of ground motion. After providing an overview of current design rules, selected results from a detailed parametric investigation into inelastic drift demands are presented and discussed. The study includes extensive incremental dynamic analyses covering a wide range of structural characteristics and a large suite of ground motion records. The mean period is adopted in this work as a measure of the frequency content of ground motion. Prediction models for maximum global and inter-storey drift demands are presented and shown to be primarily affected by the fundamental-to-mean period ratio and the behaviour factor. Particular attention is given in this paper to the influence of the relative storey stiffness ratio on the distribution of drift demands over the height of the structure. In order to achieve a comparatively uniform drift distribution, a target relative storey stiffness ratio, incorporating the structural and ground motion characteristics, is proposed for design purposes. Finally, the implications of the findings on typical design procedures are highlighted, and possible improvements in codified guidance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号