首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
Land use practices in Colorado during the last two centuries altered the supply of sediment and water to many channels in the upper South Platte Basin. As a result of increased supply of sediment and mobility and reduced peak flows, the characteristics of pools associated with channel constrictions, referred to as forced pools, may have been altered. Increased supply of sediment and reduced transport capacity of high flows could lead to aggradation in forced pools. Channel confined by road corridors could lead to high velocities at normal flows, increased energy dissipation from riprap, or even increased pool frequency resulting from failed riprap. To assess potential alterations, four hypotheses were tested: (1) impacted streams will show significantly different mean volume of pools than a control stream; (2) mean volume of pools on streams where land-use activities increased the supply of sediment will be significantly different from streams solely affected by flow regulation; (3) the strongest change in characteristics of pools of impacted streams will be a reduced volume of pools; (4) streams affected by road corridors will show statistically lower spacing of pools than streams unaffected by roads. The downstream spacing and residual volume of twenty consecutive forced pools were surveyed on five streams in the Colorado Front Range that varied from no contemporary impact to multiple historical and contemporary impacts. ANCOVA with stepwise model selection indicated that degree of land-use (categorical), bankfull spacing of pools, upstream riffle slope and expansion ratio were all significant (α = 0.1) predictors of volume of pools (R2 = 0.73). Simple linear regression of mean volume of pools and stream specific variables (gradient, drainage area and discharge) and least square means comparison of mean volume of pools indicated a need to standardize volumes of pools by slope and discharge so that the volumes of pools could be compared among different levels of land-use. Significant correlations between drainage area and volume of pools allowed volume of pools to be standardized by drainage area and thereby discharge. This dimensionless variable was also significantly correlated with channel slope, which permitted the construction of a new variable, PVQS (volume of pools standardized by discharge and slope). Least square means comparison of mean PVQS revealed that the control reach was significantly different from road-impacted reaches. Mean volume of pools was significantly larger in the control reach compared to all but one road-impacted stream. This was likely a function of higher wood loading in the control reach and the competence of high flows in the road-impacted reach. Streams affected by road corridors did not have significantly different bankfull spacing of pools from streams not impacted by roads. The multiple interactions among control and response variables explored in this study indicate the need to identify the most constrained and sensitive response variables when attempting to assess channel response to land use.  相似文献   

2.
The objective of this study was the formulation of fluvial morphological regularities for small rivers with a wide range of morphological and geological characteristics in North-Rhine-Westphalia (Germany) based on a statistical research methodology. Such empirical quantitative information on reference conditions is required for the restoration of small rivers in the former highly industrialised Ruhr-Area. Following the approach of some classic empirical works in fluvial morphology of the last century, several natural reference rivers in the entire research area have been observed in order to provide a statistical correlation between independent and dependent morphological variables. Regressions between valley-floor slope, bankfull discharge and stream power on the one hand and several variables describing the longitudinal profile and river planform on the other hand have shown some significant results. The regularities found are a quantitative contribution to the establishment of reference conditions as well as a useful tool for the restoration of small rivers, if the specific properties and values of the underlying random sampling are taken into account. In addition, the relation between stream power and sinuosity shows the likely existence of a threshold: Exceeding a stream power of 100 W/m, the sinuosity decreases after an increase for lower stream power values. Comparable thresholds were found for the relation between stream power and pool depth as well as stream power and step steepness. The thresholds could be explained by a change in the type of energy dissipation, due to different physio-geographical settings in highland rivers within forested v-shaped valleys. Here, large-woody debris seems to increase the channel roughness and possibly replaces the significance of coarse-grained bed material, pool depth and step steepness as contributors to energy dissipation.  相似文献   

3.
Douglas M. Thompson   《Geomorphology》2007,83(3-4):199-214
A field-based project was initiated to characterize the influence of varying discharge and bed topography along a pool exit-slope on the strength of turbulence generated by vortex shedding. Velocities were measured with an ADV downstream of a boulder constriction within a shear zone of a large pool. Measurements were repeated for four flows that varied from 20% to 50% of bankfull discharge. An additional longitudinal profile was conducted along the pool thalweg. Plots of velocity demonstrate high near-bed velocities and turbulence levels in the pools. Turbulence levels were highest closer to the constriction in the shear zone. Turbulent kinetic energy decayed in the downstream direction in response to the bed topography and at lower discharges. Instantaneous velocities are large enough to temporarily lift pebbles at this depth. It appears that instantaneous forces created by vortex shedding may play an important role in scouring pools downstream of constrictions. The turbulence may also respond to changes in bed topography in a manner that encourages feedbacks among bed topography, characteristics of turbulence, and sediment transport.  相似文献   

4.
Identification of steps and pools from stream longitudinal profile data   总被引:1,自引:0,他引:1  
Field research on step–pool channels has largely focused on the dimensions and sequence of steps and pools and how these features vary with slope, grain sizes and other governing variables. Measurements by different investigators are frequently compared, yet no means to identify steps and pools objectively have been used. Automated surveying instruments record the morphology of streams in unprecedented detail making it possible to objectively identify steps and pools, provided an appropriate classification procedure can be developed.To achieve objective identification of steps and pools from long profile survey data, we applied a series of scale-free geometric rules that include minimum step length (2.25% of bankfull width (Wb)), minimum pool length (10% of Wb), minimum residual depth (0.23% of Wb), minimum drop height (3.3% of Wb), and minimum step slope (10° greater than the mean slope). The rules perform as well as the mean response of 11 step–pool researchers who were asked to classify four long profiles, and the results correspond well with the channel morphologies identified during the field surveys from which the long profiles were generated. The method outperforms four other techniques that have been proposed. Sensitivity analysis shows that the method is most sensitive to the choice of minimum pool length and minimum drop height.Detailed bed scans of a step–pool channel created in a flume reveal that a single long profile with a fixed sampling interval poorly characterizes the steps and pools; five or more long profiles spread across the channel are required if a fixed sampling interval is used and the data suggest that survey points should be located more frequently than the diameter of the step-forming material. A single long profile collected by a surveyor who chooses breaks in slope and representative survey points was found to adequately characterize the mean bed profile.  相似文献   

5.
Rill erosion is well developed in Yuanmou Dry-hot Valley. The appearance of step-pools in rills (SPRs) is an early stage of erosion and necessary condition for rill development. We measured length, width, depth of plunge pools, and length, height, and slope of step walls. We observed the developmental environment of every SPR in the field. Through research on relationships among SPR parameters, morphological characteristics, and control factors, we conclude that (1) correlations of step slope with pool length and width, and of step length with pool width are not evident (p > 0.1); correlations of pool length with step height and length are evident (p < 0.1); correlations of step slope with pool depth, and of step height with pool width are significant (p < 0.05); and correlations of pool depth with step length and height are highly significant (p < 0.01). Plunge-pool length is affected by soil properties and step height, but not by step gradient. (2) SPR formation shows a coupling effect of a single factor or many factors, such as terrain conditions, vegetation, confluence area, soil properties, and boundary conditions, and the shapes and scales of SPRs notably change with differences of the main control factors.  相似文献   

6.
This research examines variations in bankfull cross-sections along a steep stream of the Dolomites (Cordevole stream, Belluno, Northern Italy). Field measurements were conducted to determine variations in the channel top-width at bankfull stage in relation to the drainage area and to the length of the flow path. After grouping the bed morphologies according to the Montgomery and Buffington [Montgomery, D.R., Buffington, J.M., 1997. Channel-reach morphology in mountain drainage basins. Geol. Soc. of Am. Bull. 109 (5) 596–611.] classification, we analyzed the increase in bankfull width for the dominant stream units (cascades, step pools, isolated pools and colluvial reaches at the head of the basin). We observed that the morphologies more related to the drainage area are colluvial reaches and pools; the less adaptable are steps and cascades. These differences likely result from the absence of lateral constriction in the colluvial reaches and pools, whereas the presence of coarser sediments in the bed can affect the transverse adjustments in steps and reaches dominated by cascades. Linkages between cross-section geometry and parameters related to flow (i.e. drainage area and stream power) have been analyzed together with the distribution of surface grain sizes and its coarsening pattern. The existence of distinctive bankfull widths between different morphological units points out the degree of susceptibility to be modeled according to the channel slope, reference diameter (D90), and contributing area.  相似文献   

7.
This article evaluates the potential of 1-m resolution, 128-band hyperspectral imagery for mapping in-stream habitats, depths, and woody debris in third- to fifth-order streams in the northern Yellowstone region. Maximum likelihood supervised classification using principal component images provided overall classification accuracies for in-stream habitats (glides, riffles, pools, and eddy drop zones) ranging from 69% for third-order streams to 86% for fifth-order streams. This scale dependency of classification accuracy was probably driven by the greater proportion of transitional boundary areas in the smaller streams. Multiple regressions of measured depths (y) versus principal component scores (x1, x2,…, xn) generated R2 values ranging from 67% for high-gradient riffles to 99% for glides in a fifth-order reach. R2 values were lower in third-order reaches, ranging from 28% for runs and glides to 94% for pools. The less accurate depth estimates obtained for smaller streams probably resulted from the relative increase in the number of mixed pixels, where a wide range of depths and surface turbulence occurred within a single pixel. Matched filter (MF) mapping of woody debris generated overall accuracies of 83% in the fifth-order Lamar River. Accuracy figures for the in-stream habitat and wood mapping may have been misleadingly low because the fine-resolution imagery captured fine-scale variations not mapped by field teams, which in turn generated false “misclassifications” when the image and field maps were compared.The use of high spatial resolution hyperspectral (HSRH) imagery for stream mapping is limited by the need for clear water to measure depth, by any tree cover obscuring the stream, and by the limited availability of airborne hyperspectral sensors. Nonetheless, the high accuracies achieved in northern Yellowstone streams indicate that HSRH imagery can be a powerful tool for watershed-wide mapping, monitoring, and modeling of streams.  相似文献   

8.
In this study, an attempt has been made to evaluate the temporal variations in specific stream power and the total energy available for geomorphic work during the monsoon season for the Tapi River, in central India. Continuous daily discharge data (1978–1990), hydraulic geometry equations and the relationship between discharge and water surface slope were used to compute the daily specific stream power (ω) for the Savkheda gauging site in the lower Tapi Basin. The total amount of energy generated by all the monsoon flows was estimated by integrating the area under the ω-graph derived for the monsoon season.The analyses of the 13-year daily discharge data reveal that the average and maximum ω values range from 4–20 W m− 2, and 22–964 W m− 2 respectively. Specific stream power duration curve derived for the site shows that for 25% of the time the power per unit area is > 10 W m− 2. Furthermore, unit stream power was found to be above the Williams' [Williams, G.P., 1983. Paleohydrological methods and some examples from Swedish fluvial environments. I. Cobble and boulder deposits. Geografiska Annaler 65A, 227–243.] threshold of pebble-movement (1.5 W m− 2), cobble-movement (16 W m− 2) and boulder-movement (90 W m− 2) for 71%, 15% and 2% of the time, respectively. Computations further indicate that the total amount of energy generated by the flows during the monsoon season is in the range of 37 MJ (deficit monsoon years) to 256 MJ (excess monsoon and/or flood years). Large floods have one-third share in the total monsoon energy expenditure. In the absence of appropriate data on the yearwise geomorphic effects, the geomorphic work was evaluated in terms of the total suspended sediment load transported. The total monsoon sediment load is strongly related to the total monsoon energy. The results of the study indicate that the average flow competence and capacity are remarkably higher during wetter monsoon seasons and flood years than during the shorter and drier monsoon seasons.The present analyses demonstrate that the flows are geomorphically effective for a greater part of the monsoon season, except during the deficient monsoon years, and there is little doubt that large-magnitude floods are effective agents of geomorphic change in monsoonal rivers.  相似文献   

9.
Expressing the rate of energy dissipation either within a basin or in a downstream manner is important in understanding occurrence and association between various morphological variables. This study focuses on the downstream variation in stream power and its relationship with morphological variates along the main channel of River Ona, Ibadan, Nigeria. River Ona stretches for 20.5 km downstream of Eleyele Dam. Twenty‐seven (27) points were sampled along this stretch. The 27 points were averaged into nine (9) reaches. At each cross‐section, channel characteristics were observed and measured. These include: width (W), depth (D), velocity (V), slope (S), Cross‐sectional area (A), discharge (Q), total stream power (TSP), specific stream power (SSP), width‐depth ratio (W/D), hydraulic radius (R) and wetted perimeter (P). This study confirmed that the influence of a dam present upstream of a river channel significantly alters the behaviour of slope and this in essence affects the distribution of energy along the river channel. Slope produces a logarithmic relationship with increasing distance downstream (Y = ‐32.79‐0.70InS, r = 0.70, r2 = 0.49, p < 0.05) while there was no significant relationship between Q and distance downstream.  相似文献   

10.
This article introduces a technique for using a combination of remote sensing imagery and open-channel flow principles to estimate depths for each pixel in an imaged river. This technique, which we term hydraulically assisted bathymetry (HAB), uses a combination of local stream gage information on discharge, image brightness data, and Manning-based estimates of stream resistance to calculate water depth. The HAB technique does not require ground-truth depth information at the time of flight. HAB can be accomplished with multispectral or hyperspectral data, and therefore can be applied over entire watersheds using standard high spatial resolution satellite or aerial images. HAB also has the potential to be applied retroactively to historic imagery, allowing researchers to map temporal changes in depth.We present two versions of the technique, HAB-1 and HAB-2. HAB-1 is based primarily on the geometry, discharge and velocity relationships of river channels. Manning's equation (assuming average depth approximates the hydraulic radius), the discharge equation, and the assumption that the frequency distribution of depths within a cross-section approximates that of a triangle are combined with discharge data from a local station, width measurements from imagery, and slope measurements from maps to estimate minimum, average and maximum depths at a multiple cross-sections. These depths are assigned to pixels of maximum, average, and minimum brightness within the cross-sections to develop a brightness–depth relation to estimate depths throughout the remainder of the river.HAB-2 is similar to HAB-1 in operation, but the assumption that the distribution of depths approximates that of a triangle is replaced by an optical Beer–Lambert law of light absorbance. In this case, the flow equations and the optical equations are used to iteratively scale the river pixel values until their depths produce a discharge that matches that of a nearby gage.R2 values for measured depths versus depths estimated by HAB-1 and HAB-2 are 0.51 and 0.77, respectively, in the relatively simple Brazos River, Texas. R2 values for HAB-1 and HAB-2 are 0.46 and 0.26, respectively, in the Lamar River, a complex mountain river system in Yellowstone National Park. Although the R2 values are moderate, depth maps and cross-sections derived from the HAB techniques are consistent with typical stream geomorphology patterns and provide far greater spatial coverage and detail than could be achieved with ground-based survey techniques. Improved depth estimates can be achieved by stratifying the river into different habitat types that normalize for differences in turbulence and substrate.  相似文献   

11.
Reach-scale channel geometry of mountain streams   总被引:3,自引:0,他引:3  
Ellen Wohl  David M. Merritt   《Geomorphology》2008,93(3-4):168-185
The basic patterns and processes of steep channels remain poorly known relative to lower-gradient channels. In this analysis, characteristics of step-pool, plane-bed, and pool-riffle channels are examined using a data set of 335 channel reaches from the western United States, Nepal, New Zealand, and Panama. We analyzed differences among the three channel types with respect to hydraulics, channel geometry, boundary roughness, and bedforms. Step-pool channels have significantly steeper gradients, coarser substrate, higher values of shear stress and stream power for a given discharge, and larger ratios of bedform amplitude/wavelength (H/L). Pool-riffle channels have greater width/depth ratios and relative grain submergence (R/D84) than the other channel types. Plane-bed channels tend to have intermediate values for most variables examined. Relative form submergence (R/H) is statistically similar for step-pool and pool-riffle channels. Despite the lesser relative grain submergence and greater bedform amplitude of step-pool channels, mean values of Darcy–Weisbach friction factor do not change in response to changes in relative grain submergence. These patterns suggest that adjustments along mountain streams effectively maximize resistance to flow and minimize downstream variability in resistance among the different channel types.  相似文献   

12.
The downstream distribution of stream power is derived and analysed for 11 different streams in the upper Hunter River catchment, Australia. Stream long profiles were produced in a GIS environment using DEM data and catchment area–discharge analysis. These profiles were analysed using three approaches, namely long profile smoothing, curve fitting and a theoretical model. The methodology for deriving stream power profiles using these three approaches is discussed. The long profile smoothing method provides a good approximation of the subcatchment variability in stream power trends. The curve fitting method shows that higher-order exponential curves provide a better fit for long profile data. For the streams of the upper Hunter River catchment, second-order exponential curves fit well with significantly less error. The curve fitting method predicts a bimodal (upstream and midstream) distribution of stream power, which is a deviation from our earlier understanding of a single midstream peak. The theoretical approach provides a mathematical expression of the observed bimodal stream power distribution. The bimodal distribution emphasises the erosion potential of headwater reaches. The resultant stream power distribution provides a catchment-scale characterisation of the distribution of available energy in any given system. Using these approaches, the variability of stream power in headwater reaches is explained by discharge variability, while variability in midstream and downstream reaches is related to high variability in channel gradient.  相似文献   

13.
Vishwas S. Kale   《Geomorphology》2007,85(3-4):306
The efficacy of extreme events is directly linked to the flood power and the total energy expended. The geomorphic effectiveness of floods is evaluated in terms of the distribution of stream power per unit boundary area (ω) over time, for three very large floods of the 20th Century in the Indian Peninsula. These floods stand out as outliers when compared with the peak floods per unit drainage area recorded elsewhere in the world. We used flood hydrographs and at-a-station hydraulic geometry equations, computed for the same gauging site or a nearby site, to construct approximately stream-power curves and to estimate the total energy expended by each flood. Critical unit stream power values necessary to entrain cobbles and boulders were estimated on the basis of empirical relationships for coarse sediment transport developed by Williams [Williams, G.P., 1983. Paleohydrological methods and some examples from Swedish fluvial environments. I. Cobble and boulder deposits. Geografiska Annaler 65A, 227–243.] in order to determine the geomorphological effectiveness of the floods. The estimates indicate that the minimum power per unit area values for all three floods were sufficiently high, and stream energy was above the threshold of boulder movement (90 W m− 2) for several tens of hours. The peak unit stream power values and the total energy expended during each flood were in the range of 290–325 W m− 2 and 65–160 × 106 J respectively. The average and peak flood powers were found to be higher or comparable to those estimated for extreme palaeo or modern floods on low-gradient, alluvial rivers.  相似文献   

14.
Prediction of alluvial channel pattern of perennial rivers   总被引:2,自引:0,他引:2  
Purely braided, meandering and straight channels can be considered as end-members of a continuum of alluvial channel patterns. Several researchers have succeeded in separating channel patterns in fields defined by flow related parameters. However, the discriminators of the principal channel patterns derived from these diagrams all require some a priori knowledge of the channel geometry. In this paper a method is presented which enables prediction of the equilibrium conditions for the occurrence of braided and high sinuosity meandering rivers in unconfined alluvial floodplains. The method is based on two, almost channel pattern independent, boundary conditions: median grain size of the river bed material, and a potential specific stream power parameter related to bankfull discharge or mean annual flood and valley gradient. This can be regarded as a potential maximum of the available flow energy corresponding to the minimum sinuosity condition, P = 1. Based on an analysis of 228 datasets of measurement sites along rivers from many parts of the world an independent discriminating function was found that separates the occurrence of braided rivers and meandering rivers with P > 1.5. The function applies to equilibrium conditions of rivers that neither incise nor show rapid aggradation, with a bankfull or mean annual flood discharge above 10 m3/s and a median bed material grain size between 0.1 and 100 mm.  相似文献   

15.
Abstract

Headcut erosion has been recognized as one of the main processes involved in gully development in the dry-hot valley region of southwest China. To examine the effect of initial step height on headcut erosion processes, three headcuts were constructed ranging in height from 0.75 to 1.25 m on an active bank gully head, and a series of scouring experiments were conducted under a flow discharge of 120 L min?1. The morphological evolutions of the plunge pools and soil loss volume were estimated by three-dimensional photo-reconstruction methods (3D-PR). As the step height increased, the experimental results showed that: (1) the transformed potential energy and shear stress would increase by approximately 4.89 J s?1 and 26.4 Pa on average when the step height increased 0.25 m; (2) the mean depth and width of the plunge pool exhibited obvious growth, and the morphology of the cross-section developed from approximately V-shaped to U-shaped; and (3) soil loss volume increased logarithmically, with total soil loss volumes of 0.076, 0.105 and 0.116 m3, respectively. Although the significant effects of the initial step height on headcut erosion were verified, further quantitative studies are required to quantify the mechanism of headcut erosion, especially for plunge pool erosion.  相似文献   

16.
Field measurements of three-dimensional hydraulics in a step-pool channel   总被引:4,自引:0,他引:4  
We investigated the effects of morphologic position and discharge on flow structure in a steep (0.10 m/m) mountain channel by collecting three-dimensional measurements of time-averaged and turbulent velocity components with a SonTek FlowTracker Handheld ADV (acoustic Doppler velocimeter) on a 30-m reach of a step-pool channel in the Colorado Rockies. Velocity profiles were measured at morphologic positions characteristic of steep channels (above steps, step lips, base of steps, pools, cascades, runs), and at five different discharges. A marked three-dimensionality of flow structure was documented in East St. Louis Creek. Velocities in the streamwise component were the largest contributors to overall velocity vector magnitudes; cross-stream and vertical components contributed averages of 20% and 15%, respectively, to overall vector magnitudes. Turbulence intensities were especially multi-dimensional, however, with large contributions to turbulent kinetic energy from the vertical component of velocity. Analysis of variance indicated that discharge and morphologic position significantly affected mean streamwise velocities, with substantially higher velocities upstream from steps than in pools. Discharge and morphology effects on cross-stream and vertical velocity components, however, were not significant. Discharge and morphologic position also significantly affected turbulence intensities for all flow components, with the greatest turbulence intensities occurring in pools and at high discharges. These results illustrate the strong discharge-dependence of hydraulics in step-pool channels, where relative submergence of bedforms changes rapidly with discharge, and the substantial spatial variation in hydraulics created by step-pool sequences.  相似文献   

17.
Experiments with marked pebbles were carried out on different sized rivers of the Belgian Ardenne (catchment areas varying from less than 1 km2 to 2700 km2). Specific stream power required to cause bedload movement was evaluated and critical values were obtained. Three types of relationship between critical specific stream power (ω0) and grain size (D) were established. The values for ω0 in the largest river (the Ourthe) were the lowest and were close to the values obtained for mountainous rivers carrying large boulders. In medium sized rivers (catchment area between 40 and 500 km2), the critical unit stream power was higher. It is likely that it is due to the bedform's greater resistance. This resistance would use up some of the energy that can cause movement and transport of bedload. The amount of resistance of the bedform can be expressed as bedform shear stress (τ″), determined by the relationship between grain shear stress (τ′—that determines movement and transport of the bedload) and the total shear stress (τ). This ratio varies between 0.4 and 0.5 in the medium sized rivers, compared to 0.7 in the Ourthe. In headwater streams (less than 20 km2), there is greater loss of energy due to bedform resistance (τ′/τ<0.3). Critical specific stream power is higher in this third type of river than in the other two.  相似文献   

18.
以陕西省榆林市这一典型区为例探讨干旱、半干旱荒漠化重建地区SOC时空动态特征及其驱动因素。数据基础为1982年土壤普查和2003年重复采样。结果表明:(1) 在耕层(0~20 cm)、1 m深(0~100 cm) 和全剖面(母质层以上整个土体) 等三个剖面层次上,土壤有机碳密度(SOCD)和储量(SOCS)时空动态分异明显,其中耕层最为显著。(2) 在区域水平上,耕层、1 m深和全剖面SOCS分别增加10.12 Gg、19.06 Gg和20.10 Gg,其中东南部丘陵沟壑区显著高于西北部风沙草滩区。(3) 在土类水平上,风沙土类中各土种SOCD及其变化悬殊,其中流动风沙土和半固定风沙土SOCD最低、增加量最小,固定风沙土初始SOCD最高、减少量最大;反之,黄绵土类中各土种SOCD较高,增加量显著。该研究证明植树造林种草、可持续农业耕垦等土地利用和管理方式的变更能显著提高荒漠化地区土壤固碳能力。  相似文献   

19.
The mechanisms which control the formation and maintenance of pool–riffles are fundamental aspects of channel form and process. Most of the previous investigations on pool–riffle sequences have focused on alluvial rivers, and relatively few exist on the maintenance of these bedforms in boulder-bed channels. Here, we use a high-resolution two-dimensional flow model to investigate the interactions among large roughness elements, channel hydraulics, and the maintenance of a forced pool–riffle sequence in a boulder-bed stream. Model output indicates that at low discharge, a peak zone of shear stress and velocity occurs over the riffle. At or near bankfull discharge, the peak in velocity and shear stress is found at the pool head because of strong flow convergence created by large roughness elements. The strength of flow convergence is enhanced during model simulations of bankfull flow, resulting in a narrow, high velocity core that is translated through the pool head and pool center. The jet is strengthened by a backwater effect upstream of the constriction and the development of an eddy zone on the lee side of the boulder. The extent of flow convergence and divergence is quantified by identifying the effective width, defined here as the width which conveys 90% of the highest modeled velocities. At low flow, the ratio of effective width between the pool and riffle is roughly 1:1, indicating little flow convergence or divergence. At bankfull discharge, the ratio of effective width is approximately 1:3 between the pool and downstream riffle, illustrating the strong flow convergence at the pool head. The effective width tends to equalize again with a ratio of 1:1 between the pool and riffle during a modeled discharge of a five-year flood, as the large roughness elements above the pool become drowned out. Results suggest that forced pool–riffle sequences in boulder-bed streams are maintained by flows at or near bankfull discharge because of stage-dependent variability in depth-averaged velocity and tractive force.  相似文献   

20.
Field study of bedrock step–pool systems along the upper reaches of Soda Creek in the Three Sisters Wilderness of Oregon shows strong correlation between several form variables (shape) and channel slope. Although step height and step length showed no regular spacing and variable correlation with channel slope, length to height ratios demonstrated strong negative correlations: steep slopes (20% to 80%) featured greater step height and shorter pool lengths than did flatter channel slopes. Correlations between step height to length ratios and channel slope varied between three lithologies. Explained variations ranged from 0.984 for the oldest channel steps developed in basalt, to 0.982 for steps of intermediate age developed in andesite, to 0.964 for the youngest steps developed in dacite. Sample size was 57, 40, and 33, respectively. The frequency of pool shape classes did not vary by lithology, but specific shape classes developed under differing slope conditions by rock type. All pool classes have adjusted (developed) their form to maximize resistance to flow H/L/S, and they have done so in remarkably uniform fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号