首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the retention of Ca and other metals (Pb, Cu, Fe, Zn and Mn) in the Oostriku peat bog (central Estonia) was modelled. Equilibrium sorption of metals on amorphous ferric oxyhydroxide and solid organic matter was simulated at steady-state. Ferric oxyhydroxide formation and possible precipitation of other metals (Mn, Pb and Cu) in the peat was also assessed. Evolution of metal sorption fronts along a peat profile over time was simulated with a dynamic model to test if metal–metal competition effects could cause Pb and Cu to sorb at higher amounts in the uppermost peat than in the lower peat, as observed in the field. The predicted sorbed amounts of metals were compared with those previously observed in the peat. In general, good agreement between both batch and dynamic model results and the independent observations at the Oostriku peat site was obtained. This suggests that the relatively simple model approach employed here might be generally useful for assessing other peat sites and similar applications.  相似文献   

2.
《Applied Geochemistry》1986,1(4):519-525
A number of bog areas with richly cupriferous peats have been outlined during a geochemical soil survey investigating the distribution of Cu, Mo, Pb and Zn in the vicinity of the Coed y Brenin porphyry copper deposit. During the first half of the last century considerable amounts of peat were extracted from the bog known as “Turf Copper” and ash derived from burning this peat was smelted as a source of Cu. “Turf Copper” bog is situated immediately to the west of the main outcrop of porphyry-style mineralization in this area. In addition, three small Cu bogs were delineated in the area of Bryn Coch to the south of the main mineralized zone, where disseminated Cu mineralization outcrops.Waters draining into the bog areas are enriched in Cu up to 0.97 mg/l. Analysis of profile samples from the bogs has indicated extreme enrichment in Cu and variable enrichments in Mo, Pb, Zn, Mn, Co, Ag and Au. Mineralized intrusive rocks in this area are significantly enriched in Cu and Au. The enrichment of Cu, up to 5.72%, and Au, up to 0.13 ppm in ashed peat samples, reflects the mobilization of these elements from adjacent mineralization by ground and surface waters and their fixation by interaction with organic matter accumulated in the bogs.The recognition of cupriferous bogs and the sampling and analysis of peats, including analysis for Au, may provide useful indicators of Cu and Au mineralization, especially in glaciated areas where mineralization may be masked by transported overburden and geochemical anomalies displaced by hydromorphic agencies.  相似文献   

3.
The fate of the Rare Earth Elements (REE) were investigated in different types of archives of atmospheric deposition in the Black Forest, Southern Germany: (1) a 70 cm snow pack collected on the domed part of a raised bog and representing 2 months of snow accumulation, (2) a snow sample collected close to the road about 500 m from the peat bog, (3) two species of lichens and (4) a peat profile representing 400 years of peat accumulation as well as a “preanthropogenic” sample and the living moss layer from the top of the core. REE concentrations in peat are significantly correlated to Ti which is a lithogenic conservative element suggesting that REE are immobile in peat bog environments. Snow, lichens and peat samples show similar PAAS (Post Archean Australian Shale) normalized REE distributions suggesting that the complete atmospheric REE signal is preserved in the peat profile. However, the annual flux of REE accumulated by the peat is ca. 10 times greater than that of the bulk winter flux of REE. This difference probably indicates that the REE concentrations in the snowpack are not representative of the average REE flux over the whole year. Despite the pronounced geological differences between this site (granite host-rock) and a previously studied peat bog in Switzerland (limestone host-rock) similar REE distribution patterns and accumulation rates were found at both sites. Given that both sites confirm an Upper Continental Crust signature, the data suggests both sites are influenced by regional and not local, soil-derived lithogenic aerosols.  相似文献   

4.
Vertical profiles of trace metal (Cd, Pb, Zn, Cu, Ni) concentrations, organic matter content, carbonate content and granulometric composition were determined in two sediment cores from the submarine pit Dragon Ear (Middle Adriatic). Concentrations of the analyzed metals (Cd: 0.06–0.12 mg kg−1, Pb: 28.5–67.3 mg kg−1, Zn: 17.0-65.4 mg kg−1, Cu: 21.1–51.9 mg kg−1, Ni: 27.8–40.2 mg kg−1) were in usual range for Adriatic carbonate marine sediments. Nevertheless, concentrations of Cu, Zn, and especially Pb in the upper layer of sediments (top 12 cm) were higher than in bottom layer, while Cd and Ni concentration profiles were uniform. Regression analysis and principal component analysis were used to interpret distribution of trace metals, organic matter and carbonate content in sediment cores. Results of both analysis showed that concentrations of all trace metals in the core below the entrance to the pit were significantly positively correlated with organic matter and negatively correlated with carbonate, while in the core more distant from the entrance only Pb showed significant positive correlation with organic matter. Obtained results indicated that, except for lead which was enriched in surface sediment, in the time of sampling (before the building of the nautical marina) investigated area belonged to unpolluted areas.  相似文献   

5.
J. Yang  A. P. Dykes 《Landslides》2006,3(3):205-216
Catastrophic failures of blanket bogs, involving the escape and outflow of large volumes of semi-liquid basal peat, are well-known phenomena in Ireland but have only very rarely been reported from elsewhere in the world. Their precise causes and mechanisms are as yet unclear. The liquid limit (w L) was identified as a potentially useful indicator of the susceptibility of peat to such failure because peat has extremely high natural water contents and, as an index property, w L takes no account of the properties or structures of highly heterogeneous intact peat. However, the usual procedure for determining the w L of peat is not fully standardised. Prepared samples will normally include potentially highly reactive particles of disrupted fibres and wood fragments that would not be present in such freshly disintegrated form in the field. This paper presents results from w L determinations of peat obtained from the scar margins of three bog failures in northwest Ireland, using four different test procedures including a method involving wet-sieving of the peat to separate the humified <425-μm fraction for testing without incorporating artificially fragmented particles of fibres. The sampled peat was classified as H8–H10 according to the von Post humification scale. The fibre contents varied between the sites, but the ash contents were <3% in all but one test sample, and bulk densities (dry and field-wet) of the peat from all three sites were almost identical. w L results from the wet-sieving method were 708–785%, compared with 633–980% from the standard method. The highest measured field water contents exceeded the wet-sieved w L for all three of the field sites. Tests of cone penetration into intact peat cores demonstrated the influence of the reinforcing effect of in situ fibres. The results strongly suggest the need to adopt a fully standardised procedure for determining the w L of peat. Additional shear vane measurements of intact and remoulded peat from a bog failure in Northern Ireland indicated a very high ‘strength sensitivity’. This leads to the suggestion that a slight disturbance of basal peat can lead to a loss of strength that rapidly propagates as local stresses change and cause further remoulding as water contents exceed w L.  相似文献   

6.
The distribution of gold in high-temperature fumarole gases of the Kudryavy volcano (Kurile Islands) was measured for gas, gas condensate, natural fumarolic sublimates, and precipitates in silica tubes from vents with outlet temperatures ranging from 380 to 870°C. Gold abundance in condensates ranges from 0.3 to 2.4 ppb, which is significantly lower than the abundances of transition metals. Gold contents in zoned precipitates from silica tubes increase gradually with a decrease in temperature to a maximum of 8 ppm in the oxychloride zone at a temperature of approximately 300°C. Total Au content in moderate-temperature sulfide and oxychloride zones is mainly a result of Au inclusions in the abundant Fe–Cu and Zn sulfide minerals as determined by instrumental neutron activation analysis. Most Au occurs as a Cu–Au–Ag triple alloy. Single grains of native gold and binary Au–Ag alloys were also identified among sublimates, but aggregates and crystals of Cu–Au–Ag alloy were found in all fumarolic fields, both in silica tube precipitates and in natural fumarolic crusts. Although the Au triple alloy is homogeneous on the scale of microns and has a composition close to (Cu,Ni,Zn)3(Au,Ag)2, transmission electron microscopy (TEM) shows that these alloy solid solutions consist of monocrystal domains of Au–Ag, Au–Cu, and possibly Cu2O. Gold occurs in oxide assemblages due to the decomposition of its halogenide complexes under high-temperature conditions (650–870°C). In lower temperature zones (<650°C), Au behavior is related to sulfur compounds whose evolution is strongly controlled by redox state. Other minerals that formed from gas transport and precipitation at Kudryavy volcano include garnet, aegirine, diopside, magnetite, anhydrite, molybdenite, multivalent molybdenum oxides (molybdite, tugarinovite, and ilsemannite), powellite, scheelite, wolframite, Na–K chlorides, pyrrhotite, wurtzite, greenockite, pyrite, galena, cubanite, rare native metals (including Fe, Cr, Mo, Sn, Ag, and Al), Cu–Zn–Fe–In sulfides, In-bearing Pb–Bi sulfosalts, cannizzarite, rheniite, cadmoindite, and kudriavite. Although most of these minerals are fine-grained, they are strongly idiomorphic with textures such as gas channels and lamellar, banded, skeletal, and dendrite-like crystals, characteristic of precipitation from a gas phase. The identified textures and mineral assemblages at Kudryavy volcano can be used to interpret geochemical origins of both ancient and modern ore deposits, particularly gold-rich porphyry and related epithermal systems.  相似文献   

7.
The purpose of this study was to determine peat formation processes throughout the millennia in four tidal marshes in the Sacramento–San Joaquin Delta. Peat cores collected at each site were analyzed for bulk density, loss on ignition, and percent organic carbon. Core data and spline fit age–depth models were used to estimate inorganic sedimentation, organic accumulation, and carbon sequestration rates in the marshes. Bulk density and percent organic matter content of peat fluctuated through time at all sites, suggesting that peat formation processes are dynamic and responsive to watershed conditions. The balance between inorganic sedimentation and organic accumulation at the sites also varied through time, indicating that marshes may rely more strongly on either inorganic or organic matter for peat formation at particular times in their existence. Mean carbon sequestration rates found in this study (0.38–0.79 Mg C ha−1 year−1) were similar to other long-term estimates for temperate peatlands.  相似文献   

8.
In this work, the interaction of natural organic matter (NOM) with metal(loid)s (Cu, Pb, Zn, Pt, As) and the role of NOM on the metal(loid) transport in a water-saturated quartz sand column were investigated. For detailed information, size exclusion chromatographic (SEC) measurements and “short pulse” laboratory transport experiments with online metal(loid) and NOM detection were used. The SEC measurements showed the formation of metal–NOM complexes. Cu, Pb, Zn and Pt were predominantly bound to the high molecular mass NOM molecules. The binding capacity of the NOM for metals increased with increasing pH value and in the following order: Zn < Pb < Cu < Pt. No evidence for the formation of As–NOM complexes was found. The transport experiments showed no significant influence of NOM on the mobility of Cu, Pb and Zn. The metal–NOM complexes detected in the SEC experiments were obviously sorbed completely onto the grain surfaces in case of the quartz sand system, or they were dissociated partially during passage through the column. No influence of NOM was observed on the transport of As as well. Inorganic Zn and As species were transported through the column with increasing retardation as the pH value increased. Pt showed a high mobility at a pH of 5, and it decreased at a pH of 7 especially in the presence of NOM. The results support the known fact that a decrease in the pH value results in enhanced transport of inorganic metal(loid) species in water-saturated porous media. On the other hand, the presence of NOM can immobilise the metals through metal–NOM complex formation and the deposition of the complexes onto the stationary phase.  相似文献   

9.
 The marine coastal sediments from Togo have been analysed for the trace elements Cd, Cr, Cu, Ni, Pb, Sr, V, Zn and Zr to ascertain the geo-ecological impact of dumping of phosphorite tailings into the sea. Trace element concentrations ranged from 2–44 ppm for Cd, 22–184 ppm for Cu, 19–281 ppm for Ni, 22–176 ppm for Pb, 179–643 ppm for Sr, 38–329 ppm for V, 60–632 ppm for Zn and 18–8928 ppm for Zr. Regional distribution of trace elements in the marine environment indicates that the concentrations of Cr, Cu, Ni, Pb, V, Sr and Zn increase seawards and along the coastal line outwards of the tailing outfall, whereas Cd and Zr showed reversed spatial patterns. Sorting and transport of phosphorite particles by coastal currents are the main factors controlling the distribution of particle-bound trace metals in the coastal environment. The Cd, Sr and Zn concentrations decrease with decreasing grain size in marine coastal sediments, whereas Cr, Cu, Ni and Zn concentrations increase with decreasing grain size. Percolation and shaking experiments were carried out in laboratory using raw phosphate material and artificial sea water. Enhanced mobilization of Cd from phosphorites by contact with the sea water was observed. Received: 11 May 1998 · Accepted: 20 October 1998  相似文献   

10.
A peat deposit from the East European Russian Arctic, spanning nearly 10 000 years, was investigated to study soil organic matter degradation using analyses of bulk elemental and stable isotopic compositions and plant macrofossil remains. The peat accumulated initially in a wet fen that was transformed into a peat plateau bog following aggradation of permafrost in the late Holocene (~2500 cal a BP). Total organic carbon and total nitrogen (N) concentrations are higher in the fen peat than in the moss‐dominated bog peat layers. Layers in the sequence that have lower concentrations of total hydrogen (H) are associated with degraded vascular plant residues. C/N and H/C atomic ratios indicate better preservation of organic matter in peat material dominated by bryophytes as opposed to vascular plants. The presence of permafrost in the peat plateau stage and water‐saturated conditions at the bottom of the fen stage appear to lead to better preservation of organic plant material. δ15N values suggest N isotopic fractionation was driven primarily by microbial decomposition whereas differences in δ13C values appear to reflect mainly changes in plant assemblages. Positive shifts in both δ15N and δ13C values coincide with a local change to drier conditions as a result of the onset of permafrost and frost heave of the peat surface. This pattern suggests that permafrost aggradation not only resulted in changes in vegetation but also aerated the underlying fen peat, which enhanced microbial denitrification, causing the observed 15N‐enrichment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
 Volcan Popocatépetl is a Quaternary stratovolcano located 60 km southeast of Mexico City. The summit crater is the site of recent ash eruptions, excess degassing, and dacite dome growth. The modern cone comprises mainly pyroclastic flow deposits, airfall tephras, debris flows, and reworked deposits of andesitic composition; it is flanked by more mafic monogenetic vents. In least-degassed fallout tuffs and mafic scoria, transition metals are concentrated in phases formed before eruption, during eruption, and after eruption. Preeruptive minerals occur in both lavas and tephra, and include oxides and sulfides in glass and phenocrysts. The magmatic oxides consist of magnetite, ilmenite, and chromite; the sulfides consist of both (Fe,Ni)1-xS (MSS) and Cu–Fe sulfide (ISS). Syn- and posteruptive phases occur in vesicles in both lavas and tephra, and on surfaces of ash and along fractures. The mineral assemblages in lavas include Cu–Fe sulfide and Fe–Ti oxide in vesicles, and Fe sulfide and Cu–Fe sulfide in segregation vesicles. Assemblages in vesicles in scoria include Fe–Ti oxide and rare Fe–Cu–Sn sulfide. Vesicle fillings of Fe–Ti oxide, Ni-rich chromite, Fe sulfide, Cu sulfide, and barite are common to two pumice samples. The most coarse-grained of the vesicle fillings are Cu–Fe sulfide and Cu sulfide, which are as large as 50 μ in diameter. The youngest Plinian pumice also contains Zn(Fe) sulfide, as well as rare Ag–Cu sulfide, Ag–Fe sulfide, Ag bromide, Ag chloride, and Au–Cu telluride. The assemblage is similar to those typically observed in high-sulfidation epithermal mineralization. The fine-grained nature and abundance of syn- and/or posteruptive phases in porous rocks makes metals susceptible to mobilization by percolating fluids. The abundance of metal compounds in vesicles indicates that volatile exsolution prior to and/or during eruption played an important role in releasing metals to the atmosphere. Received: March 1997 · Accepted: 27 May 1997  相似文献   

12.
Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4–1190 μg/g, 4–466 μg/g, 11–297 μg/g, 11–194 μg/g, 9–139 μg/g, 1–120 μg/g, 4–76 μg/g, 2–62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation–reduction-changing conditions of sediments.  相似文献   

13.
A. P. Dykes 《Landslides》2008,5(4):417-429
The morphological characteristics of bogflows, bog bursts and other types of peat failures suggest that the tensile strength of peat may have had a significant influence on their occurrence and development. This paper describes a method for the determination of peat tensile strength utilising small block samples (100 mm × 100 mm, up to 60 mm thick) in a newly developed laboratory apparatus. The results, demonstrating good reproducibility and being consistent with published data, were applied to a case example. The stability of a recent 35,000-m3 bogflow on Maghera Mountain, Co. Clare, Ireland, was analysed using a standard limit equilibrium technique. The breaking stress (i.e. maximum tensile strength) of the acrotelm peat at the Maghera bogflow was 5.35 kPa (range 2.9–7.6 kPa). Using this value to represent the overall strength of the acrotelm in the model, analyses showed that even above the crest of an escarpment, the acrotelm was strong enough to contain a large volume of low or zero-strength lower catotelm peat within the blanket bog upslope from the escarpment. Furthermore, simple analysis of single blocks of peat at the upslope edge of a retrogressively developing failure established the size of blocks that should develop, i.e. 3–4 m. The floating acrotelm rafts observed in the Maghera bogflow, typically up to around 3 m, were broadly consistent with this analysis. This paper therefore presents for the first time quantitative evidence of the importance of the acrotelm tensile strength in bogflows and a new method for routinely obtaining tensile strength data.  相似文献   

14.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

15.
Z. Lin 《Environmental Geology》1997,30(3-4):152-162
 Wastes from the sulfuric acid industry are an environmental concern, because of the emission of acids, heavy metals, and sulfate to the environment. The wastes in Falun consist of 70–80% iron oxides, 10–20% silicates, less than 10% residual sulfides, and small amounts of secondary precipitates (iron hydroxides and Fe-, Zn- and Cu-sulfates). Due to the different behavior of sulfides during the roasting process, pyrrhotite and sphalerite are the major sulfide residues associated with lesser amounts of pyrite, chalcopyrite, and galena. The leachates are low-pH and enriched in Zn, Fe, and SO4. The acid ferric Fe-rich solution promotes the dissolution of sphalerite and favors the formation of Pb-sulfate coatings on galena, providing an armoring effect which slows down the further oxidation of the galena. The residual sulfides are the potential source for acid generation and metal release. During the roasting process, iron oxides retain small amounts of sulfur and sphalerite forms alteration rims containing Zn-oxides. The iron oxides and Zn-oxides are important contributors to SO4 and Zn in the leachates. The conditions in the waste deposit are favorable for the precipitation of Zn-, Cu-Fe-sulfates (e.g. gunningite, chalcanthite, Zn-copiapite). The highly soluble sulfates play important roles in controlling the concentrations of Cd, Cu, Fe, Zn, and SO4 in the leachates. The mineralogical and geochemical data help to develop the reclamation strategies of this type of industrial wastes. Received: 26 April 1996 · Accepted: 27 July 1996  相似文献   

16.
The Ambassador U and multi-element deposit occurs on the SW margin of the Gunbarrel Basin, Western Australia. Low-grade, flat-lying U mineralization averaging about 2 m thick at 0.03% U occurs in lignites at the redox front at the base of the weathering profile within a laterally extensive palaeochannel network. Uranium is principally associated with organic matter within the lignitic matrix, although rare discrete U minerals, such as coffinite and uraninite, are also present. The lignite is also enriched in a suite of other elements, principally base metals and sulphur, with concentrations of 0.3 ≥ 1% Cu, Pb, Ni, Co, Zn and total rare earth elements (REE) in some samples. Other element enrichments include: Cr, Cs, Sc, Se, Ta, Ti, Th, V and Zr as detrital heavy minerals of Zr, Ti and REE (oxides and silicates) or authigenic minerals of Cu, Bi, Pb, Zn, Ni, Se, Hg, Ti, Cr, Tl, V, U and REE (sulphides, vanadates, selenides, oxides, chlorides and native metals) and diffuse lignite impregnations. The Ambassador deposit probably formed from the convergence of redox-active weathering processes to unique source/host rocks, constrained within the palaeochannel. A proximal source of U and trace elements of lamproite/carbonatite origin is probable, as constrained by U–Pb isotope and U–Th disequilibria studies. Uranium and other metals were precipitated syngenetically with organic matter as it was deposited during a humid phase in the Late Eocene. Remobilization subsequently concentrated the metals in the upper 2 m of the lignite. This may have occurred during one or more periods of weathering and associated diagenesis, with the latest episode in the last 300,000 years.  相似文献   

17.
Summary The study focuses on the mode of occurrence of Au, Ag and Te in ores of the Gaisk, Safyanovsk, Uzelginsk and other volcanic-hosted massive sulfide (VHMS) deposits in the Russian Urals. Minerals containing these elements routinely form fine inclusions within common sulfides (pyrite, chalcopyrite and sphalerite). Gold is mostly concentrated as ‘invisible’ gold within pyrite and chalcopyrite at concentrations of 1–20 ppm. Silver mainly occurs substituted in tennantite (0.1–6 wt.% Ag). In the early stages of mineralization, gold is concentrated into solid solution within the sulfides and does not form discrete minerals. Mineral parageneses identified in the VHMS deposits that contain discrete gold- and gold-bearing minerals, including native gold, other native elements, various tellurides and tennantite, were formed only in the latest stages of mineralization. Secondary hydrothermal stages and local metamorphism of sulfide ores resulted in redistribution of base and precious metals, refining of the common sulfides, the appearance of submicroscopic and microscopic inclusions of Au–Ag alloys (fineness 0.440–0.975) and segregation of trace elements into new, discrete minerals. The latter include Au and Ag compounds combined with Te, Se, Bi and S. Numerous tellurides (altaite, hessite, stützite, petzite, krennerite etc.) are found in the massive sulfide ores of the Urals and appear to be major carriers of gold and PGE in VHMS ores.  相似文献   

18.
The Kabanga deposit constitutes one of the most significant Ni sulfide discoveries of the last two decades (indicated mineral resource 23 Mt of ore at 2.64% Ni, inferred resource 28.5 Mt at 2.7% Ni, November 2008). The sulfides are hosted by predominantly harzburgitic and orthopyroxenitic intrusions that crystallized from magnesian basaltic and picritic magmas. However, compared with other sulfide ores that segregated from such magmas (e.g., Jinchuan, Pechenga, Raglan), most Kabanga sulfides have low Ni (<1–3%), Cu (∼0.1–0.4%), and PGE contents (≪1 ppm), high Ni/Cu (5–15), and low Ni/Co (10–15) and Pd/Ir (2–20). Sulfides with higher metal contents (up to ∼5% Ni, 0.8% Cu, 10 ppm PGE) are found in only one unit from Kabanga North. The observed metal contents are consistent with segregation of magmatic sulfides from fertile to strongly metal-depleted magmas, at intermediate to very low mass ratios of silicate to sulfide liquid (R factors) of approximately 10–400. Sulfide saturation was triggered prior to final emplacement, by assimilation of up to 50% of the total sulfur in the intrusions from sulfide-bearing metasedimentary country rocks. Immiscible sulfide liquid was entrained by the magma and ultimately precipitated in dynamic magma conduits that formed tubular and sill-like mafic–ultramafic bodies characterized by abundant magmatic breccias, highly irregular layering, and frequent compositional reversals. The unusually large degree of crustal contamination and the low R factors render Kabanga an end-member in the spectrum of magmatic Ni sulfide ores.  相似文献   

19.
The Bainiuchang deposit in Yunnan Province, China, is located geographically between the Gejiu ore field and the Dulong ore field. In addition to >7000 t Ag reserves, the deposit possesses large-scale Pb, Zn, Sn reserves and a mass of dispersed elements (i.e., In, Cd, Ge, Ga, etc.). Based on systematic studies of sulfur isotopic composition, the authors conclude: The Bainiuchang deposit experienced two epochs of metallogenesis, i.e., the Middle-Cambrian sea-floor exhalative sedimentary metallogenic epoch and the Yanshanian magmatic hydrothermal superimposition metallogenic epoch. In the two metallogenic epochs, the δ34S values of sulfides were all near 0, showing a tendency of being enriched slightly in heavy sulfur. The δ34S values of sulfides in the early metallogenic epoch are within the range of 2‰–5‰ with a peak value range of 2‰–3‰ and an average of 3.0‰, and those of sulfides in the late metallogenic epoch are within the range of 2‰–6‰ with a peak value of 3‰–4‰ and an average of 3.9‰. For the single metallogenic epoch, sulfur in the ore-forming fluids in the early epoch already reached isotopic equilibrium and was derived mainly from underneath the magma chamber or basement metamorphic igneous rocks. Sulfur in the sulfides in the late epoch was derived mainly from magmatic hydrothermal fluids formed in the process of remelting of the basement metamorphic igneous rocks.  相似文献   

20.
The initiation and growth of boreal peatlands developed on well‐drained, sandy landforms are closely associated with podzolic soil paludification processes. The origin of Sphagnum bogs extending on large deltaic plains was examined to test the hypothesis of the dual impact of indurated (ortstein) podzols and fire on forest soil paludification and concurrent peatland initiation and expansion. Mineral soil, basal organic matter and peat monoliths were sampled for soil and macrofossil analyses along an 800‐m toposequence starting from a mixed‐wood boreal forest to a Sphagnum bog (Lebel bog, eastern Quebec, Canada), and ending at a peat dome in the thickest section of the peatland. Mineral soils along the toposequence are ortstein humo‐ferric podzols distributed in the forest environment and beneath Sphagnum peat in the bog, except at the peat dome. Initial peatland growth occurred c. 6000 cal. a BP. Soil paludification coincided with the cessation of fire occurrence as recorded in the organic and mineral layers preceding Sphagnum expansion. Unlike most temperate and boreal raised bogs, the Sphagnum bog developed directly from a forest environment without passing through a transitional fen stage. Conifer forests regenerated successively after several fires between 4200 and 1600 cal. a BP before bog expansion. Pre‐bog forests were composed of fire‐prone black spruce (Picea mariana) and jack pine (Pinus banksiana) trees, and ericaceous species. Given the distribution and thickness of ortstein horizons progressively decreasing and disappearing towards the peatland dome, growth and expansion of the Sphagnum bog was not caused by soil induration processes, which could have potentially impeded vertical and horizontal drainage. The development of indurated podzols outside and several hundred metres inside the peatland preceded the initiation and expansion of the Sphagnum bog. Cessation of fire activity appears to be a key factor facilitating the lateral expansion of the Sphagnum bog under wet soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号