首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annual above-ground net primary production (ANPP), evapotranspiration (ET) and water use efficiency (WUE) of rangeland have the potential to provide an objective basis for establishing pricing for ecosystem services. To provide estimates of ANPP, we surveyed the biomass, estimated ET and prepared a water use efficiency for dwarf shrublands and arid savanna in the Riemvasmaak Rural Area, Northern Cape, South Africa. The annual production fraction was surveyed in 33 MODIS 1 km2 pixels and the results regressed against the MODIS fPAR product. This regression model was used to predict the standing green biomass (kg DM ha−1) for 2009 (dry year). Using an approach which combines potential evapotranspiration (ET0) and the MODIS fPAR product, we estimated actual evapotranspiration (ETa). These two models (greening standing biomass and ETa) were used to calculate the annual WUE for 2009. WUE was 1.6 kg DM mm−1 ha−1 yr−1. This value may be used to provide an estimate of ANPP in the absence of direct measurements of biomass and to provide a comparison of the water use efficiency of this rangeland with other rangeland types.  相似文献   

2.
Vegetation changes associated with climate shifts and anthropogenic disturbance can have major impacts on biogeochemical cycling and soils. Much of the Great Basin, U.S. is currently dominated by sagebrush (Artemisia tridentate (Rydb.) Boivin) ecosystems. Sagebrush ecosystems are increasingly influenced by pinyon (Pinus monophylla Torr. & Frém and Pinus edulis Engelm.) and juniper (Juniperus osteosperma Torr. and Juniperus occidentalis Hook.) expansion. Some scientists and policy makers believe that increasing woodland cover in the intermountain western U.S. offers the possibility of increased organic carbon (OC) storage on the landscape; however, little is currently known about the distribution of OC on these landscapes, or the role that nitrogen (N) plays in OC retention. We quantified the relationship between tree cover, belowground OC, and total below ground N in expansion woodlands at 13 sites in Utah, Oregon, Idaho, California, and Nevada, USA. One hundred and twenty nine soil cores were taken using a mechanically driven diamond tipped core drill to a depth of 90 cm. Soil, coarse fragments, and coarse roots were analyzed for OC and total N. Woodland expansion influenced the vertical distribution of root OC by increasing 15-30 cm root OC by 2.6 Mg ha−1 and root N by 0.04 Mg ha−1. Root OC and N increased through the entire profile by 3.8 and 0.06 Mg ha−1 respectively. Woodland expansion influenced the vertical distribution of soil OC by increasing surface soil (0-15 cm) OC by 2.2 Mg ha−1. Woodland expansion also caused a 1.3 Mg ha−1 decrease in coarse fragment associated OC from 75-90 cm. Our data suggests that woodland expansion into sagebrush ecosystems has limited potential to store additional belowground OC, and must be weighed against the risk of increased wildfire and exotic grass invasion.  相似文献   

3.
Two experiments were conducted in southern Kordofan State to determine the influence of Acacia senegal L., Balanites aegyptiaca L. and Azadirachta indica L. on millet (Pennisetum typhoides) yield, soil quality and to monitor decomposition and nutrients release from tree litters. Yield under A. indica (174.83 kg ha−1) and B. aegyptiaca (173.09 kg ha−1) were significantly higher than the control (121.43 kg ha−1). The lowest yield (111.04 kg ha−1) was recorded under A. senegal. Straw dry matter under B. aegyptiaca (1161.5 kg ha−1) and A. indica (857.8 kg ha−1) was significantly higher than both under A. senegal (321.8 kg ha−1) and the control (454.8 kg ha−1). Trees varied in their capacity to induce changes in soil properties whereas effects on soil N were not substantial. A. indica had a decomposition rate (0.6283 week−1) 2.0 times higher than that of B. aegyptiaca (0.2057 week−1) and A. senegal (0.267 week−1). The highest rate of P and K release from A. indica and B. aegyptiaca litters has resulted in significant accumulation in the soil indicating these tree litters are potential sources for these elements. The capacity of trees to improve soil fertility could offer an alternative management system for improved cultivation of field crops.  相似文献   

4.
In this article we evaluate the potential use of Cladonia foliacea tissue N content, C:N ratio, and phosphomonoesterase (PME) activity as biomarkers of N deposition by means of a field experiment. In order to do this, we continuously added NH4NO3 to a semi-arid shrubland at four rates: 0, 10, 20 and 50 kg N ha−1 yr−1 starting in October 2007. Tissue N content and C:N ratios, considered as N stress indicators, significantly increased and decreased, respectively, after 1.5 years. The response found suggests N saturation above 20 kg N ha−1 yr−1. After 2.5 years, extracellular PME activity increased with 20 kg N ha−1 yr−1 and this was attributed to an induced nutritional (N to P) imbalance. Above this threshold, PME significantly decreased as a consequence of the physiological stress caused by extra N. Effects on PME were dependent on the soil properties (pH and Ca and Mg availability) experienced by C. foliacea. PME response suggests a critical load of ∼26.4 kg N ha−1 yr−1 (20 kg N ha−1 yr−1 + background) for this lichen. Further tissue chemistry and PME evaluations in C. foliacea and soil surveys conducted along wide N deposition gradients will confirm the potential use of this species as a biomonitor of N pollution and the importance of soil properties on its ability to respond to atmospheric reactive N.  相似文献   

5.
In the Ethiopian highlands, remarkable recovery of vegetation has been achieved using exclosures, protecting vegetation against livestock browsing and firewood harvesting. But these emerging forest resources require tools for sustainable use, implying knowledge on biomass stocks and growth. In this study we developed biomass functions estimating total, stem and branch biomass from diameter at stump height (DSH) and tree height (H) for an 11-year old exclosure in Tigray, Ethiopia. In a systematic grid of 55 plots, DSH and H of all trees and shrubs were recorded. 40 Acacia abyssinica trees were selected for destructive sampling. Allometric relationships using a natural log–log model were established between aboveground biomass, DSH and H. Models with only DSH were found best with R2 between 0.95 and 0.98. The functions were 10 fold cross-validated and R2_cv ranged from 0.94 to 0.97, indicating good model performance. The models were found well in range with those of other seasonal forests in East Africa. Total aboveground biomass was estimated 25.4 ton ha−1 with an annual production of 2.3 ton ha−1, allowing sustainable wood fuel use for 4 persons ha−1. The presented predictive functions help to harmonize between ecological and societal objectives and are as such a first step towards an integrated planning tool for exclosures.  相似文献   

6.
We investigated the impact of African elephants (Loxodonta africana) on the structure and composition of Acacia tortilis woodland in northern Gonarezhou National Park, southeast Zimbabwe. A. tortilis woodland was stratified into high, medium and low elephant utilisation categories based on evidence of elephant habitat use as determined through dung-count surveys in relation to distance of woodland patches from perennial and natural surface water sources. The following variables were recorded in each study plot: tree height, species name, number of species, plant damage, basal circumference and number of stems per plant. A total of 824 woody plants and 26 woody species were recorded from the sampled A. tortilis woodland patches. Mean tree densities, basal areas, tree heights and species diversity were lower in areas with medium and high elephant utilisation as compared to low elephant utilisation areas. Plants damaged by elephants increased with increasing elephant utilisation. The study findings suggest that A. tortilis woodland is gradually being transformed into an open woodland. We recommended that protected area management in arid and semi-arid areas should consider (i) formulating clear thresholds of potential concern to allow for the conservation of sensitive woodlands such as A. tortilis woodlands and (ii) establishing long-term vegetation monitoring programmes.  相似文献   

7.
In arid and semi-arid areas, woody encroachment is the increase in density, cover, extent and/or biomass of woody plants. Woody encroachment is often associated with increased runoff and soil erosion. Hydrological and erosional responses of woody encroachment and of pastures established after management of encroachment in semi-arid Australia are not well understood. This study compared the hydrological and erosional responses across vegetation states comprising woody plant encroachment (>1200 stems ha−1), recently established pastures (<23 years of age), long-established pasture (50-100 years of age) and open woodland (<330 stems ha−1) in semi-arid eastern Australia. Responses were measured using rainfall simulation with intensity of 35 mm h−1 for 30 min applied on 1 -m2 plots. Runoff and sediment production did not differ significantly between vegetation states. Average runoff in woody encroachment was 9.0 mm h−1, followed by recent pasture (8.2 mm h−1), long-established pasture (5.9 mm h−1) and open woodland (4.2 mm h−1). Total sediment production in recent pasture was 11.6 g m−2, followed by woody encroachment (9.0 g m−2), long-established pasture (7.3 g m−2) and open woodland (4.3 g m−2). Runoff and sediment production were significantly lower at one pasture site (0.9 mm h−1 and 1.3 g m−2) where rotational grazing and minimum tillage had been implemented than in the adjacent paired woody encroachment site (10.3 mm h−1and 6.5 g m−2, respectively). This example of a pasture that had been managed to increase ground cover illustrated the effect of pasture management on reducing runoff and sediment production. Across all vegetation states, small scale runoff and sediment production were minimal or zero where total ground cover was 73% or higher.  相似文献   

8.
Forests are highly susceptible to dieback under ongoing climate warming. In degraded forests, dead standing trees, or snags, have become such prominent features that they should be taken into account when setting management interventions. This study investigated (1) the extent and spatial pattern of standing dead stems of Juniperus procera and Olea europaea subsp. cuspidata along an elevational gradient, and (2) the effect of dieback on forest stand structure. We quantified abundance, size, and spatial pattern of tree dieback in 57 plots (50 m × 50 m) established at 100 m intervals along five transects. The snag density and basal area (mean ± SE) of the two species combined were 147 ± 23 stems ha−1 and 5.35 ± 0.81 m2 ha−1, respectively. The percentages of snags were extremely high for both J. procera (57 ± 7%) and O. europaea subsp. cuspidata (60 ± 5%), but showed a decreasing trend with increasing elevation suggesting that restoration is even more urgent at the lower elevations. Snags of the two species accounted for 31 and 45% of total stand density and basal area, respectively. Living stems exhibited truncated inverse-J-shaped diameter and height class distributions, indicating serious regeneration problems of these foundation species in the study area. In addition to direct interventions to assist recruitment of climax tree species, sites with high dieback would probably benefit from snag reduction to prevent fire incidents in the remaining dry Afromontane forests in northern Ethiopia.  相似文献   

9.
The pattern of carbon (C) allocation among the different pools is an important ecosystem structural feature, which can be modified as a result of changes in environmental conditions that can occur gradually (e.g., climatic change) or abruptly (e.g., management practices). This study quantified the C pools of plant biomass, litter and soil in an arid shrubland in Chile, comparing the natural condition (moderately disturbed by grazing) vs. the afforested condition (two-year-old plantation with Acacia saligna (Labill.) H.L. Wendl.), each represented by a 60 ha plot. To estimate plant biomass, allometric functions were constructed for the four dominant woody species, based on the volume according to their shape, which showed high correlation (R2 > 0.73). The soil was the largest C pool in both natural and afforested conditions (89% and 94%, respectively) and was significantly lower in the afforested than natural condition at all five soil depths. The natural condition had in total 36.5 ton (t) C ha−1 compared to 21.1 t C ha−1 in the afforested condition, mainly due to C loss during soil preparation, prior to plantation of A. saligna. These measurements serve as an important baseline to assess long-term effects of afforestation on ecosystem C pools.  相似文献   

10.
The Mu Us Sandland is basically characterized by water shortage and high wind. Thus, wind-induced mechanical perturbation (MP) and soil water availability are likely to interact to affect plant growth. Since high water availability and MP can induce responses that are in the opposite direction, we hypothesized that MP effects on perennial grasses might be mitigated by increased soil water availability in the Mu Us Sandland. We counducted an experiment in which seedlings of Psammochloa villosa were subjected to two levels of MP (non-MP vs. MP 1 min d−1) and two levels of water availability (200 ml d−1vs. 400 ml d−1) and measured three plant traits. MP significantly decreased plant height, total biomass, and root/shoot ratio. There were significant interactions between MP and soil water availability on plant height and root/shoot ratio. These findings imply that MP alone is a stressful factor for P. villosa and MP effects on its growth can be partially mitigated by increased soil water availability, and also suggest that P. villosa may respond to MP in a way that allows plants to survive in the windy semiarid environments.  相似文献   

11.
The abundance of black-tailed jackrabbits (Lepus californicus) can fluctuate dramatically. We used data from the Chihuahuan Desert to test the relative strength of top-down (predation) or bottom-up (food availability) limiting forces. Predictions for the top-down hypothesis were, 1) a positive relationship between coyote (Canis latrans) and jackrabbit abundance (numerical response) and 2) a positive relationship between percent occurrence of jackrabbits in coyote scats and jackrabbit abundance (functional response). Predictions for the bottom-up hypothesis were, 1) plant productivity is directly related to precipitation, 2) jackrabbit abundance is positively related to precipitation and plant productivity, and 3) changes in abundance of jackrabbits over the reproductive season will be directly related to precipitation and plant productivity. We found a limited numerical response but no functional response of coyotes to jackrabbit abundance. Forb productivity was significantly related to annual precipitation levels (r2 = 0.69, p = 0.002). Grass productivity was related to annual precipitation (r2 = 0.34, p = 0.028). Jackrabbit abundance (r2 = 0.38, p = 0.002) and changes in abundance (r2 = 0.73, p < 0.001) were significantly related to precipitation and forb and grass productivity. We conclude that precipitation levels and plant productivity affect jackrabbit abundance more than predation levels.  相似文献   

12.
Traditionally, the effect of wood-boring insects has been related to mechanical damage, which in severe infestations results in breakage of branches and trunks. In contrast, few studies have evaluated the physiological effects of wood-borers on the radial growth of trees. Prosopis flexuosa is the main resource for rural inhabitants in the arid Chaco of Argentina and the cerambycid Torneutes pallidipennis is the principal cause of insect damage in these forests. The presence of annual growth rings in P. flexuosa allowed us to use dendrochronological methods to assess the effect of T. pallidipennis on radial tree growth. P. flexuosa with external infestation symptoms were sampled in Chancaní (Córdoba), central Argentina. Cores from “healthy” and “infested” branches were taken and processed following standard methods in dendrochronology. Generalized Linear Models were applied to compare the growth of healthy and affected tree-ring growth series. Our results showed a growth reduction in branches with cerambycid infestation. These data strongly suggest that the biological cycles of this heartwood-borer affect the growth and normal development of trees, in addition to “mechanical” effects previously proposed. Insects may produce weakening of the host plants and a pronounced reduction in radial tree growth in the most severe cases.  相似文献   

13.
Following the southward shift of rainfall isolines in the Sahel at the end of the 1960s, Gerbillus nigeriae appeared in northern Senegal in the mid-1990s, and two resident Gerbillidae (Taterillus pygargus and Taterillus gracilis) subsequently declined. We investigated the causal role of the capacity to conserve water in such climate-related shifts in the distribution of these Gerbillidae by comparing the effects of a water-poor diet on the water-efflux rate (W−out) of freshly trapped adults pre-acclimatized to a water-rich diet. During the 12-day period of water restriction in all species, 30-50% of individuals became hyperactive and showed greater weight loss and higher W−out than the remaining inactive individuals. Such emergence of migratory strategists within populations could accelerate the expansion of G. nigeriae. On a water-poor diet, T. gracilis showed a lower capacity to conserve water (higher W−out) than T. pygargus and G. nigeriae, in both inactive (W−out = 44.5 ± 1.8 vs 29.6 ± 0.8 vs 27.4 ± 0.7 ml kg−0.82.day−1, respectively) and hyperactive individuals (W−out = 60.4 ± 1 vs 45.4 ± 0.7 vs 44 ± 0.8 ml kg−0.82.day−1, respectively). We propose that the capacity to conserve water accounted for both expansion of G. nigeriae and decline of T. gracilis, whereas competition between T. pygargus and G. nigeriae could account for the decline of T. pygargus.  相似文献   

14.
Satisfying the food demands of an ever-increasing population, preserving the natural resource base, and improving livelihoods are major challenges for South Asia. A large area of land in the Middle and Lower Gangetic Plains of South Asia remains either uncultivated or underused following the rice harvest in the kharif (wet) season. The area includes “rice-fallow,” estimated at 6.7 million ha, flood-prone riversides (“diara lands,” 2.4 million ha), waterlogged areas (4.9 million ha), and salt-affected soils (2.3 million ha). Bringing these lands under production could substantially improve the food supply and enhance livelihoods in the region. This paper describes a methodological case study that targeted resource-conserving technologies in underused lands of the Ballia District of eastern Uttar Pradesh (India) using multispectral remote-sensing images. Classification of temporal satellite data IRS-P6 in combination with Spot VGT 2 permitted the identification of all major categories of underused land during the post-rainy rabi/winter season, with an average accuracy of 89%. Based on three-year averages of field demonstrations, farmers gained an additional income of $63 ha−1 by introducing raised beds in salt-affected soils; $140 and $800 ha−1 by introducing deepwater rice varieties (monsoon) and boro rice (winter) in waterlogged areas; and $581 ha−1 by introducing zero-till lentil (winter) in rain-fed fallow lowland. Timely wheat planting through zero-tillage implies an additional income of $147 ha−1 and could increase wheat production by 35,000-65,000 tons in the district. The methodologies and technologies suggested in the study are applicable to more than 15 million ha of underutilized lands of the Indo-Gangetic Plains of South Asia. If the technologies are precisely applied, they can result in more than 3000 million US $ of additional income every year to these poverty prone areas.  相似文献   

15.
Shrubs play an important role in water-limited agro-silvo-pastoral systems by providing shelter and forage for livestock, for erosion control, to maintain biodiversity, diversifying the landscape, and above all, facilitating the regeneration of trees. Furthermore, the carbon sink capacity of shrubs could also help to mitigate the effects of climate change since they constitute a high proportion of total plant biomass. The contribution of two common extensive native shrub species (Cistus ladanifer L. and Retama sphaerocarpa (L.) Boiss.) to the carbon pool of Iberian dehesas (Mediterranean agro-silvo-pastoral systems) is analyzed through biomass models developed at both individual (biovolume depending) and community level (height and cover depending).The total amount of carbon stored in these shrubs, including above- and belowground biomass, ranges from 1.8 to 11.2 Mg C ha−1 (mean 6.8 Mg C ha−1) for communities of C. ladanifer and from 2.6 to 8.6 Mg C ha−1 (mean 4.5 Mg C ha−1) for R. sphaerocarpa. These quantities account for over 20–30% of the total plant biomass in the system. The potential for carbon sequestration of these shrubs in the studied system ranges 0.10–1.32 Mg C ha−1 year−1 and 0.25–1.25 Mg C ha−1 year−1 for the C. ladanifer and R. sphaerocarpa communities' respectively.  相似文献   

16.
Agricultural mismanagement of irrigated drylands results in severe soil degradation. Afforestation is an option for ameliorating such degraded land. We evaluated the impact afforestation has on the topsoil (0-20 cm) of salinized degraded cropland in regards to salinity, aggregate stability, and soil organic carbon (SOC) stocks in Uzbekistan, Central Asia. The effects of tree plantations established under either furrow or drip irrigation were studied four years following afforestation and two years after irrigation ceased. For comparative study we also sampled fallow land, land with 80 years of tree growth, natural forest, desert ecosystems, and paddy rice fields. Initial furrow irrigation showed to be most effective in improving soil fertility after four years of afforestation; the respective plantations of Populus euphratica and Ulmus pumila showed significant levels of reduced soil salinity and increased aggregate stability and improved SOC stocks. The comparison of the long-term afforested land with the short-term equivalent suggested a C sequestration rate of 0.09-0.15 t C ha−1 year−1. The SOC stocks of the long-term afforestation site exceeded those of the native forest. Hence, a rehabilitation of salt-affected cropland is feasible following the conversion into occasionally irrigated tree plantations, although it takes decades to reach steady-state conditions.  相似文献   

17.
This study answers the following research questions: 1) What are the change trajectories of woody vegetation elements at the landscape level? 2) What are the differences in change trajectories amongst the various categories of forest, non-forest and reclamation woody vegetation? 3) How do the change trajectories differ in mining and non-mining landscapes? The study area, measuring 209.6 km2, is located in the north-western part of the Czech Republic and may be broken down into 76.8 km2 of mining landscape and 132.8 km2 of non-mining landscape. Brown coal mining began in this region during the second half of the 18th century and led to the radical transformation of the landscape, including woodlands, during the second half of the 20th century. The source data for this study was obtained from the original stable cadastre maps (1842) and the landscape field mapping performed in 2010. The various woody vegetation elements (forest, non-forest, and reclamation woody plants) and land use/cover (LULC) categories were identified. The GIS symmetrical difference tool was subsequently used to perform an overlay analysis for the individual woody vegetation elements in order to study the change trajectories and to obtain information about the woodlands that have remained unchanged (continuous), the ones that have disappeared (extinct), and the ones that have newly appeared in the landscape (recent). In the case of the non-mining landscape, the total proportion of woodlands has increased (from 17 to 32%), but there has been a decline in the overall volume of forest woody plants found in these areas (from 93 to 74%). As far as the mining landscape is concerned, there has also been an increase in the area covered by woodlands (from 10 to 20%), however, the proportion of forest woody plants has decreased to a much greater extent (from 90 to 31%). From the perspective of extinct woody vegetation, 23.3% of all types of woodlands in the mining landscape may be classified as such, as compared to 10.8% in the non-mining landscape. The primary causes of this decline are mining activities and newly built-up areas. More continuous woody vegetation may be found in the non-mining landscape (42.1%) as compared to the mining landscape (15.4%). Recent woody vegetation, which has primarily replaced grasslands and partially arable land, prevails in both the mining (61.3%) as well as the non-mining (47.1%) landscapes. Different categories of woodlands (forest, non-forest, and reclamation woody vegetation elements) exhibit various change dynamics due to their different structure and the functions they serve. At the most basic level, there has been an overall increase in the occurrence of woodlands in the studied areas. However, once GIS spatial analysis is applied it is possible to see more complex processes in the development of woodland areas as characterised by gains and losses, and it is possible to identify mining and agricultural extensification as the two most significant factors behind the historical changes. Mining leads to a direct decrease in the area of woodlands; conversely, the spontaneous succession of vegetation resulting from agricultural extensification and forest reclamation facilitates woodland recovery. Forest reclamation and reforestation are essential on order to ensure the time continuity of woodlands in both types of landscape, i.e. mining and non-mining. The study presented in this paper proves that it is relevant to analyse the changes occurring in different woodland categories separately. The same methodology may be applied when studying the change dynamics of other important landscape elements, such as wood pastures and wetlands.  相似文献   

18.
Establishment and growth of three perennial herbs and a small tussock grass were studied in an experiment that provided simulated rainfall of 6 mm week−1 or 25 mm once per month and nitrogen fertilization in combination with the different simulated rainfall regimes. Wild onion, Allium macropetalum, failed to establish in plots receiving 25 mm month−1 simulated rainfall. The perennial composite, Bahia absinthifolia, occurred at higher densities in plots that were not irrigated but there were no differences in biomass in any of the irrigation or fertilization treatments. Desert holly, Perezia nana, failed to establish in nitrogen fertilized plots and developed higher abundance and biomass in plots receiving 25 mm month−1. Nitrogen fertilization had either no effect or an adverse effect on the perennial herbs. The tussock grass, Dasychloa pulchella exhibited highest abundance and biomass with 6 mm week−1 added water plus nitrogen. Since global climate change will affect both rain storm frequency and size and atmospheric nitrogen deposition, the results of this study are applicable to understanding vegetation responses climate change.  相似文献   

19.
Rates and impacts of atmospheric nitrogen (N) deposition are poorly understood in arid land ecosystems where soils are typically low in plant available N. To address this issue, we quantified long-term trends in N deposition and estimated its impact on plant community structure in the northern Chihuahuan desert of Central New Mexico, USA. Annual and seasonal rates of N deposition were strongly positively correlated with precipitation. When precipitation effects were removed statistically, N deposition increased at an annual rate of 0.049 kg ha−1 yr−1 between 1989 and 2004. Based on two independent fertilization studies at our desert grassland field site, continued atmospheric inputs are likely to increase grass cover, decrease legume abundance, and may favor blue grama (Bouteloua gracilis) at the expense of the current dominant species, black grama (Bouteloua eriopoda). We conclude that, although arid lands have low rates of N deposition and are primarily water limited, observed trends in N deposition rates may lead to significant changes in plant community structure.  相似文献   

20.
This article reviews and analyzes the available information on range and livestock production in the Monte Desert. Cow–calf operations, goats for meat, and sheep for wool are the dominant production systems under continuous grazing. Rest-rotational grazing systems improved the efficiency of the current cow–calf production. Forage resources are primarily composed of perennial grasses and woody species. Rain-use efficiency for the total vegetation ranged from 3.9 to 4.8 kg DM ha?1 year?1 mm?1. Carrying capacity showed a broad range: 18.7, 4.5–64.5, and 21.6–89.3 ha AU?1 in the north, central, and south portions of the Monte, respectively. Mean crude protein (CP) content of grasses varied from 8.4 to 10.3 (wet season) and 7.1–3.7% DM (dry season) in the central west and Patagonia, respectively. Grasses predominated in the cattle diet, while the sheep diet was highly diverse because they ate most of the available plant species, and there was no unanimity as to the fact that goats are strictly browsers. Livestock diseases have lower prevalence indices than those recorded in other areas of the country. The high variability in carrying capacity values could be attributed to differences in rangeland condition and to the different methods used for its estimation. The CP levels in forage could meet cattle requirements provided that a proper-stocking rate were used. The most promising species for land rehabilitation are Opuntia, Atriplex spp., Eragrostis curvula and Cenchrus ciliaris. Priorities for future research should include topics such as assessment of the carrying capacity for most of the areas and nutrient content of the components of livestock diet, the livestock intake values, the economic feasibility of the use of complementary feeds and the development of seeding technology for valuable forage resources as Trichloris crinita, among others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号