首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Long-period (LP) comets, Halley-type (HT) comets, and even some comets of the Jupiter family, probably come from the Oort cloud, a huge reservoir of icy bodies that surrounds the solar system. Therefore, these comets become important probes to learn about the distant Oort cloud population. We review the fundamental dynamical properties of LP comets, and what is our current understanding of the dynamical mechanisms that bring these bodies from the distant Oort cloud region to the inner planetary region. Most new comets have original reciprocal semimajor axes in the range2 × 10-5 < 1/aorig < 5 × 10-5AU-1. Yet, this cannot be taken to represent the actual space distribution of Oort cloud comets, but only the region in the energy space in which external perturbers have the greatest efficiency in bringing comets to the inner planetary region. The flux of Oort cloud comets in the outer planetary region is found to be at least several tens times greater than the flux in the inner planetary region. The sharp decrease closer to the Sun is due to the powerful gravitational fields of Jupiter and Saturn that prevent most Oort cloud comets from reaching the Earth’s neighborhood (they act as a dynamical barrier). A small fraction of ~10-2 Oort cloud comets become Halley type (orbital periods P < 200 yr), and some of them can reach short-period orbits with P < 20 yr. We analyze whether we can distinguish the latter, very ‘old” LP comets, from comets of the Jupier family coming from the Edgeworth-Kuiper belt.  相似文献   

2.
This study analyzes the evolution of 2 × 105 orbits with initial parameters corresponding to the orbits of comets of the Oort cloud under the action of planetary, galactic, and stellar perturbations over 2 × 109 years. The dynamical evolution of comets of the outer (orbital semimajor axes a > 104 AU) and inner (5 × 103 < a (AU) < 104) parts of the comet cloud is analyzed separately. The estimates of the flux of “new” and long-period comets for all perihelion distances q in the planetary region are reported. The flux of comets with a > 104 AU in the interval 15 AU < q < 31 AU is several times higher than the flux of comets in the region q < 15 AU. We point out the increased concentration of the perihelia of orbits of comets from the outer cloud, which have passed several times through the planetary system, in the Saturn-Uranus region. The maxima in the distribution of the perihelia of the orbits of comets of the inner Oort cloud are located in the Uranus-Neptune region. “New” comets moving in orbits with a < 2 × 104 AU and arriving at the outside of the planetary system (q > 25 AU) subsequently have a greater number of returns to the region q < 35 AU. The perihelia of the orbits of these comets gradually drift toward the interior of the Solar System and accumulate beyond the orbit of Saturn. The distribution of the perihelia of long-period comets beyond the orbit of Saturn exhibits a peak. We discuss the problem of replenishing the outer Oort cloud by comets from the inner part and their subsequent dynamical evolution. The annual rate of passages of comets of the inner cloud, which replenish the outer cloud, in the region q < 1 AU in orbits with a > 104 AU (~ 5.0 × 10?14 yr?1) is one order of magnitude lower than the rate of passage of comets from the outer Oort cloud (~ 9.1 × 10?13 yr?1).  相似文献   

3.
Physical lifetimes and end-states of short-period comets are analysed in connection with the problem of the maintainance of the zodiacal dust cloud. In particular, the problem of the comet-asteroid relationship is addressed. Recent studies of the physical properties of Apollo-Amor asteroids and short-period comets (e.g., Hartmann et al., 1987) show significant differences between them, suggesting that they are distinct classes of objects. A few percent of the active SP comets might become asteroidal-like bodies in comet-type orbits due to the buildup of dust mantles. The remainder probably disintegrate as they consume their volatile content so their debris can only be observed as fireballs when they meet the Earth. Unobservable faint SP comets — i.e., comets so small (m 1014 g) that quickly disintegrate before being detected, might be a complementary source of dust material. They might be completely sublimated even at rather large heliocentric distances (r - 3 AU). Yet the released dust grains can reach the vicinity of the Sun by Poynting-Robertson drag. The mass associated with unobservable SP comets with perihelion distances q 3 AU might be comparable to that computed for the sample of observed SP co-mets with q 1.5 AU. It is concluded that SP comets (from the large to the unobservable small ones) may supply an average of several tons/sec of meteoric matter to the zodiacal dust cloud.  相似文献   

4.
《Planetary and Space Science》1999,47(3-4):577-584
The idea of extraterrestrial delivery of organic matter to the early Earth is strongly supported by the detection of a large variety of organic compounds in the interstellar medium, comets, and carbonaceous chondrites. Whether organic compounds essential for the emergence and evolution of life, particularly amino acids and nucleic acid bases found in the meteorites, can be efficiently delivered by other space bodies is unclear and depends primarily on capability of the biomolecules to survive high temperatures during atmospheric deceleration and impacts to the terrestrial surface. In the present study we estimated survivability of simple amino acids (glycine, Lalanine, α-aminoisobutyric acid, L-valine and L-leucine), purines (adenine and guanine) and pyrimidines (uracil and cytosine) under rapid heating to temperatures of 400-1000°C under N2 or CO2 atmosphere. We have found that most of the compounds studied cannot survive the temperatures substantially higher than 700°C; however at 500600°C, the recovery can be at a percent level (or even 10%-level for adenine, uracil, alanine, and valine). The final fate of amino acids and nucleobases during the atmospheric deceleration and surface impacts is discussed depending on such factors as size of the space body, nature and altitude of the heating, chemical composition of the space body and of the atmosphere.  相似文献   

5.
Two indices have been developed for the purpose of comparing the natures of various classes of comets. The first is the Activity Index (AI), measuring the inherent magnitude increase in brightness from great solar distances to maximum near perihelion. The second, or Volatility Index (VI), measures the variation in magnitude near perihelion. Tentative determinations of these two indices are derived from observations by Max Beyer over more than 30 years for long-period (L-P) and short-period (S-P) comets near perihelion and from other homogeneous sources. AI determinations are made for 32 long-period (L-P) comets and for 14 short-period (S-P). The range of values of AI is of the order of 3 to 10 magnitudes with a median about 6. An expected strong correlation with perihelion distance q, is found to vary as q –2.3. Residuals from a least-square solution (AI) are used for comparing comets of different orbital classes, the standard deviation of a single value of AI is only ±1m.1 for L-P comets and ±1m.2 for S-P comets.Among the L-P comets, 19 of period P larger than 104 years yield AI = 0m.27 ± 0m.25 compared to 0m.39 ± 0m.26 for 13 of period between 102 years and 104 years. This denies any fading with aging among the L-P comets. Also no systematic change with period occurs for the VI index, leading to the same conclusions. Weak correlations are found with the Gas/Dust ratio of comets. No correlations are found between the two indices, nor of either index with near-perihelion magnitudes or orbital inclination.The various data are consistent with a uniform origin for all types of comets, the nuclei being homogeneous on the large scale but quite diverse on a small scale (the order of a fraction of kilometer in extent). Small comets thus may sublimate away entirely, leaving no solid core, while huge comets may develop a less volatile core by radioactive heating and possibly become inactive like asteroids after many S-P revolutions about the Sun. When relatively new, huge comets may be quite active at great solar distances because of volatiles from the core that have refrozen in the outer layers.  相似文献   

6.
The relationship between the organic and D/H ratios in small Solar System bodies (meteorites, interplanetary dust and comets) suggests that isotopic exchange reactions taking place at various temperatures are at the origin of the observed variations. These relationships are used to determine the exothermicity (ΔE) of ion-molecule reactions that fractionated the nitrogen isotopic ratio in the presolar molecular cloud; that is ΔE=43±10 K. Comparison with current models of interstellar chemistry suggests that such a value could be achieved by condensation of 15N-rich gas-phase precursors onto grain surfaces and their further isolation from the gas by incorporation into large macromolecular structures.  相似文献   

7.
Problems of hypervelocity interaction of large bodies with the Earth's atmosphere has attracted more attention during last few years. Several new concepts of dynamical explosive fragmentation of strong interplanetary bodies at extremely low heights under dynamic pressures of hundreds of Mdyn/cm2 were published. Comparison of these theoretical models with precise observations has not yet been done, because data on atmospheric penetration of large bodies are not available.Single body theory with sudden gross-fragmentation was successfully applied to photographic observations of fireballs. The largest bodies observed have sizes up to several meters. The highest dynamic pressure acting on these observed bodies reached slightly over 100 Mdyn/cm2. All these photographed fireballs follow theoretical concepts of motion of either the single-body or the single-body with gross-fragmentation under dynamic pressures in the range from 1 to 12 Mdyn/cm2. When this theory has been applied to photographic observations, typical standard deviation of the distance flown in the trajectory has been found in a range of 10 to 30 m for one observed distance corresponding also to the geometrical precision of the observations. This model can explain all good observations of atmospheric trajectories of meteoroids up to initial sizes of several meters with high precision. Also the three photographed and one videorecorded meteorite falls fit to this concept completely.The most important phenomenon of atmospheric motion of meteoroids up to several meters in size is the ablation with final stage of hot vapor from ablated material. Spectral records of meteoroids up to several meters in size, down to a height of 16 km and for various velocities show overwhelming radiation of rather low excited metalic atoms (several eV; temperatures 3000 to 5000 K) in the pass-band of visible light. Radiation from high excited atoms of either atmospheric or ablational origin forms only an insignificant part of visible radiation.Contrary to this regime, theories of very large bodies contain ablation mostly in the form of explosive fragmentation. Ablation at higher heights is negligible. This absence of classical ablation and fragmentation at low dynamic pressures for large bodies (contrary to observations of smaller bodies) brings the body to lower heights without too much change of size and makes thus the dynamic pressure much higher than in reality. In any case the change of body dynamics and radiation going from sizes of several meters (observed regime) to sizes of several tens of meters (hypothetical regime) may be crucial for our understanding of dynamics and radiation of large body penetration through the low atmosphere to the Earth's surface. Observations of atmospheric trajectory of these bodies with sufficiently high precision are extremely needed.  相似文献   

8.
A series of telescopes having approximately a 30° half opening angle and responding to neutrons in the energy range 50 MeV to 350 MeV has been flown to the top of the atmosphere on balloons released from an equatorial launching site at Kampala, Uganda, between 1967 and 1969. The aim of the experiment was to attempt to detect solar neutrons during periods of enhanced solar activity. No neutrons of solar origin were detected, but an upper limit of the order of 30 neutrons m–2 s–1 at the Earth has been placed on the continuous solar neutron flux in the above energy range, and a limit of four photons m–2 s–1 has also been placed on the corresponding -ray flux above 80 MeV. Limits have likewise been placed on the total emission from various flares. For a 1B flare the values were 23 × 104 neutrons m–2 and 6 × 104 photons m–2.  相似文献   

9.
Observations of the Earth’s exosphere have unveiled an extended envelope of hydrogen reaching further than 10 Earth radii composed of atoms orbiting around the Earth. This large envelope increases significantly the opacity of the Earth to Lyman α (Lyα) photons coming from the Sun, to the point of making feasible the detection of the Earth’s transit signature from 1.35 pc if pointing with an 8 meter primary mirror space telescope through a clean line of sight (N H <?1017 cm??2), as we show. In this work, we evaluate the potential detectability of Earth analogs orbiting around nearby M-type stars by monitoring the variability of the Lyα flux variability. We show that, in spite of the interstellar, heliospheric and astrospheric absorption, the transit signature in M5 V type stars would be detectable with a dedicated Lyα flux monitor implemented in a 4–8 m class space telescope. Such monitoring programs would enable measuring the robustness of planetary atmospheres under heavy space weather conditions like those produced by M-type stars. A 2-m class telescope, such as the World Space Observatory, would suffice to detect an Earth-like planet orbiting around Proxima Centauri, if there was such a planet or nearby M5 type stars.  相似文献   

10.
The formation of the gas giant planets Jupiter and Saturn probably required the growth of massive 15 Earth-mass cores on a time scale shorter than the 107 time scale for removal of nebular gas. Relatively minor variations in nebular parameters could preclude the growth of full-size gas giants even in systems in which the terrestrial planet region is similar to our own. Systems containing failed Jupiters, resembling Uranus and Neptune in their failure to capture much nebular gas, would be expected to contain more densely populated cometary source regions. They will also eject a smaller number of comets into interstellar space. If systems of this kind were the norm, observation of hyperbolic comets would be unexpected. Monte Carlo calculations of the orbital evolution of region of such systems (the Kuiper belt) indicate that throughout Earth history the cometary impact flux in their terrestrial planet regions would be 1000 times greater than in our Solar System. It may be speculated that this could frustrate the evolution of organisms that observe and seek to understand their planetary system. For this reason our observation of these planets in our Solar System may tell us nothing about the probability of similar gas giants occurring in other planetary systems. This situation can be corrected by observation of an unbiased sample of planetary systems.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

11.
High resolution on- and off-band Hα filtergrams of disk solar surges obtained with the Vacuum Tower Telescope of the Sacramento Peak Observatory have been compared to magnetic data.
  1. Surges constitute clusters of very fine dark (sometimes bright) filaments where each thread connects to an Ellerman bomb brightening. If the magnetic map reveals the existence of a satellite polarity as defined by Rust (1968), the bomb(s) lies over it.
  2. Although a large fraction of surges is not associated with clearly detectable satellite polarities, events are strongly favored in regions of evolving magnetic features, characterized by dimensions of about 10 000 km and significant flux change over a period of less than a day. A flux change rate of 3 × 1015 Mx s?1 has been measured along at least three homologous bomb-surge events in a satellite of region MW 18594. Surges appear to be related to rising flux of one polarity into a region of stronger opposite flux.
  3. The trajectories of surges are matched by magnetic lines of force computed in the current-free approximation.
  相似文献   

12.
Abstract— Asteroids tens to hundreds of meters in diameter constitute the most immediate impact hazard to human populations, yet the rate at which they arrive at Earth's surface is poorly known. Astronomic observations are still incomplete in this size range; impactors are subjected to disruption in Earth's atmosphere, and unlike the Moon, small craters on Earth are rapidly eroded. In this paper, we first model the atmospheric behavior of iron and stony bodies over the mass range 1–1012 kg (size range 6 cm‐1 km) taking into account deceleration, ablation, and fragmentation. Previous models in meteoritics deal with rather small masses (<105–106 kg) with the aim of interpreting registered fireballs in atmosphere, or with substantially larger objects without taking into account asteroid disruption to model cratering processes. A few earlier attempts to model terrestrial crater strewn fields did not take into account possible cascade fragmentation. We have performed large numbers of simulations in a wide mass range, using both the earlier “pancake” models and also the separated fragments model to develop a statistical picture of atmosphere‐bolide interaction for both iron and stony impactors with initial diameters up to ?1 km. Second, using a compilation of data for the flux at the upper atmosphere, we have derived a cumulative size‐frequency distribution (SFD) for upper atmosphere impactors. This curve is a close fit to virtually all of the upper atmosphere data over 16 orders of magnitude. Third, we have applied our model results to scale the upper atmosphere curve to a flux at the Earth's surface, elucidating the impact rate of objects <1 km diameter on Earth. We find that iron meteorites >5 times 104 kg (2.5 m) arrive at the Earth's surface approximately once every 50 years. Iron bodies a few meters in diameter (105–106 kg), which form craters ?100 m in diameter, will strike the Earth's land area every 500 years. Larger bodies will form craters 0.5 km in diameter every 20,000 years, and craters 1 km in diameter will be formed on the Earth's land area every 50,000 years. Tunguska events (low‐level atmospheric disruption of stony bolides >108 kg) may occur every 500 years. Bodies capable of producing hazardous tsunami (?200 m diameter projectiles) should strike the Earth's surface every ?100,000 years. This data also allows us to assess the completeness of the terrestrial crater record for a given area over a given time interval.  相似文献   

13.
We investigate the possibility of detectable meteor shower activity in the atmosphere of Venus. We compare the Venus-approaching population of known periodic comets, suspected cometary asteroids and meteor streams with that of the Earth. We find that a similar number of Halley-type comets but a substantially lesser population of Jupiter family comets approach Venus. Parent bodies of prominent meteor showers that might occur at Venus have been determined based on minimum orbital distance. These are: Comets 1P/Halley, parent of the η Aquarid and Orionid streams at the Earth; 45P/Honda-Mrkos-Pajdusakova which currently approaches the venusian orbit to 0.0016 AU; three Halley-type comets (12P/Pons-Brooks, 27P/Crommelin and 122P/de Vico), all intercepting the planet's orbit within a 5-day arc in solar longitude; and Asteroid (3200) Phaethon, parent of the December Geminids at the Earth. In addition, several minor streams and a number of cometary asteroid orbits are found to approach the orbit of Venus sufficiently close to raise the possibility of some activity at that planet. Using an analytical approach described in Adolfsson et al. (Icarus 119 (1996) 144) we show that venusian meteors would be as bright or up to 2 magnitudes brighter than their Earth counterparts and reach maximum luminosity at an altitude range of 100-120, 20-30 km higher than at the Earth, in a predominantly clear region of the atmosphere. We discuss the feasibility of observing venusian showers based on current capabilities and conclude that a downward-looking Venus-orbiting meteor detector would be more suitable for these purposes than Earth-based monitoring. The former would detect a shower of an equivalent Zenithal Hourly Rate of at least several tens of meteors.  相似文献   

14.
The lunar cratering rate is known reasonably well from comparison of observed crater frequencies with radiometric ages. Attempts to obtain a cratering rate for Mars have usually been based on calculation of the relative flux of asteroidal and cometary bodies on Mars and the Moon.The asteroidal flux on Mars cannot be obtained in a simple way from the observed number of Mars-crossing asteroids, i.e. those asteroids with perihelia within the orbit of Mars. Calculations of the secular perturbations of these asteroids by several authors, particularly williams, has shown that most of these bodies rarely come near even to Mars' aphelion when they are in the vicinity of the ecliptic plane, and their contribution to the Martian meteoroid flux is much smaller than has been commonly stated. Ring asteroids in the vicinity of the secular resonances discovered by Williams, high velocity fragments of asteroids on the inner edge of the asteroid belt, and possibly objects obtained from the 2:1 Kirkwood gap by a process described by Zimmerman and Wetherill are probably of greater importance in the 103-106 g meteoroid size range but are much less important in the production of large craters. Calculations of the Martian asteroidal and cometary impact rate are made, but the present unavoidable uncertainties in the results of these calculations result in their being of little value in establishing a Martian chronology. Suggestions for improving this situation are discussed.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

15.
J.G. Hills 《Icarus》1973,18(3):505-522
The physically reasonable assumption that the seed bodies which initiated the accretion of the individual asteroids, planets, and comets (subsequently these objects are collectively called planetoids) formed by stochastic processes requires a radius distribution function which is unique except for two scaling parameters: the total number of planetoids and their most probable radius. The former depends on the ease of formation of the seed bodies while the second is uniquely determined by the average pre-encounter velocity, V, of the accretable material relative to an individual planetoid. This theoretical radius function can be fit to the initial asteroid radius distribution which Anders (1965) derived from the present-day distribution by allowing for fragmentation collisions among the asteroids since their formation. Normalizing the theoretical function to this empirical distribution reveals that there were about 102 precollision asteroids and that V = (2?4) × 10?2 km/sec which was presumably the turbulent velocity in the Solar Nebula. Knowing V we can determine the scale height of the dust in the Solar Nebula and consequently its space density. The density of accretable material determines the rate of accretion of the planetoids. From this we find, for example, that the Earth formed in about 8 × 106 yr and it attained a maximum temperature through accretion of about 3 × 103°K. From the total mass of the terrestrial planets and the theoretical radius function we find that about 2 × 103 planetoids formed in the vicinity of the terrestrial planets. Except for the asteroids the smaller planetoids have since been accreted by the terrestrial planets. About 15% of the present mass of the terrestrial planets was accumulated by the secondary accretion of these smaller primary planetoids. There are far fewer primary planetoids than craters on the Moon or Mars. The craters were likely produced by the collisional breakup of a few primary planetoids with masses between one-tenth and one lunar mass. This deduction comes from comparing the collision cross sections of the planetoids in this mass range to that of the terrestrial planets. This comparison shows that two to three collisions leading to the breakup of four to six objects likely occurred among these objects before their accretion by the terrestrial planets. The number of these fragments is quite adequate to explain the lunar and Martin craters. Furthermore the mass spectrum of such fragments is a power-law distribution which results in a power-law distribution of crater radii of just the type observed on the Moon and Mars. Applying the same analysis to the planetoids which formed in the vicinity of the giant planets reveals that it is unlikely that any fragmentation collisions took place among them before they were accreted by these planets due to the integrated collision cross section of the giant planets being about three orders of magnitude greater than that of the terrestrial planets. We can thus anticipate a marked scarcity of impact craters on the satellites of these outer planets. This prediction can be tested by future space probes. Our knowledge of the radius function of the comets is consistent with their being primary planetoids. The primary difference between the radius function of the planetoids which formed in the inner part of the solar system and that of the comets results from the fact that the seed bodies which grew into the comets formed far more easily than those which grew into the asteroids and the terrestrial planets. Thus in the outer part of the Solar Nebula the principal solid material (water and ammonia snow) accreted into a huge (~1012+) number of relatively small objects (comets) while in the inner part of the nebula the solid material (hard-to-stick refractory substances) accumulated into only a few (~103) large objects (asteroids and terrestrial planets). Uranus and Neptune presumably formed by the secondary accretion of the comets.  相似文献   

16.
A growing body of evidence suggests the operation of life and life processes in comets as well in larger icy bodies in the solar system including Enceladus. Attempts to interpret such data without invoking active biology are beginning to look weak and flawed. The emerging new paradigm is that life is a cosmic phenomenon as proposed by Hoyle and Wickramasinghe (Lifecloud: the Origin of Life in the Galaxy, 1978) and first supported by astronomical spectroscopy (Wickramasinghe and Allen, Nature 287:518, 1980; Allen and Wickramasinghe, Nature 294:239, 1981; Wickramasinghe and Allen, Nature 323:44, 1986). Comets are the transporters and amplifiers of microbial life throughout the Universe and are also, according to this point of view, the carriers of viruses that contribute to the continued evolution of life. Comets brought life to Earth 4.2 billion years ago and they continue to do so. Space extrapolations of comets, Enceladus and possibly Pluto supports this point of view. Impacts of asteroids and comets on the Earth as well as on other planetary bodies leads to the ejection of life-bearing dust and rocks and a mixing of microbiota on a planetary scale and on an even wider galactic scale. It appears inevitable that the entire galaxy will be a single connected biosphere.  相似文献   

17.
Images of the dayglow of the Earth's atmosphere in the ultraviolet wavelength region obtained by the photometer of the spacecraft Dynamics Explorer revealed dark spots of the order of 50 km in diameter. These atmospheric holes were interpreted by the American physicist Frank as concentrations of water vapor formed as a result of the disintegration and vaporization of so-called small comets at high altitudes. An analysis of the same images showed that their explanation requires a frequency of comet collisions with the Earth as high as 20 events a minute! This sensational hypothesis evoked a heated scientific debate. The paper below contains an analysis of the possibility of observing Frank's hypothetical comets during their collisions with the Moon. By solving a two-dimensional radiative–gasdynamic problem, the authors demonstrate that the flashes occurring during such impacts can be observed from the Earth with ordinary telescopes.  相似文献   

18.
    
The Shiva Hypothesis, in which recurrent, cyclical mass extinctions of life on Earth result from impacts of comets or asteroids, provides a possible unification of important processes in astrophysics, planetary geology, and the history of life. Collisions with Earth-crossing asteroids and comets a few km in diameter are calculated to produce widespread environmental disasters (dust clouds, wildfires), and occur with the proper frequency to account for the record of five major mass extinctions (from 108 Mt TNT impacts) and ~ 20 minor mass extinctions (from 107–108 Mt impacts) recorded in the past 540 million years. Recent studies of a number of extinctions show evidence of severe environmental disturbances and mass mortality consistent with the expected after-effects (dust clouds, wildfires) of catastrophic impacts. At least six cases of features generally considered diagnostic of large impacts (e.g., large impact craters, layers with high platinum-group elements, shock-related minerals, and/or microtektites) are known at or close to extinction-event boundaries. Six additional cases of elevated iridium levels at or near extinction boundaries are of the amplitude that might be expected from collision of relatively low-Ir objects such as comets.The records of cratering and mass extinction show a correlation, and might be explained by a combination of periodic and stochastic impactors. The mass extinction record shows evidence for a periodic component of about 26 to 30 Myr, and an ~ 30 Myr periodic component has been detected in impact craters by some workers, with recent pulses of impacts in the last 2–3 million years, and at ~ 35, 65, and 95 million years ago. A cyclical astronomical pacemaker for such pulses of impacts may involve the motions of the Earth through the Milky Way Galaxy. As the Solar System revolves around the galactic center, it also oscillates up and down through the plane of the disk-shaped galaxy with a half-cycle ~ 30±3 Myr. This cycle should lead to quasi-periodic encounters with interstellar clouds, and periodic variations in the galactic tidal force with maxima at times of plane crossing. This galactic carrousel effect may provide a viable perturber of the Oort Cloud comets, producing periodic showers of comets in the inner Solar System. These impact pulses, along with stochastic impactors, may represent the major punctuations in earth history.also at NASA, Goddard Institute for Space Studies, 2880 Broadway, New York, New York 10025.  相似文献   

19.
The presence of methane on Mars is of great interest, since one possibility for its origin is that it derives from living microbes. However, CH4 in the martian atmosphere also could be attributable to geologic emissions released through pathways similar to those occurring on Earth. Using recent data on methane degassing of the Earth, we have estimated the relative terrestrial contributions of fossil geologic methane vs. modern methane from living methanogens, and have examined the significance that various geologic sources might have for Mars.Geologic degassing includes microbial methane (produced by ancient methanogens), thermogenic methane (from maturation of sedimentary organic matter), and subordinately geothermal and volcanic methane (mainly produced abiogenically). Our analysis suggests that ~80% of the “natural” emission to the terrestrial atmosphere originates from modern microbial activity and ~20% originates from geologic degassing, for a total CH4 emission of ~28.0×107 tonnes year?1.Estimates of methane emission on Mars range from 12.6×101 to 57.0×104 tonnes year?1 and are 3–6 orders of magnitude lower than that estimated for Earth. Nevertheless, the recently detected martian, Northern-Summer-2003 CH4 plume could be compared with methane expulsion from large mud volcanoes or from the integrated emission of a few hundred gas seeps, such as many of those located in Europe, USA, Mid-East or Asia. Methane could also be released by diffuse microseepage from martian soil, even if macro-seeps or mud volcanoes were lacking or inactive. We calculated that a weak microseepage spread over a few tens of km2, as frequently occurs on Earth, may be sufficient to generate the lower estimate of methane emission in the martian atmosphere.At least 65% of Earth’s degassing is provided by kerogen thermogenesis. A similar process may exist on Mars, where kerogen might include abiogenic organics (delivered by meteorites and comets) and remnants of possible, past martian life. The remainder of terrestrial degassed methane is attributed to fossil microbial gas (~25%) and geothermal-volcanic emissions (~10%). Global abiogenic emissions from serpentinization are negligible on Earth, but, on Mars, individual seeps from serpentinization could be significant. Gas discharge from clathrate-permafrost destabilization should also be considered.Finally, we have shown examples of potential degassing pathways on Mars, including mud volcano-like structures, fault and fracture systems, and major volcanic edifices. All these types of structures could provide avenues for extensive gas expulsion, as on Earth. Future investigations of martian methane should be focused on such potential pathways.  相似文献   

20.
The theoretical problem posed by the buoyant escape of a magnetic field from the interior of a stably stratified body bears directly on the question of the present existence of primordial magnetic fields in stars. This paper treats the onset of the Rayleigh-Taylor instability of the upper boundary of a uniform horizontal magnetic field in a stably stratified atmosphere. The calculations are carried out in the Boussinesq approximation and show the rapid growth of the initial infinitesimal perturbation of the boundary. This result is in contrast to the extremely slow buoyant rise of a separate flux tube in the same atmosphere. Thus for instance, at a depth of 1/3R beneath the surface of the Sun, a field of 102 G develops ripples over a scale of 103 km in a characteristic time of 50 years, whereas the characteristic rise time of the same field in separate flux tubes with the same dimensions is 1010 years. Thus, the development of irregularities proceeds quickly, soon slowing, however, to a very slow pace when the amplitude of the irregularities becomes significant. Altogether the calculations show the complexity of the question of the existence of remnant primordial magnetic fields in stellar interiors.This work was supported in part by the National Aeronautics and Space Administration under Grant NGL 14-001-001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号