首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
印度洋Carlsberg洋脊玄武岩岩石地球化学特征及其地质意义   总被引:2,自引:0,他引:2  
本文对采自印度洋Carlsberg脊14个站位的新鲜玄武岩样品进行了常量和微量元素组成分析,旨在研究岩浆源区地幔的性质以及岩浆作用过程。研究结果表明:该区玄武岩为典型的源于亏损型地幔的大洋中脊玄武岩,不同样品经历了不同程度的结晶分异作用,演化过程主要受控于橄榄石的结晶分异作用,部分样品中有单斜辉石结晶分异作用的影响,斜长石的结晶分异作用不显著;玄武岩岩浆来源于亏损型尖晶石二辉橄榄岩地幔的熔融,主微量元素组成中尚未见到富集型组分混入的证据;源区地幔不同比例的熔融作用及其后岩浆演化过程的差异是造成不同样品间地球化学性质差异的主要原因,彼此独立的局部岩浆作用过程是岩浆作用差异的主控制因素。Carlsberg脊玄武岩整体与全球标准大洋中脊玄武岩(N-MORB)平均组分相近,不同脊段间岩浆源区地幔的组成、熔融程度(比例)和熔融深度等无明显差异,这种特征向南直到CIR的北段。  相似文献   

2.
A surface ship gravity survey was carried out in the northern part of the North Fiji Basin during the NOFI cruise by the R/V l'Atalante in August-September, 1994. The two ridges inside the study area, the South Pandora Ridge and the Tripartite Ridge, present different structures and states of isostatic equilibrium in terms of gravity anomaly and its tectonic implications. The former is supported by a restoring force of an imaginary elastic plate in the crust and the latter by the Airy type isostasy. These characteristics can be derived from the difference in magmatic activity, as influenced by the difference in lithospheric structure. The latter is characterised by greater active magmatism and hydrothermalism underneath the ridge than the former. Such a difference in the magmatic activity and the horizontal scale of the shallow subsurface structure is derived from the difference in the stiffness or viscosity of the lithosphere beneath the two ridges.  相似文献   

3.
The morphotectonic features and their evolution of the central Southwest Indian Ridge (SWIR) are dis- cussed on the base of the high-resolution flfll-coverage bathyraetric data on the ridge between 49°-51°E. A comparative analysis of the topographic features of the axial and flank area indicates that the axial topogra- phy is alternated by the ridge and trough with en echelon pattern and evolved under a spatial-temporal mi- gration especially in 49°-50.17°E. It is probably due to the undulation at the top of the mantle asthenosphere, which is propagating with the mantle flow. From 50.17° to 50.7°E, is a topographical high terrain with a crust much thicker than the global average of the oceanic crust thickness. Its origin should be independent of the spreading mechanism of ultra-slow spreading ridges. The large numbers of volcanoes in this area indicate robust magmatic activity and may be related to the Crozet hot spot according to RMBA (residual mantle Bouguer anomaly). The different geomorphological feature between the north and south flanks of the ridge indicates an asymmetric spreading, and leading to the development of the OCC (oceanic core complex). The tectonic activity of the south frank is stronger than the north and is favorable to develop the OCC. The first found active hydrothermal vent in the SWIR at 37°47'S, 49°39'E is thought to be associated with the detach- ment fault related to the OCC.  相似文献   

4.
Much of the relief of the abyssal hills covering the ocean basins is believed to originate from faulting of oceanic crust at mid-ocean ridges. The timescale over which faults grow is controversial, however, with some authors arguing that faults continue to grow in places for 0.5 m.y. or more based on increasing relief of fault scarps with distance from ridge axes. We examine Deep Tow profiler records of the Galapagos Spreading Centre, in which basement reflections allow scarp relief to be measured beneath the sediment cover, and find that relief does not increase but decreases systematically to 40 km off-axis (1.5 Ma seafloor). Since reversal of fault offsets is unlikely in this tectonic setting, we interpret this result as indicating that variations in fault statistics could reflect temporal variations in the tectonic or volcanic state of the ridge crest, not necessarily progressive fault growth with age as previously assumed. Resolving the issue of fault longevity will therefore require independent data on the timing of fault growth and distribution of present growth activity. We suggest some possible alternative indicators of fault longevity and discuss more generally the implications of volcanic flows to studies of faulting at ridges.  相似文献   

5.
From July to November 1988, a major electromagnetic (EM) experiment, known as EMRIDGE, took place over the southern end of the Juan de Fuca Ridge in the northeast Pacific. It was designed to complement the previous EMSLAB experiment which covered the entire Juan de Fuca Plate, from the spreading ridge to subduction zone. The principal objective of EMRIDGE was to use natural sources of EM induction to investigate the processes of ridge accretion. Magnetotelluric (MT) sounding and Geomagnetic Depth Sounding (GDS) are well suited to the study of the migration and accumulation of melt, hydrothermal circulation, and the thermal evolution of dry lithosphere. Eleven magnetometers and two electrometers were deployed on the seafloor for a period of three months. Simultaneous land-based data were made available from the Victoria Magnetic Observatory, B.C., Canada and from a magnetometer sited in Oregon, U.S.A.Changes in seafloor bathymetry have a major influence on seafloor EM observations as shown by the orientation of the real GDS induction arrows away from the ridge axis and towards the deep ocean. Three-dimensional (3D) modelling, using a thin-sheet algorithm, shows that the observed EM signature of the Juan de Fuca Ridge and Blanco Fracture Zone is primarily due to nonuniform EM induction within the ocean, associated with changes in ocean depth. Furthermore, if the influence of the bathymetry is removed from the observations, then no significant conductivity anomaly is required at the ridge axis. The lack of a major anomaly is significant in the light of evidence for almost continuous hydrothermal venting along the neo-volcanic zone of the southern Juan de Fuca Ridge: such magmatic activity may be expected to have a distinct electrical conductivity signature, from high temperatures, hydrothermal fluids and possible melt accumulation in the crust.Estimates of seafloor electrical conductivity are made by the MT method, using electric field records at a site 35 km east of the ridge axis, on lithosphere of age 1.2 Ma, and magnetic field records at other seafloor sites. On rotating the MT impedance tensor to the principal axis orientation, significant anisotropy between the major (TE) and minor (TM) apparent resistivities is evident. Phase angles also differ between the principal axis polarisations, and TM phase are greater than 90° at short periods. Thin-sheet modelling suggests that bathymetric changes accounts for some of the observed 3D induction, but two-dimensional (2D) electrical conductivity structure in the crust and upper mantle, aligned with the ridge axis, may also be present. A one-dimensional (1D) inversion of the MT data suggests that the top 50 km of Earth is electrically resistive, and that there is a rise in conductivity at approximately 300 km. A high conductivity layer at 100 km depth is also a feature of the 1D inversion, but its presence is less well constrained.  相似文献   

6.
The morphotectonic setting of the East Pacific Rise (EPR) between21°12 and 22°40 S and its recent and past hydrothermalactivity were the focus of the Russian R/V Geolog Fersmans expeditionin 1987–1988.The EPR axial zone in the study area is comprised of three segmentsseparated by overlapping spreading centers (OSCs) near 21°44 and22°08 S. The northern segment is the shallowest of three and hasa distinct massive axial ridge, trapeziodal in cross-section, toppedby a very wide flat summit surface and cut by a well-developedcentral graben. These features testify to intense magmatism and to avoluminous crustal magmatic chamber underlying the whole segment.Fine-scale segmentation is most clearly revealed in the structure ofthe central graben within which several 4th-order segments can bedistinguished. This scale of segmentation is also reflected on flanks of theaxis by variations in the character and intensity of faulting.According to structural and petrologic data, the magmatism is mostintense in the central part of the segment which is probably locateddirectly over a magmatic diapir supplying the melt to the whole segment.Magma migration at the subcrustal level from the center towards the ends ofthe segment with discrete injection into the crustal magmatic chamber ispresumed.The central segment is broken into two morphologically distinct partsseparated by a deval. In the subsided northern part, the wide summit of theaxial ridge is cut by a well-developed, intensely fractured axialgraben. In the southern part, the axial ridge is relatively elevated, butnarrow with an ephemeral graben along its crest. The character and intensityof faulting on the axial flanks are also considerably different in thenorthern and southern parts of the segment. Thus, the magmatic supply tothese two parts is thought to originate from two different sources. If so,then at present the magma chamber underlying the southern part of thesegment is probably at the stage of replenishment, while in the north it isat the stage of deep cooling.The southern segment is structurally similar to the central one. Howeverthere is considerably less intensive magmatic activity in this region,especially south of 22°30 S where the axial ridge is narrow, andtriangular in cross-section.Both OSCs studied are marked by abrupt narrowing and sharp subsidence ofthe tips of axial ridges within the northern limbs. The southern OSC limbsare morphologically similar to normal sections of axial ridges. In bothcases the flanks are structurally and morphologically disrupted adjacent tothe OSCs and oblique structures can be traced far southward of the OSCflanks. Due to the spatial position of oblique structures on the the flanksit is presumed that the OSC near 22°07 S is migrating northward.The 21°44 S OSC zone has apparently undergone small spatialoscillations. In spite of the small amplitude of lateral displacement, thiszone is marked by prominent bathymetric anomalies.Numerous massive sulfide deposits were discovered atop the axial ridgealong the entire length of the uplifted and hydrothermally active northernsegment. Ore metal concentrations in near-bottom waters are maximumover the southern part of the northern segment, while maximum concentrationsof the same metals in surficial sediments are confined to the central partof the same segment. We surmise that there has been a recentalong-axis shift of the zone of maximum hydrothermal activity fromthe middle of the segment to its present position in the southern part ofthe segment. Considering sedimentation rates, the age of this shift can beapproximately estimated to be 5 to 10 thousand years before the present.The relatively Mg-enriched basalts of the middle part of thenorthern segment represent a tike of a more primitive pattern, while therelatively Fe-rich rocks of its southern part probably reflect alarge degree of fractionation at shallow crustal levels. Considering thistrend, in addition to morphotectonic data we presume that subaxial magmaflow from the middle to the southern part of the segment is responsible forthe along-axis shift of hydrothermal activity.In the central segment of the study area, massive sulfides have only beendiscovered south of the 21°55 S deval, where the axial ridgeshoals and where the existence of a subjacent magma chamber is presumed.The very weak manifestations of recent volcanism within the southernsegment explain the absence of hydrothermal activity and sulfide depositswithin this segment.  相似文献   

7.
Geophysical data from 900 km of the Southwest Indian Ridge are used todescribe the pattern of evolution of the plate boundary between 61° Eand 70° E over the past 20 million years. The SWIR is anobliquely-opening, ultra slow-spreading axis, and east of61° E comprises a series of ridge sections, each about 100–120 kmin length. The orientation of these sections varies fromsub-orthogonal to oblique to the approximately N–S spreadingdirection. In general, the suborthogonal sections are shallower, commonlysubdivided into an array of discrete axial segments, and carry recognisablecentral magnetic anomalies. The majority of the oblique sections are single,continuous rifts without continuous axial magnetic signatures.Morphotectonics of the Southwest Indian Ridge crust have not previously beenwell constrained off-axis, and we here present sidescan sonar andswath bathymetric data up to 100 km from the ridge to demonstrate the complexities of its spatial and temporal evolution.A model is proposed that the segmentation style correlates with analong-axis variation between: (a) relatively thick crustal sections which overlie mantle sections with higher magmatic supply created in orthogonally-spreading segments and (b) those oblique sections associated with cooler, magmatically-starved mantle and thinner crust. These latter sections are formed at broad offset zones in theplate boundary, more precisely defined on faster-spreading ridges asnontransform discontinuities. The nonsystematic pattern of crustalconstruction, extensional basin formation and the absence of extension-parallel traces of discontinuities off-axis suggest that the oblique spreading sections are not fixed in space or time.  相似文献   

8.
 Swath bathymetric, gravity, and magnetic studies were carried out over a 55 km long segment of the Central Indian Ridge. The ridge is characterized by 12 to 15 km wide rift valley bounded by steep walls and prominent volcanic constructional ridges on either side of the central rift valley. A transform fault at 7°45′S displaces the ridge axis. A mantle Bouguer anomaly low of −14 mGals and shallowing of rift valley over the middle of the ridge segment indicate along axis crustal thickness variations. A poorly developed neovolcanic zone on the inner rift valley floor indicate dominance of tectonic extension. The off-axis volcanic ridgs suggest enhanced magmatic activity during the recent past. Received: 24 May 1996 / Rivision received: 13 January 1997  相似文献   

9.
Many modern seafloor tectonic environments are host to hydrothermal systems and associated polymetallic sulfide deposits. Metal transport and precipitation are controlled by magmatic processes such as pre-eruptive degassing and the hydrothermal cycle. The original availability of Pb and other ore metals in a given setting is dependent on concentrations in the original magmatic source or additional enrichment processes. We have examined the Pb budget of melt inclusions from nine modern seafloor settings representing back-arcs, mid-ocean ridges and seamounts. Melt inclusions provide information on the characteristics of parental magmas, including insights into metal budgets. Trace element data in melt inclusions hosted in plagioclase, olivine and pyroxene were obtained by laser-ablation inductively-coupled mass-spectrometry.Results from back-arcs emphasize the impact of slab-subduction and dehydration processes on the chemical characteristics of generated magmas. Volatile- and fluid-mobile element-rich melt inclusions at Manus basin and Okinawa trough reflect a robust contribution of elements from the subducting slab as evidenced by relatively low Ce/Pb ratios. At Bransfield strait, on the other hand, melt inclusions are volatile poor, and fluid-mobile element ratios are similar to mid-ocean ridge values indicating little or no contribution from the slab. High Cu concentrations at Manus basin and Okinawa trough can be explained by fluxing of ferric iron from the subducting slab benefiting the production of sulfate over sulfide.Metal budgets for seamounts located on and nearby the axis of mid-ocean ridge segments appear to be independent of any input of mantle plume material. Results from the southern Explorer ridge (strong lower mantle influence, transitional- and enriched-MORBs), Pito and Axial seamounts (moderate lower mantle influence, transitional-MORBs) and a Foundation near-ridge seamount (little to no mantle influence, normal-MORB) show that, despite similar tectonic environments and varying contributions of mantle plume material, Cu, Zn and Pb values do not vary significantly between the enriched and non-enriched magma components of a given setting.  相似文献   

10.
The combination of multi-beam echo-sounder swath bathymetry and high-resolution deep-towed sidescan sonar provides a powerful database from which to examine mid-ocean ridge processes. We have used such a database, gathered from the Mid-Atlantic Ridge north of the Kane Fracture Zone (the MARNOK area), to examine the relationship between tectonic, volcanic, and bathymetric segmentation. We have identified structural domains, with different fault distributions, and neovolcanic segments that are distinct from the 2nd or 3rd order bathymetric segmentation.From their mutual relationships, a model is proposed for the magmatic accretion of oceanic crust at slow spreading ridges that relates the local melt supply to the tectonic style. We suggest that these are mutually interactive, and determine whether volcanic extrusion along the ridge is continuous and slow, or episodic and rapid.  相似文献   

11.
Nearly complete side-scan, bathymetry and magnetic coverage documents the evolution of the geometry of the East Pacific Rise (EPR) between 16° and 19° S since 5 Ma. Lineaments visible in SeaMARC II, H-MR1 and Sea Beam 2000 side-scan data correspond dominantly to normal fault scarps which have developed in the axial region perpendicular to the least compressive stress. Except near overlapping spreading centers (OSCs), the lineament orientations are taken to represent the perpendicular to the instantaneous Pacific-Nazca spreading direction. Their dominant orientation in the axial region is 012°, in good agreement with the prediction of the current model of relative plate motion (DeMets et al., 1994). However, the variations of the lineament azimuths with age show that there has been a small (3°–5°) clockwise change in the Nazca-Pacific relative motion since 5 Ma. There is also a distinct population of lineaments which strike counterclockwise to the ambient orientation. These discordant lineaments form somewhat coherent patterns on the seafloor and represent the past migration tracks of several left-stepping OSCs. Concurrent analysis of these discordant zones and the magnetic anomalies, reveals that up to 1 Ma, the EPR was offset by a few large, left-stepping OSCs. These OSCs were bisected into smaller OSCs by new spreading segments forming within their overlap basins. The smaller OSCs proceeded to migrate rapidly and were further bisected by newly spawned ridge segments until the present staircase of small, left-stepping OSCs was achieved. By transferring lithosphere from one plate to the other, these migration events account remarkably well for the variable spreading asymmetry in the area. Between 16° and 19° S, the present EPR is magmatically very robust, as evidenced by its inflated morphology, the profuse volcanic and hydrothermal activity observed from submerisbles and towed cameras, the geochemistry of axial basalts, and seismic and gravity data. Since 1 Ma, all the OSCs have migrated away from the shallowest, most robust section of the ridge between 17° and 17°30 S, which was previously offset by a large OSC. We propose that the switch from a presumed starved magmatic regime typically associated with large OSCs to the presently robust magmatic regime occurred when the EPR overrode a melt anomaly during its westward migration relative to the asthenosphere. The resulting increase in melt supply at 17°–17°30 S has fed the migration of axial discontinuities for this section of the southern EPR since 1 Ma.  相似文献   

12.
Overlapping spreading centers (OSCs) are a type of ridge axis discontinuity found along intermediate and fast spreading centers. The ridges at these locations overlap and curve towards each other. and are separated by an elongate overlap basin. A high resolution Deep-Tow survey was conducted over the 12°54 N OSC (offset 1.6 km) on the East Pacific Rise in order to study the structure of a small OSC on a fine scale. A detailed tectonic study and Deep-Tow 3-D magnetic inversion were performed on the data. Towards the tips of both limbs, the apparent age of lava flows increases, the density of exposed faults and fissures increases, and the axial graben loses definition and disappears. No active hydrothermal vents were detected in the area. These observations suggest that the magmatic budget steadily decreases along axis approaching and OSC, even where the offset is small. In contrast with OSCs which have a large offset (>5 km), the 3-D magnetic inversion solution for this OSC produced no evidence for highly magnetized areas near the tip of either spreading center.  相似文献   

13.
New multibeam bathymetry data and multichannel seismic profiles over 7 detailed survey sites collected during cruise no. KNOXRR06 of the R/V Rodger Revelle in 2007 fundamentally expanded the concepts about the structure of the sedimentary cover of the Ninety-East Ridge, which were based on the results of previous studies. They allow making a step forward in interpreting the nature of the unconformities and deformations. The deformation pattern of the sedimentary cover suggests three stages of tectonic activity over the ridge during the Paleocene, Eocene, and Late Miocene. As suggested by the high present-day seismicity, the last stage might continue to the present time. In addition, indirect criteria indicate young intraplate volcanism at the last stage. New data is reviewed in the context of two models of the ridge formation. The first model follows a well-known concept of the ridge representing a trace of the Kerguelen hotspot. The second one relates large outflows of basalts to the development of a giant fracture under conditions of global extension, which continued later during the sedimentary cover formation. Additional integrated geological and geophysical studies are required for understanding the nature of this unique feature.  相似文献   

14.
Continuous along-axis Sea Beam coverage of the slow-intermediate spreading (34–38 mm yr−1 full rate) southern Mid-Atlantic Ridge (25°–27°30′S and 31°–38° S) shows that the ridge axis is segmented by both rigid and non-rigid discontinuities. Following the model of Macdonald et al. (1988b), a hierarchy of four orders is proposed for ridge axis discontinuities based on a continuum of relative age and distance offset across the discontinuites. This paper discusses the characteristics associated with five second-order discontinuities found in the areas surveyed. First-order discontinuities represent rigid offsets, transform faults, whereas non-rigid discontinuities fall into the second, third and fourth orders. Like transform fault boundaries, second-order discontinuities have distinctive morphologic signatures both on and off-axis-discordant zones — and therefore are better defined than third- or fourth-order discontinuities. Second-order discontinuities are offsets that range in distance from less than 10 km to approximately 30 km and vary in age offset from 0.5 to approximately 2.0 m.y. The variable morphotectonic geometries associated with these discontinuities indicate that horizontal shear strains are accommodated by both extensional and strike-slip tectonism and that the geometries are unstable in time. Three characteristic geometries are recognized: (1)en echelon jog in the plate boundary where ridge axis tips overlap slightly, (2)en echelon jog in the plate boundary where ridge axes are separated by an extensional basin whose long axis is oriented parallel to the strike of the adjoining ridge axes, and (3) oblique offset characterized by a large extensional basin that is oriented approximately 45° to the strike of the ridge axes. In the case of the third type, evidence for short strands of strike-slip tectonism that link an obliquely oriented extensional basin flanking ridge tips is often apparent. Analysis of the detailed bathymetric and magnetic data collected over the second-order discontinuities and their off axis terrain out to 5–7 m.y. documents that second-order discontinuities can follow several evolutionary paths: they can evolve from transform fault boundaries through prolonged asymmetric spreading, they may migrate along strike leaving a V-shaped wake, and they may remain in approximately the same position but oscillate slightly back and forth. In addition, a small change in the pole of relative motion occurring 4–5 Ma is thought to have resulted in the initiation of at least one second-order discontinuity in the survey area. A geologic model is proposed which involves the interplay of lithospheric thickness, asymmetric spreading, temporal and spatial variability of along-axis magmatic input and changes in the poles of relative motion to explain the origin, morphology and evolution of second-order ridge axis discontinuities.  相似文献   

15.
 The Mediterranean Ridge (eastern Mediterranean) is a large accretionary complex that results from the Africa–Europe–Aegean plates convergence. Multichannel seismic data, combined with previous results showed that the ridge comprises distinct major structural domains facing different forelands: (1) An outer domain is bounded to the south by the ridge toe. Underneath the Ionian and Levantine outer Ridge, Messinian evaporites act as a major decollement level. (2) An axial, or crestal, ridge domain with mud diapiric and mud volcano activity is bounded to the north by backthrust. (3) A less tectonized inner Ridge domain, possibly a series of former forearc basins, abuts the Hellenic Trench. The ridge displays strong along-strike variations. These variations can be interpreted as consequences of an ongoing collision against the Libyan continental promontory.  相似文献   

16.
Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages of eight alkali basalt samples from the South China Sea, and the argon - argon ages of two samples among them are reported. Apparent ages of the whole rock are 3.80 to 7. 91 Ma with an average value of 5.43 Ma (potassium- argon, whole rock), and there is little difference among samples at the same location, e. g. , 4. 76 - 5.78 Ma for location S(M-12. The argon - argon ages for the two samples are 6.06 and 4. 71 Ma, which lie within the age scope of potassium - argon method. The dating results indicate that rock-forming age is from late Miocene to Pliocene, which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea. Volcanic activities occur after the cessation of spreading of the South China Sea, which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea. These dating results, combined with geochemical characteristics of these basalts, the published chronological data for the South China Sea and its adjacent regions, and the updated geophysical data near Hainan Island, suggest that after the cessation of spreading of the South China Sea, there occur widely distributing magmatic activities which primarily is alkali basalt, and the volcanic activity continues to Quaternary. The activity may be relative to Hainan mantle plume originated from core/mantle boundary.  相似文献   

17.
The crenulated geometry of the Southeast Indian ridge within the Australian-Antarctic discordance is formed by numerous spreading ridge segments that are offset, alternately to the north and south, by transform faults. Suggested causes for these offsets, which largely developed since ~ 20 Ma, include asymmetric seafloor spreading, ridge jumps, and propagating rifts that have transferred seafloor from one flank of the spreading ridge to the other. Each of these processes has operated at different times in different locations of the discordance; here we document an instance where a small (~ 20 km), young (< 0.2 Ma), southward ridge jump has contributed to the observed asymmetry. When aeromagnetic anomalies from the Project Investigator-1 survey are superposed on gravity anomalies computed from Geosat GM and ERM data, we find that in segment B4 of the discordance (between 125° and 126° E), the roughly east-west-trending gravity low, correlated with the axial valley, is 20–25 km south of the ridge axis position inferred from the center of magnetic anomaly 1. Elsewhere in the discordance, the inferred locations of the ridge axis from magnetics and gravity are in excellent agreement. Ship track data confirm these observations: portions of Moana Wave track crossing the ridge in B4 show that a topographic valley correlated with the gravity anomaly low lies south of the center of magnetic anomaly 1; while other ship track data that cross the spreading ridge in segments B3 and B5 demonstrate good agreement between the axial valley, the gravity anomaly low, and the central magnetic anomaly. Based on these observations, we speculate that the ridge axis in B4 has recently jumped to the south, from a ridge location closer to the center of the young normally magnetized crust, to that of the gravity anomaly low. The position of the gravity low essentially at the edge of normally magnetized crust requires a very recent (< 0.2 Ma) arrival of the ridge in this new location. Because this ridge jump is so young, it may be a promising location for future detailed studies of the dynamics, kinematics, and thermal effects of ridge jumps.The U.S. Government right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

18.
The results of the bathymetry simulation indicate the emplacement of the Mesozoic Arctic plume into the lithosphere of the Alpha-Mendeleev and Lomonosov ridges. The study also presents a model of the thermal subsidence to the asthenosphere. The calculated coefficients are compared with those obtained for the Greenland-Iceland and Iceland-Faeroe ridges, which were formed in response to hotspot activity. It was shown that the coefficients of the thermal subsidence in the central part of the Alpha-Mendeleev and Lomonosov Ridges are similar to those calculated for the Greenland-Iceland and Iceland-Faeroe ridges. This indicates the thermal regime of the subsidence of the Alpha-Mendeleev and Lomonosov ridges since the Early Miocene and the increased influence of the Arctic plume on the ridge genesis. The ridges are interpreted to have formed over a broad geological timeframe, from the late Cretaceous to the Cenozoic. A geothermal method, which is highly informative in terms of the age of the lithosphere, provides better constraints on the timing of ridge formation. The age estimates for the Alpha-Mendeleev (97–79 Ma) and Lomonosov ridges (69–57 Ma) derived from the geothermal data allowed us to draw a convincing conclusion about the genesis of these ridges.  相似文献   

19.
The southern Mid-Atlantic Ridge (MAR) is spreading at rates (34–38 mm yr−1) that fall within a transitional range between those which characterize slow and intermediate spreading center morphology. To further our understanding of crustal accretion at these transitional spreading rates, we have carried out analysis of magnetic anomaly data from two detailed SeaBeam surveys of the MAR between 25°–27°30′S and 31°–34°30′S. Within these areas, the MAR is subdivided into 9 ridge segments bounded by large- and short-offset discontinuities of the ridge axis. From two-dimensional Fourier inversions of the magnetic anomaly data we establish the history of spreading within each ridge segment for the past 5 my and the evolution of the bounding ridge-axis discontinuities. We see evidence for the initiation and diminishment of small-offset discontinuities, and for the transition of rigid large-offset transform faults to less stable short-offset features. Individual ridge segments display independent spreading histories in terms of both the sense and amount of asymmetric spreading within each which have given rise to changes through time in the lengths of bounding ridge-axis discontinuities. Over the past 3–5 my, the short-offset discontinuities within the area have lengthened/shortened by approximately the same amount (∼ 10 km). During this same time period, larger-offset transform faults have remained comparatively constant in length. A shift in plate motion at anomaly 3 time may have given rise to change in the length of short-offset second-order discontinuities. However, the pattern of lengthening/shortening short-offset discontinuities we see is not simply related to the geometry of the plate boundary in these regions which precludes a simply relationship between plate motion changes and response at the plate boundary. We document a case of rapid (minimum 60 mm yr−1) small-scale rift propagation, occurring between 2.5 and 1.8 my, associated with transition of the Moore transform fault to an oblique-trending ridge-axis discontinuity. Propagation across the Moore discontinuity and similar propagation within the 31°–34°30’S area may be associated with the reduced age contrast in lithosphere across second-order discontinuities. Total opening rates within our northern survey area decreased from anomaly 4′ to 2 time and rates within both areas have increased since the Jaramillo. Total opening rates measured for anomaly intervals differ along the plate boundary significantly, more than expected with changing distance to the pole of rotation. These differences imply a degree of short-term non-rigid plate behaviour which may be associated with ridge segments acting as independent spreading cells. Magnetic polarity transition widths from our inversion studies may be used to infer a zone of crustal accretion which is 3–6 km wide, within the inner floor of the rift valley. A systematic increase of transition width with age would be expected if deeper crustal sources dominate the magnetic signal in older crust but this is not observed. We present results from three-dimensional analysis of magnetic anomaly data which show magnetization highs located at the intersection of the MAR with both large- and short-offset discontinuities. Within the central anomaly the highs exceed 15 A m−1 compared with a background of approximately 8–10 A m−1 and they persist for at least 2.5 my. The highs may be caused by eruption of fractionated strongly magnetized basalts at ridge-axis discontinuities with both large and small offsets.  相似文献   

20.
Deep sea photographs were collected for several camera-tow transects along and across the axis at the East Pacific Rise crest between 9°49 and 9°52 N, covering terrain out to 2 km from the ridge axis. The objective of the surveys was to utilize fine-scale morphology and imagery of seafloor volcanic terrain to aid in interpreting eruptive history and lava emplacement processes along this fast-spreading mid-ocean ridge. The area surveyed corresponds to the region over which seismic layer 2A, believed to correspond to the extrusive oceanic layer, attains full thickness (Christeson et al., 1994a, b, 1996; Hooft et al., 1996; Carbotte et al., 1997). The photographic data are used to identify the different eruptive styles occurring along the ridge crest, map the distribution of the different morphologies, constrain the relative proportions of the three main morphologies and discuss the implications of these results. Morphologic distributions of lava for the area investigated are 66% lobate lava, 20% sheet lava, 10% pillow lava, and 4% transitional morphologies between the other three main types. There are variations in inferred relative lava ages among the different morphological types that do not conform to a simple increase in age versus distance relationship from the spreading axis, suggesting a model in which off-axis transport and volcanism contribute to the accumulation of the extrusive layer. Analysis of the data suggests this ridge crest has experienced three distinctly different types of volcanic emplacement processes: (1) axial summit eruptions within a 1 km wide zone centered on the axial summit collapse trough (ASCT); (2) off-axis transport of lava erupted at or near the ASCT through channelized surface flows; and (3) off-axis eruptions and local constructional volcanism at distances of 0.5-1.5 km from the axis. Major element analyses of basaltic glasses from lavas collected by Alvin, rock corer and dredging in this area indicate that the most recent magmatic event associated with the present ASCT erupted relatively homogeneous and mafic (>8.25 weight percent wt.% MgO) basalts compared to older, off-axis lavas which tend to be more chemically evolved (Perfit and Chadwick, 1998; Perfit and Fornari, unpublished data). The more primitive lavas have a more extensive distribution within and east of the ASCT. More evolved basalts (MgO <8.0wt.%) are concentrated in a broad area a few kilometers east of the axis, and in an oval-shaped area south of 9°50 N, west of the ASCT. Transitional and enriched (T- and E-) mid-ocean ridge basalts exist in relatively small areas (<1 km2) on the crestal plateau and correlate with scarps or fissures where pillow lavas were erupted. Mafic lavas in this area are primarily related to the youngest magmatic events. Geochemical analysis of samples collected at distances >500 m from the ASCT suggests that regions of off-axis volcanism may be sourced from older and cooler sections of the axial magma lens. Analysis of these data suggests that this portion of the EPR has not experienced large scale volcanic overprinting in the past 30 ka. The predominance of lobate flows (66%) throughout much of the crestal region, and subtle variations in sediment cover and apparent age between flows, suggest that eruptive volumes and effusion rates of individual eruptions have been similar over much of the last 30 ka and that most of the eruptions have been small, probably similar in volume to the 1991 EPR flow which had an estimated volume of 1×106 m3 (Gregg et al., 1996).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号