首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
We adapt the Kolmogorov’s normalization algorithm (which is the key element of the original proof scheme of the KAM theorem) to the construction of a suitable normal form related to an invariant elliptic torus. As a byproduct, our procedure can also provide some analytic expansions of the motions on elliptic tori. By extensively using algebraic manipulations on a computer, we explicitly apply our method to a planar four-body model not too different with respect to the real Sun–Jupiter–Saturn–Uranus system. The frequency analysis method allows us to check that our location of the initial conditions on an invariant elliptic torus is really accurate.  相似文献   

2.
We prove the existence of infinitely many periodic solutions, with larger and larger minimal period, accumulating onto elliptic invariant tori for (an “outer solar-system” model of) the planar (N + 1)-body problem.   相似文献   

3.
In this paper, we consider the elliptic collinear solutions of the classical n-body problem, where the n bodies always stay on a straight line, and each of them moves on its own elliptic orbit with the same eccentricity. Such a motion is called an elliptic Euler–Moulton collinear solution. Here we prove that the corresponding linearized Hamiltonian system at such an elliptic Euler–Moulton collinear solution of n-bodies splits into \((n-1)\) independent linear Hamiltonian systems, the first one is the linearized Hamiltonian system of the Kepler 2-body problem at Kepler elliptic orbit, and each of the other \((n-2)\) systems is the essential part of the linearized Hamiltonian system at an elliptic Euler collinear solution of a 3-body problem whose mass parameter is modified. Then the linear stability of such a solution in the n-body problem is reduced to those of the corresponding elliptic Euler collinear solutions of the 3-body problems, which for example then can be further understood using numerical results of Martínez et al. on 3-body Euler solutions in 2004–2006. As an example, we carry out the detailed derivation of the linear stability for an elliptic Euler–Moulton solution of the 4-body problem with two small masses in the middle.  相似文献   

4.
5.
We deal with the study of the spatial restricted three-body problem in the case where the small particle is far from the primaries, that is, the so-called comet case. We consider the circular problem, apply double averaging and compute the relative equilibria of the reduced system. It appears that, in the circular problem, we find not only part of the equilibria existing in the elliptic case, but also new ones. These critical points are in correspondence with periodic and quasiperiodic orbits and invariant tori of the non-averaged Hamiltonian. We explain carefully the transition between the circular and the elliptic problems. Moreover, from the relative equilibria of elliptic type, we obtain invariant 3-tori of the original system.  相似文献   

6.
We analyze four-dimensional symplectic mappings in the neighbourhood of an elliptic fixed point whose eigenvalues are close to satisfy a third-order resonance. Using the perturbative tools of resonant normal forms, the geometry of the orbits and the existence of elliptic or hyperbolic one-dimensional tori (fixed lines) is worked out. This allows one to give an analytical estimate of the stability domain when the resonance is unstable. A comparison with numerical results for the four-dimensional Hénon mapping is given. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
我们已经研究了分别具椭圆和双曲不动点的二维保测度映射及其受摄三维扩张的KS熵。本文研究一类具抛物不动点的二维保测度映射:及其受摄扩张:的KS熵随参数A、B、C、D、E的变化.数值探索结果表明:适当定义区域内的二维映射T2的KS熵与A无关,与我们的理论分析结果相一致。受摄扩张映射T3的KS熵随摄动参数B、C、D的增大而增大,却随E的增大而减小.我们还发现,随着摄动的逐渐增强,映射T3的不变环面将逐渐破裂,使更多的轨道逃逸,从而可能使映射T3的KS熵减小。另外,不变环面存在的判别式在大范围内仍在一定程度上有效。  相似文献   

8.
To obtain improved maps of the coronal electron density distribution we have devised an iterative technique in which an approximation of the unknown distribution is successively modified to reduce discrepancies with the original data. With this technique we can now map the corona to a much finer resolution than shown in our previous papers, without greatly increasing the computational cost. The series representation of density may now contain more than 23 000 terms compared with previous limit of 128. This results in a fourfold increase in linear resolution, so that features about a tenth of a solar radius in width are now separated. The iteration algorithm can be adjusted to apply a mathematically optimal correction to a given approximation of the density. Although this correction minimizes noise levels, a cheaper version of the algorithm yields a better result.  相似文献   

9.
In the current study, a double-averaged analytical model including the action of the perturbing body’s inclination is developed to study third-body perturbations. The disturbing function is expanded in the form of Legendre polynomials truncated up to the second-order term, and then is averaged over the periods of the spacecraft and the perturbing body. The efficiency of the double-averaged algorithm is verified with the full elliptic restricted three-body model. Comparisons with the previous study for a lunar satellite perturbed by Earth are presented to measure the effect of the perturbing body’s inclination, and illustrate that the lunar obliquity with the value 6.68 is important for the mean motion of a lunar satellite. The application to the Mars-Sun system is shown to prove the validity of the double-averaged model. It can be seen that the algorithm is effective to predict the long-term behavior of a high-altitude Martian spacecraft perturbed by Sun. The double-averaged model presented in this paper is also applicable to other celestial systems.  相似文献   

10.
We review theorems for proving non-integrability of Hamiltonian dynamical systems, which are based on properties of the variational equations in real or complex time or on the destruction of the resonant tori of an integrable system under a perturbation.  相似文献   

11.
In this paper of the series, we arrive at the end of the second step of our regularization approach, and in which, elliptic expansions in terms of the sectorial variables j (i) introduced by the author in Paper IV (Sharaf, 1982b) to regularize the highly oscillating perturbation force of some orbital systems will be established analytically and computationally for the thirteenth, fourteenth, fifteenth, and sixteenth categories according to our adopted scheme of presentation drawn up in Paper V (Sharaf, 1983). For each of the elliptic expansions belonging to a category, literal analytic expressions for the coefficients of its trigonometric series representation are established. Moreover, some recurrence formulae satisfied by these coefficients are also established to facilitate their computations, and numerical results are included to provide test examples for constructing computational algorithms. Finally, the second and the last collection of completed elliptic expansion will be given in Appendix B, such that, the materials of Appendix A of Paper VIII (Sharaf, 1985b) and those of Appendix B of the present paper provide the reader with the elliptic expansions in terms of j (i) so explored for the second step of our regularization approach.  相似文献   

12.
13.
Regular solutions at the 3/2 commensurability are investigated forSitnikovs problem. Utilizing a rotating coordinate system and theaveraging method, approximate analytical equations are obtained for thePoincare sections by means of Jacobian elliptic functions and 3periodicsolutions are generated explicitly. It is revealed that the system exhibitsheteroclinic orbits to saddle points. It is also shown that chaotic regionemerging from the destroyed invariant tori, can easily be seen for certaineccentricities. The procedure of the current study provides reliable answersfor the long-time behavior of the system near resonances.  相似文献   

14.
All normal modes of oscillations of slender tori have been expressed analytically in the classic work by Blaes (1985). We adopt his approach in order to calculate the eigenfunctions and eigenfrequencies of a particular class of epicyclic modes for slightly non‐slender tori, and present results of our numerical simulation of torus epicyclic modes of oscillations, which will be compared with the analytical results. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The stability of co-orbital motions is investigated in such exoplanetary systems, where the only known giant planet either moves fully in the habitable zone, or leaves it for some part of its orbit. If the regions around the triangular Lagrangian points are stable, they are possible places for smaller Trojan-like planets. We have determined the nonlinear stability regions around the Lagrangian point L4 of nine exoplanetary systems in the model of the elliptic restricted three-body problem by using the method of the relative Lyapunov indicators. According to our results, all systems could possess small Trojan-like planets. Several features of the stability regions are also discussed. Finally, the size of the stability region around L4 in the elliptic restricted three-body problem is determined as a function of the mass parameter and eccentricity.  相似文献   

16.
With the standard map model, we study the stickiness effect of invariant tori, particularly the role of hyperbolic sets in this effect. The diffusion of orbits originated from the neighborhoods of hyperbolic points, periodic islands and torus is studied. We find that they possess similar diffusion rules, but the diffusion of orbits originated from the neighborhood of a torus is faster than that originated near a hyperbolic set. The numerical results show that an orbit in the neighborhood of a torus spends most of time around hyperbolic invariant sets. We also calculate the areas of islands with different periods. The decay of areas with the periods obeys a power law, and the absolute values of the exponents increase monotonously with the perturbation parameter. According to the results obtained, we conclude that the stickiness effect of tori is caused mainly by the hyperbolic invariant sets near the tori, and the diffusion speed becomes larger when orbits diffuse away from the torus.  相似文献   

17.
The local character of self-gravity along with the number of spatial dimensions are critical issues when computing the potential and forces inside massive systems like stars and disks. This appears from the discretisation scale where each cell of the numerical grid is a self-interacting body in itself. There is apparently no closed-form expression yet giving the potential of a three-dimensional homogeneous cylindrical or spherical cell, in contrast with the Cartesian case. By using Green’s theorem, we show that the potential integral for such polar-type 3D sectors—initially, a volume integral with singular kernel—can be converted into a regular line-integral running over the lateral contour, thereby generalising a formula already known under axial symmetry. It therefore is a step towards the obtention of another potential/density pair. The new kernel is a finite function of the cell’s shape (with the simplest form in cylindrical geometry), and mixes incomplete elliptic integrals, inverse trigonometric and hyperbolic functions. The contour integral is easy to compute; it is valid in the whole physical space, exterior and interior to the sector itself and works in fact for a wide variety of shapes of astrophysical interest (e.g. sectors of tori or flared discs). This result is suited to easily providing reference solutions, and to reconstructing potential and forces in inhomogeneous systems by superposition. The contour integrals for the 3 components of the acceleration vector are explicitely given.  相似文献   

18.
19.
We discuss the runaway instability of axisymmetric tori with non-constant specific angular momentum around black holes, taking into account self-gravity of the tori. The distribution of specific angular momentum of the tori is assumed to be a positive power law with respect to the distance from the rotational axis. By employing the pseudo-Newtonian potential for the gravity of the spherical black hole, we have found that self-gravity of the tori causes a runaway instability if the amount of the mass which is transferred from the torus to the black hole exceeds a critical value, i.e. 3 per cent of the mass of the torus. This has been shown by two different approaches: (1) by using equilibrium models and (2) by dynamical simulations. In particular, dynamical simulations using an SPH code have been carried out for both self-gravitating and non-self-gravitating tori. For non-self-gravitating models, all tori are runaway stable. Therefore we come to the conclusion that self-gravity of the tori has a stronger destabilizing effect than the stabilizing effect of the positive power-law distribution of the angular momentum.  相似文献   

20.
This is a numerical study of orbits in the elliptic restricted three-body problem concerning the dependence of the critical orbits on the eccentricity of the primaries. They are defined as being the separatrix between stable and unstable single periodic orbits. As our results are adapted to the existence of planetary orbits in double stars we concentrated first on the P-orbits (defined to surround both primaries). Due to the complexity of the elliptic problem there is no analytical approach possible. Using the results of some 300 integrated orbits for 103 to 3. 103 periods of the primaries we established lower and upper bounds for the critical orbits for different values of the eccentricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号